Obesity and Altered Aspirin Pharmacology

Review Article
  • 70 Downloads

Abstract

Obesity is an independent risk factor for cardiovascular morbidity and mortality due to atherothrombotic events and represents a group of patients who are in need of optimized antithrombotic therapy. Central to the obesity-related risk of atherothrombosis is a pro-thrombotic state characterized by increased levels of coagulation factors, impaired fibrinolysis, and platelet hyper-reactivity, which results from the interaction among the features clustering in obesity: insulin resistance, inflammation, oxidative stress, and endothelial dysfunction. Aspirin is a cornerstone antiplatelet drug that has substantial interpatient variability in pharmacodynamic response and a number of reports have demonstrated that obesity is a risk factor for a reduced aspirin pharmacodynamic response. The inflammatory state associated with obesity, particularly a metabolic endotoxemia, may set in motion a number of mechanisms that increase platelet reactivity and platelet turnover and decrease aspirin bioavailability, all contributing to a poor aspirin response. A greater understanding of the mechanisms underlying obesity-related high on-aspirin platelet reactivity will help in optimization of antithrombotic therapy in this patient population.

Notes

Compliance with Ethical Standards

Funding

No external funding was used in the preparation of this review.

Conflict of interest

Nicholas B. Norgard declares that he has no conflicts of interest that might be relevant to the contents of this review.

References

  1. 1.
    Antithrombotic Trialists’ Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324:71–86.CrossRefGoogle Scholar
  2. 2.
    Patrono C, Ciabattoni G, Patrignani P, et al. Clinical pharmacology of platelet cyclooxygenase inhibition. Circulation. 1985;72:1177–84.PubMedCrossRefGoogle Scholar
  3. 3.
    Gum PA, Kottke-Marchant K, Poggio ED, et al. Profile and prevalence of aspirin resistance in patients with cardiovascular disease. Am J Cardiol. 2001;88:230–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Eikelboom JW, Hirsh J, Weitz JI, Johnston M, Yi Q, Yusuf S. Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation. 2002;105:1650–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Maree AO, Curtin RJ, Dooley M, et al. Platelet response to low-dose enteric-coated aspirin in patients with stable cardiovascular disease. J Am Coll Cardiol. 2005;46:1258–63.PubMedCrossRefGoogle Scholar
  6. 6.
    Ohmori T, Yatomi Y, Nonaka T, et al. Aspirin resistance detected with aggregometry cannot be explained by cyclooxygenase activity: involvement of other signaling pathway(s) in cardiovascular events of aspirin-treated patients. J Thromb Haemost. 2006;4:1271–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Chen W-H, Cheng X, Lee P-Y, et al. Aspirin resistance and adverse clinical events in patients with coronary artery disease. Am J Med. 2007;120:631–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Hovens MMC, Snoep JD, Eikenboom JCJ, van der Bom JG, Mertens BJA, Huisman MV. Prevalence of persistent platelet reactivity despite use of aspirin: a systematic review. Am Heart J. 2007;153:175–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Snoep JD, Hovens MM, Eikenboom JC, van der Bom JG, Huisman MV. Association of laboratory-defined aspirin resistance with a higher risk of recurrent cardiovascular events: a systematic review and meta-analysis. Arch Intern Med. 2007;167:1593–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Krasopoulos G, Brister SJ, Beattie WS, Buchanan MR. Aspirin “resistance” and risk of cardiovascular morbidity: systematic review and meta-analysis. BMJ. 2008;336:195–8.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Sofi F, Marcucci R, Gori AM, Abbate R, Gensini GF. Residual platelet reactivity on aspirin therapy and recurrent cardiovascular events—a meta-analysis. Int J Cardiol. 2008;128:166–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Frelinger AL 3rd, Li Y, Linden MD, et al. Association of cyclooxygenase-1-dependent and-independent platelet function assays with adverse clinical outcomes in aspirin-treated patients presenting for cardiac catheterization. Circulation. 2009;120:2586–96.PubMedCrossRefGoogle Scholar
  13. 13.
