Clinical Pharmacokinetics

, Volume 56, Issue 12, pp 1441–1460 | Cite as

Clinical Pharmacokinetics and Pharmacodynamics of Colistin

  • Nicolas GrégoireEmail author
  • Vincent Aranzana-Climent
  • Sophie Magréault
  • Sandrine Marchand
  • William Couet
Review Article


In this review, we provide an updated summary on colistin pharmacokinetics and pharmacodynamics. Colistin is an old molecule that is frequently used as last-line treatment for infections caused by multidrug-resistant Gram-negative bacteria. Colistin is a decapeptide administered either as a prodrug, colistin methanesulfonate (CMS), when used intravenously, or as colistin sulfate when used orally. Because colistin binds to laboratory materials, many experimental issues are raised and studies on colistin can be tricky. Due to its large molecular weight and its cationic properties at physiological pH, colistin passes through physiological membranes poorly and is mainly distributed within the extracellular space. Renal clearance of colistin is very low, but the dosing regimen should be adapted to the renal function of the patient because CMS is partly eliminated by the kidney. Therapeutic drug monitoring of colistin is warranted because the pharmacokinetics of colistin are very variable, and because its therapeutic window is narrow. Resistance of bacteria to colistin is increasing worldwide in parallel to its clinical and veterinary uses and a plasmid-mediated resistance mechanism (MCR-1) was recently described in animals and humans. In vitro, bacteria develop various resistance mechanisms rapidly when exposed to colistin. The use of a loading dose might reduce the emergence of resistance but the use of colistin in combination also seems necessary.


Compliance with Ethical Standards


No support was received for the preparation of this manuscript.

Conflicts of interest

Nicolas Grégoire, Vincent Aranzana-Climent, Sophie Magréault, Sandrine Marchand and William Couet declare that they have no conflicts of interest.


  1. 1.
    Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, et al. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis. 2006;6(9):589–601.PubMedCrossRefGoogle Scholar
  2. 2.
    Nation RL, Li J, Cars O, Couet W, Dudley MN, Kaye KS, et al. Framework for optimisation of the clinical use of colistin and polymyxin B: the Prato polymyxin consensus. Lancet Infect Dis. 2015;15(2):225–34.PubMedCrossRefGoogle Scholar
  3. 3.
    He H, Li JC, Nation RL, Jacob J, Chen G, Lee HJ, et al. Pharmacokinetics of four different brands of colistimethate and formed colistin in rats. J Antimicrob Chemother. 2013;68(10):2311–7.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Rhouma M, Beaudry F, Theriault W, Bergeron N, Laurent-Lewandowski S, Fairbrother JM, et al. Gastric stability and oral bioavailability of colistin sulfate in pigs challenged or not with Escherichia coli O149: F4 (K88). Res Vet Sci. 2015;102:173–81.PubMedCrossRefGoogle Scholar
  5. 5.
    Shah SR, Henslee AM, Spicer PP, Yokota S, Petrichenko S, Allahabadi S, et al. Effects of antibiotic physicochemical properties on their release kinetics from biodegradable polymer microparticles. Pharm Res. 2014;31(12):3379–89.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Velkov T, Roberts KD, Nation RL, Thompson PE, Li J. Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol. 2013;8(6):711–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Li J, Nation RL, Milne RW, Turnidge JD, Coulthard K. Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria. Int J Antimicrob Agents. 2005;25(1):11–25.PubMedCrossRefGoogle Scholar
  8. 8.
    Bergen PJ, Landersdorfer CB, Zhang J, Zhao M, Lee HJ, Nation RL, et al. Pharmacokinetics and pharmacodynamics of ‘old’ polymyxins: what is new? Diagn Microbiol Infect Dis. 2012;74(3):213–23.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bergen PJ, Landersdorfer CB, Lee HJ, Li J, Nation RL. ‘Old’ antibiotics for emerging multidrug-resistant bacteria. Curr Opin Infect Dis. 2012;25(6):626–33.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Yapa SWS, Li J, Porter CJ, Nation RL, Patel K, McIntosh MP. Population pharmacokinetics of colistin methanesulfonate in rats: achieving sustained lung concentrations of colistin for targeting respiratory infections. Antimicrob Agents Chemother. 2013;57(10):5087–95.CrossRefGoogle Scholar
  11. 11.
    DrugBank. Colistimethate. Accessed 30 Oct 2016.
  12. 12.
    DrugBank. Colistin. Accessed 30 Oct 2016.
  13. 13.
    Wallace SJ, Li J, Nation RL, Prankerd RJ, Velkov T, Boyd BJ. Self-assembly behavior of colistin and its prodrug colistin methanesulfonate: implications for solution stability and solubilization. J Phys Chem B. 2010;114(14):4836–40.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wallace SJ, Li J, Rayner CR, Coulthard K, Nation RL. Stability of colistin methanesulfonate in pharmaceutical products and solutions for administration to patients. Antimicrob Agents Chemother. 2008;52(9):3047–51.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Gobin P, Lemaitre F, Marchand S, Couet W, Olivier JC. Assay of colistin and colistin methanesulfonate in plasma and urine by liquid chromatography tandem mass spectrometry (LC–MS/MS). Antimicrob Agents Chemother. 2010;22(54):1941–8.CrossRefGoogle Scholar
  16. 16.
    Li J, Milne RW, Nation RL, Turnidge JD, Coulthard K, Valentine J. Simple method for assaying colistin methanesulfonate in plasma and urine using high-performance liquid chromatography. Antimicrob Agents Chemother. 2002;46(10):3304–7.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