    Pettersen AÅR, Seljeflot I, Abdelnoor M, Arnesen H. High on-aspirin platelet reactivity and clinical outcome in patients with stable coronary artery disease: results from ASCET (Aspirin Nonresponsiveness and Clopidogrel Endpoint Trial). J Am Heart Assoc. 2012;1:e000703.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Mayer K, Bernlochner I, Braun S, et al. Aspirin treatment and outcomes after percutaneous coronary intervention: results of the ISAR-ASPI registry. J Am Coll Cardiol. 2014;64:863–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Eckel RH, Krauss RM. American Heart Association call to action: obesity as a major risk factor for coronary heart disease. AHA Nutrition Committee. Circulation. 1998;97:2099–100.PubMedCrossRefGoogle Scholar
  16. 16.
    Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. JAMA. 1999;282:1523–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113:898–918.PubMedCrossRefGoogle Scholar
  18. 18.
    Kramer CK, Zinman B, Retnakaran R. Are metabolically healthy overweight and obesity benign conditions? A systematic review and meta-analysis. Ann Intern Med. 2013;159:758–69.PubMedCrossRefGoogle Scholar
  19. 19.
    Mertens I, Van Gaal LF. Obesity, haemostasis and the fibrinolytic system. Obes Rev. 2002;3:85–101.PubMedCrossRefGoogle Scholar
  20. 20.
    Coban E, Ozdogan M, Yazicioglu G, Akcit F. The mean platelet volume in patients with obesity. Int J Clin Pract. 2005;59:981–2.PubMedCrossRefGoogle Scholar
  21. 21.
    Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875–80.PubMedCrossRefGoogle Scholar
  22. 22.
    Després J-P. Cardiovascular disease under the influence of excess visceral fat. Crit Pathw Cardiol. 2007;6:51–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Ritchie SA, Connell JMC. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis. 2007;17:319–26.PubMedCrossRefGoogle Scholar
  24. 24.
    Anfossi G, Russo I, Trovati M. Platelet dysfunction in central obesity. Nutr Metab Cardiovasc Dis. 2009;19:440–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Targher G, Zoppini G, Moghetti P, Day CP. Disorders of coagulation and hemostasis in abdominal obesity: emerging role of fatty liver. Semin Thromb Hemost. 2010;36:41–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Tamminen M, Lassila R, Westerbacka J, Vehkavaara S, Yki-Järvinen H. Obesity is associated with impaired platelet-inhibitory effect of acetylsalicylic acid in nondiabetic subjects. Int J Obes Relat Metab Disord. 2003;27:907–11.PubMedCrossRefGoogle Scholar
  27. 27.
    Cox D, Maree AO, Dooley M, Conroy R, Byrne MF, Fitzgerald DJ. Effect of enteric coating on antiplatelet activity of low-dose aspirin in healthy volunteers. Stroke. 2006;37:2153–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Cohen HW, Crandall JP, Hailpern SM, Billett HH. Aspirin resistance associated with HbA1c and obesity in diabetic patients. J Diabetes Complicat. 2008;22:224–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Bordeaux BC, Qayyum R, Yanek LR, et al. Effect of obesity on platelet reactivity and response to low-dose aspirin. Prev Cardiol. 2010;13:56–62.PubMedCrossRefGoogle Scholar
  30. 30.
    Peace A, McCall M, Tedesco T, et al. The role of weight and enteric coating on aspirin response in cardiovascular patients. J Thromb Haemost. 2010;8:2323–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Larsen SB, Grove EL, Neergaard-Petersen S, Wurtz M, Hvas AM, Kristensen SD. Determinants of reduced antiplatelet effect of aspirin in patients with stable coronary artery disease. PLoS One. 2015;10:e0126767.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Gonzalez-Conejero R, Rivera J, Corral J, Acuña C, Guerrero JA, Vicente V. Biological assessment of aspirin efficacy on healthy individuals: heterogeneous response or aspirin failure? Stroke. 2005;36:276–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Cattaneo M. Laboratory detection of ‘aspirin resistance’: what test should we use (if any)? Eur Heart J. 2007;28:1673–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Michelson AD, Frelinger AL, Furman MI. Current options in platelet function testing. Am J Cardiol. 2006;98:4N–10N.PubMedCrossRefGoogle Scholar
  35. 35.
    Lordkipanidzé M, Pharand C, Schampaert E, Turgeon J, Palisaitis DA, Diodati JG. A comparison of six major platelet function tests to determine the prevalence of aspirin resistance in patients with stable coronary artery disease. Eur Heart J. 2007;28:1702–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Chakroun T, Gerotziafas G, Robert F, et al. In vitro aspirin resistance detected by PFA-100 closure time: pivotal role of plasma von Willebrand factor. Br J Haematol. 2004;124:80–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Smith JP, Haddad EV, Taylor MB, et al. Suboptimal inhibition of platelet cyclooxygenase-1 by aspirin in metabolic syndrome. Hypertension. 2012;59:719–25.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Norgard NB, Ma Q, Monte S. Aspirin responsiveness changes in obese patients following bariatric surgery. Cardiovasc Ther. 2017;35(4):e12268. https://doi.org/10.1111/1755-5922.12268.CrossRefGoogle Scholar
  39. 39.
    Mathieu P, Lemieux I, Despres JP. Obesity, inflammation, and cardiovascular risk. Clin Pharmacol Ther. 2010;87:407–16.PubMedCrossRefGoogle Scholar
  40. 40.
    Cani PD, Delzenne NM. The gut microbiome as therapeutic target. Pharmacol Ther. 2011;130:202–12.PubMedCrossRefGoogle Scholar
  41. 41.
    Delzenne NM, Cani PD. Gut microbiota and the pathogenesis of insulin resistance. Curr Diabetes Rep. 2011;11:154–9.CrossRefGoogle Scholar
  42. 42.
    Delzenne NM, Cani PD. Interaction between obesity and the gut microbiota: relevance in nutrition. Annu Rev Nutr. 2011;21:15–31.CrossRefGoogle Scholar
  43. 43.
    Hanley MJ, Abernethy DR, Greenblatt DJ. Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet. 2010;49:71–87.PubMedCrossRefGoogle Scholar
  44. 44.
    Sankaralingam S, Kim RB, Padwal RS. The impact of obesity on the pharmacology of medications used for cardiovascular risk factor control. Can J Cardiol. 2015;31:167–76.PubMedCrossRefGoogle Scholar
  45. 45.
    Bhatt DL, Grosser T, Dong JF, et al. Enteric coating and aspirin nonresponsiveness in patients with type 2 diabetes mellitus. J Am Coll Cardiol. 2017;69:603–12.PubMedCrossRefGoogle Scholar
  46. 46.
    Grosser T, Fries S, Lawson JA, Kapoor SC, Grant GR, FitzGerald GA. Drug resistance and pseudoresistance: an unintended consequence of enteric coating aspirin. Circulation. 2013;127:377–85.PubMedCrossRefGoogle Scholar
  47. 47.
    Rocca B, Petrucci G. Variability in the responsiveness to low-dose aspirin: pharmacological and disease-related mechanisms. Thrombosis. 2012;2012:376721.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Jernås M, Olsson B, Arner P, et al. Regulation of carboxylesterase 1 (CES1) in human adipose tissue. Biochem Biophys Res Commun. 2009;383:63–7.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Adebayo GI, Williams J, Healy S. Aspirin esterase activity—evidence for skewed distribution in healthy volunteers. Eur J Intern Med. 2007;18:299–303.PubMedCrossRefGoogle Scholar
  50. 50.
    Kugai M, Uchiyama K, Tsuji T, et al. MDR1 is related to intestinal epithelial injury induced by acetylsalicylic acid. Cell Physiol Biochem. 2013;32:942–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Li X, Zhao K, Ma N, Sun S, Miao Z, Zhao Z. Association of ABCB1 promoter methylation with aspirin exposure, platelet function, and clinical outcomes in Chinese intracranial artery stenosis patients. Eur J Clin Pharmacol. 2017;. https://doi.org/10.1007/s00228-017-2298-z (epub).Google Scholar
  52. 52.
    McRae MP, Brouwer KLR, Kasuba ADM. Cytokine regulation of P-glycoprotein. Drug Metab Rev. 2003;35(1):19–33.PubMedCrossRefGoogle Scholar
  53. 53.
    Mishra J, Zhang Q, Rosson JL, Moran J, Dopp JM, Neudeck BL. Lipopolysaccharide increases cell surface P-glycoprotein that exhibits diminished activity in intestinal epithelial cells. Drug Metab Dispos. 2008;36:2145–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Tang M, Mukundan M, Yang J, et al. Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases, and clopidogrel is transesterificated in the presence of ethyl alcohol. J Pharmacol Exp Ther. 2006;319:1467–76.PubMedCrossRefGoogle Scholar
  55. 55.
    Patrono C, Ciabattoni G, Pinca E, et al. Low dose aspirin and inhibition of thromboxane B2 production in healthy subjects. Thromb Res. 1980;17:317–27.PubMedCrossRefGoogle Scholar
  56. 56.
    Burch JW, Stanford N, Majerus PW. Inhibition of platelet prostaglandin synthetase by oral aspirin. J Clin Investig. 1978;61:314–9.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    O’Brien JR. Effects of salicylates on human platelets. Lancet. 1968;1:779–83.PubMedCrossRefGoogle Scholar
  58. 58.
    Rocca B, Dragani A, Pagliaccia F. Identifying determinants of variability to tailor aspirin therapy. Expert Rev Cardiovasc Ther. 2013;11:365–79.PubMedCrossRefGoogle Scholar
  59. 59.
    Schwartz KA, Schwartz DE, Ghosheh K, Reeves MJ, Barber K, DeFranco A. Compliance as a critical consideration in patients who appear to be resistant to aspirin after healing of myocardial infarction. Am J Cardiol. 2005;95:973–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Awtry EH, Loscalzo J. Aspirin. Circulation. 2000;101:1206–18.PubMedCrossRefGoogle Scholar
  61. 61.
    Bradlow BA, Chetty N. Dosage frequency for suppression of platelet function by low dose aspirin therapy. Thromb Res. 1982;27:99–110.PubMedCrossRefGoogle Scholar
  62. 62.
    Santilli F, Rocca B, De Cristofaro R, et al. Platelet cyclooxygenase inhibition by low-dose aspirin is not reflected consistently by platelet function assays: implications for aspirin “resistance”. J Am Coll Cardiol. 2009;53:667–77.PubMedCrossRefGoogle Scholar
  63. 63.
    Altman R, Luciardi HL, Muntaner J, Herrera RN. The antithrombotic profile of aspirin. Aspirin resistance, or simply failure? Thromb J. 2004;2:1.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Rocca B, Santilli F, Pitocco D, et al. The recovery of platelet cyclooxygenase activity explains interindividual variability in responsiveness to low-dose aspirin in patients with and without diabetes. J Thromb Haemost. 2012;10:1220–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Tefferi A, Vainchenker W. Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol. 2011;29:573–82.PubMedCrossRefGoogle Scholar
  66. 66.
    Dragani A, Pascale S, Recchiuti A, et al. The contribution of cyclooxygenase-1 and -2 to persistent thromboxane biosynthesis in aspirin-treated essential thrombocythemia: implications for antiplatelet therapy. Blood. 2010;115:1054–61.PubMedCrossRefGoogle Scholar
  67. 67.
    Dillinger JG, Sideris G, Henry P, Sollier BC, Ronez E, Drouet L. Twice daily aspirin to improve biological aspirin efficacy in patients with essential thrombocythemia. Thromb Res. 2012;129:91–4.PubMedCrossRefGoogle Scholar
  68. 68.
    Pascale S, Petrucci G, Dragani A, et al. Aspirin-insensitive thromboxane biosynthesis in essential thrombocythemia is explained by accelerated renewal of the drug target. Blood. 2012;119:3595–603.PubMedCrossRefGoogle Scholar
  69. 69.
    Henry P, Vermillet A, Boval B, et al. 24-hour time-dependent aspirin efficacy in patients with stable coronary artery disease. Thromb Haemost. 2011;105:336–44.PubMedCrossRefGoogle Scholar
  70. 70.
    Tschoepe D, Roesen P, Esser J, et al. Large platelets circulate in an activated state in diabetes mellitus. Semin Thromb Hemost. 1991;17:433–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Stohlawetz P, Folman CC, von dem Borne AE, et al. Effects of endotoxemia on thrombopoiesis in men. Thromb Haemost. 1999;81:613–7.PubMedGoogle Scholar
  72. 72.
    Guthikonda S, Alviar CL, Vaduganathan M, et al. Role of reticulated platelets and platelet size heterogeneity on platelet activity after dual antiplatelet therapy with aspirin and clopidogrel in patients with stable coronary artery disease. J Am Coll Cardiol. 2008;52:743–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Martin JF, Kristensen SD, Mathur A, Grove EL, Choudry FA. The causal role of megakaryocyte-platelet hyperactivity in acute coronary syndromes. Nat Rev Cardiol. 2012;9:658–70.PubMedCrossRefGoogle Scholar
  74. 74.
    Mijovic R, Kovacevic N, Zarkov M, Stosic Z, Cabarkapa V, Mitic G. Reticulated platelets and antiplatelet therapy response in diabetic patients. J Thromb Thrombolysis. 2015;40:203–10.PubMedCrossRefGoogle Scholar
  75. 75.
    Verdoia M, Pergolini P, Nardin M, et al. Impact of diabetes on immature platelets fraction and its relationship with platelet reactivity in patients receiving dual antiplatelet therapy. J Thromb Thrombolysis. 2016;42:245–53.PubMedCrossRefGoogle Scholar
  76. 76.
    Ault KA, Rinder HM, Mitchell J, Carmody MB, Vary CP, Hillman RS. The significance of platelets with increased RNA content (reticulated platelets). A measure of the rate of thrombopoiesis. Am J Clin Pathol. 1992;98:637–46.PubMedCrossRefGoogle Scholar
  77. 77.
    Ibrahim H, Nadipalli S, DeLao T, Guthikonda S, Kleiman NS. Immature platelet fraction (IPF) determined with an automated method predicts clopidogrel hyporesponsiveness. J Thromb Thrombolysis. 2012;33:137–42.PubMedCrossRefGoogle Scholar
  78. 78.
    Lee EY, Kim SJ, Song YJ, Choi SJ, Song J. Immature platelet fraction in diabetes mellitus and metabolic syndrome. Thromb Res. 2013;132:692–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Eikelboom JW, Warkentin TE. Immature platelet count: part of the cardiologist’s complete blood count? J Am Coll Cardiol. 2014;64:2130–2.PubMedCrossRefGoogle Scholar
  80. 80.
    Vaduganathan M, Alviar CL, Arikan ME, et al. Platelet reactivity and response to aspirin in subjects with the metabolic syndrome. Am Heart J. 2008;156:1002.e1–7.CrossRefGoogle Scholar
  81. 81.
    Freynhofer MK, Gruber SC, Grove EL, Weiss TW, Wojta J, Huber K. Antiplatelet drugs in patients with enhanced platelet turnover: biomarkers versus platelet function testing. Thromb Haemost. 2015;114:459–68.PubMedCrossRefGoogle Scholar
  82. 82.
    Grove EL, Hvas AM, Mortensen SB, Larsen SB, Kristensen SD. Effect of platelet turnover on whole blood platelet aggregation in patients with coronary artery disease. J Thromb Haemost. 2011;9:185–91.PubMedCrossRefGoogle Scholar
  83. 83.
    McBane RD 2nd, Gonzalez C, Hodge DO, Wysokinski WE. Propensity for young reticulated platelet recruitment into arterial thrombi. J Thromb Thrombolysis. 2014;37:148–54.PubMedCrossRefGoogle Scholar
  84. 84.
    Weber AA, Zimmermann KC, Meyer-Kirchrath J, Schror K. Cyclooxygenase-2 in human platelets as a possible factor in aspirin resistance. Lancet. 1999;353:900 (letter).PubMedCrossRefGoogle Scholar
  85. 85.
    Rocca B, Secchiero P, Ciabattoni G, et al. Cyclooxygenase-2 expression is induced during human megakaryopoiesis and characterizes newly formed platelets. Proc Natl Acad Sci U S A. 2002;99:7634–9.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Guthikonda S, Lev EI, Patel R, et al. Reticulated platelets and uninhibited COX-1 and COX-2 decrease the antiplatelet effects of aspirin. J Thromb Haemost. 2007;5:490–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Becker DM, Segal J, Vaidya D, et al. Sex differences in platelet reactivity and response to low-dose aspirin therapy. JAMA. 2006;295:1420–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Frelinger AL, Li Y, Linden MD, et al. Aspirin ‘resistance’: role of pre-existent platelet reactivity and correlation between tests. J Thromb Haemost. 2008;6:2035–44.PubMedCrossRefGoogle Scholar
  89. 89.
    Davì G, Guagnano MT, Ciabattoni G, et al. Platelet activation in obese women: role of inflammation and oxidant stress. JAMA. 2002;288:2008–14.PubMedCrossRefGoogle Scholar
  90. 90.
    Tavil Y, Sen N, Yazici HU, Hizal F, Abaci A, Cengel A. Mean platelet volume in patients with metabolic syndrome and its relationship with coronary artery disease. Thromb Res. 2007;120:245–50.PubMedCrossRefGoogle Scholar
  91. 91.
    Yetkin E. Mean platelet volume not so far from being a routine diagnostic and prognostic measurement. Thromb Haemost. 2008;100:3–4.PubMedGoogle Scholar
  92. 92.
    Zhang G, Han J, Welch EJ, et al. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol. 2009;182:7997–8004.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Beaulieu LM, Freedman JE. The role of inflammation in regulating platelet production and function: Toll-like receptors in platelets and megakaryocytes. Thromb Res. 2010;125:205–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Patrignani P, Di Febbo C, Tacconelli S, et al. Reduced thromboxane biosynthesis in carriers of toll-like receptor 4 polymorphisms in vivo. Blood. 2006;107:3572–4.PubMedCrossRefGoogle Scholar
  95. 95.
    Jilma-Stohlawetz P, Folman CC, von dem Borne AE, et al. Effects of anticoagulation on thrombopoietin release during endotoxemia. J Lab Clin Med. 2001;137:64–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Kaser A, Brandacher G, Steurer W, et al. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis. Blood. 2001;98:2720–5.PubMedCrossRefGoogle Scholar
  97. 97.
    Oda A, Miyakawa Y, Druker BJ, et al. Thrombopoietin primes human platelet aggregation induced by shear stress and by multiple agonists. Blood. 1996;87:4664–70.PubMedGoogle Scholar
  98. 98.
    Pasquet JM, Gross BS, Gratacap MP, et al. Thrombopoietin potentiates collagen receptor signaling in platelets through a phosphatidylinositol 3-kinase-dependent pathway. Blood. 2000;95:3429–34.PubMedGoogle Scholar
  99. 99.
    Kojima H, Shinagawa A, Shimizu S, et al. Role of phosphatidylinositol-3 kinase and its association with Gab1 in thrombopoietin-mediated up-regulation of platelet function. Exp Hematol. 2001;29:616–22.PubMedCrossRefGoogle Scholar
  100. 100.
    Gresele P, Falcinelli E, Momi S. Potentiation and priming of platelet activation: a potential target for antiplatelet therapy. Trends Pharmacol Sci. 2008;29:352–60.PubMedCrossRefGoogle Scholar
  101. 101.
    Lupia E, Bosco O, Mariano F, et al. Elevated thrombopoietin in plasma of burned patients without and with sepsis enhances platelet activation. J Thromb Haemost. 2009;7:1000–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Blair TA, Moore SF, Hers I. Circulating primers enhance platelet function and induce resistance to antiplatelet therapy. J Thromb Haemost. 2015;13:1479–93.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Konstantinides S, Schafer K, Koschnick S, Loskutoff DJ. Leptin-dependent platelet aggregation and arterial thrombosis suggests a mechanism for atherothrombotic disease in obesity. J Clin Invest. 2001;108:1533–40.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763–70.PubMedCrossRefGoogle Scholar
  105. 105.
    Landman RE, Puder JJ, Xiao E, Freda PU, Ferin M, Wardlaw SL. Endotoxin stimulates leptin in the human and nonhuman primate. J Clin Endocrinol Metab. 2003;88:1285–91.PubMedCrossRefGoogle Scholar
  106. 106.
    Nakata M, Yada T, Soejima N, Maruyama I. Leptin promotes aggregation of human platelets via the long form of its receptor. Diabetes. 1999;48:426–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Freedman JE, Loscalzo J, Barnard MR, Alpert C, Keaney JF, Michelson AD. Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Invest. 1997;100:350–6.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Schwarz UR, Walter U, Eigenthaler M. Taming platelets with cyclic nucleotides. Biochem Pharmacol. 2001;62:1153–61.PubMedCrossRefGoogle Scholar
  109. 109.
    Davì G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med. 2007;357:2482–94.PubMedCrossRefGoogle Scholar
  110. 110.
    Anfossi G, Mularoni EM, Burzacca S, et al. Platelet resistance to nitrates in obesity and obese NIDDM, and normal platelet sensitivity to both insulin and nitrates in lean NIDDM. Diabetes Care. 1998;21:121–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Anfossi G, Russo I, Massucco P. Impaired synthesis and action of antiaggregating cyclic nucleotides in platelets from obese subjects: possible role in platelet hyperactivation in obesity. Eur J Clin Invest. 2004;34:482–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Anfossi G, Russo I, Trovati M. Platelet resistance to the anti-aggregating agents in the insulin resistant states. Curr Diabetes Rev. 2006;2:409–30.PubMedCrossRefGoogle Scholar
  113. 113.
    Falcon C, Pfliegler G, Deckmyn H, Vermylen J. The platelet insulin receptor: detection, partial characterization, and search for a function. Biochem Biophys Res Commun. 1988;157:1190–6.PubMedCrossRefGoogle Scholar
  114. 114.
    Trovati M, Mularoni EM, Burzacca S, et al. Impaired insulin-induced platelet antiaggregating effect in obesity and in obese NIDDM patients. Diabetes. 1995;44:1318–22.PubMedCrossRefGoogle Scholar
  115. 115.
    Russo I, Traversa M, Bonomo K, et al. In central obesity, weight loss restores platelet sensitivity to nitric oxide and prostacyclin. Obesity (Silver Spring). 2010;18:788–97.CrossRefGoogle Scholar
  116. 116.
    Santilli F, Vazzana N, Liani R, Guagnano MT, Davì G. Platelet activation in obesity and metabolic syndrome. Obes Rev. 2012;13:27–42.PubMedCrossRefGoogle Scholar
  117. 117.
    Davi G, Falco A, Patrono C. Determinants of F2-isoprostane biosynthesis and inhibition in man. Chem Phys Lipids. 2004;128:149–63.PubMedCrossRefGoogle Scholar
  118. 118.
    Patrono C, Falco A, Davi G. Isoprostane formation and inhibition in atherothrombosis. Curr Opin Pharmacol. 2005;5:198–203.PubMedCrossRefGoogle Scholar
  119. 119.
    Khasawneh FT, Huang JS, Mir F, Srinivasan S, Tiruppathi C, Le Breton GC. Characterization of isoprostane signaling: evidence for a unique coordination profile of 8-iso-PGF(2alpha) with the thromboxane A(2) receptor, and activation of a separate cAMP-dependent inhibitory pathway in human platelets. Biochem Pharmacol. 2008;75:2301–15.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Victor VM, Rocha M, Sola E, Banuls C, Garcia-Malpartida K, Hernandez-Mijares A. Oxidative stress, endothelial dysfunction and atherosclerosis. Curr Pharm Des. 2009;15:2988–3002.PubMedCrossRefGoogle Scholar
  121. 121.
    Otani H. Oxidative stress as pathogenesis of cardiovascular risk associated with metabolic syndrome. Antioxid Redox Signal. 2011;15:1911–26.PubMedCrossRefGoogle Scholar
  122. 122.
    Patrignani P, Filabozzi P, Patrono C. Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J Clin Invest. 1982;69:1366–72.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Addad F, Chakroun T, Elalamy I, et al. Antiplatelet effect of once- or twice-daily aspirin dosage in stable coronary artery disease patients with diabetes. Int J Hematol. 2010;92:296–301.PubMedCrossRefGoogle Scholar
  124. 124.
    Capodanno D, Patel A, Dharmashankar K, et al. Pharmacodynamic effects of different aspirin dosing regimens in type 2 diabetes mellitus patients with coronary artery disease. Circ Cardiovasc Interv. 2011;4:180–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Spectre G, Arnetz L, Ostenson CG, Brismar K, Li N, Hjemdahl P. Twice daily dosing of aspirin improves platelet inhibition in whole blood in patients with type 2 diabetes mellitus and micro- or macrovascular complications. Thromb Haemost. 2011;106:491–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Dillinger J-G, Drissa A, Sideris G, et al. Biological efficacy of twice daily aspirin in type 2 diabetic patients with coronary artery disease. Am Heart J. 2012;164(600–6):e1.Google Scholar
  127. 127.
    Cavalca V, Rocca B, Squellerio I, et al. In vivo prostacyclin biosynthesis and effects of different aspirin regimens in patients with essential thrombocythaemia. Thromb Haemost. 2014;112:118–27.PubMedCrossRefGoogle Scholar
  128. 128.
    Monte SV, Caruana JA, Ghanim H, et al. Reduction in endotoxemia, oxidative and inflammatory stress, and insulin resistance after Roux-en-Y gastric bypass surgery in patients with morbid obesity and type 2 diabetes mellitus. Surgery. 2012;151:587–93.PubMedCrossRefGoogle Scholar
  129. 129.
    Mitrov-Winkelmolen L, van Buul-Gast MC, Swank DJ, Overdiek HW, van Schaik RH, Touw DJ. The effect of Roux-en-Y gastric bypass surgery in morbidly obese patients on pharmacokinetics of (acetyl)salicylic acid and omeprazole: the ERY-PAO study. Obes Surg. 2016;26:2051–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of Missouri-Kansas City School of MedicineKansas CityUSA

Personalised recommendations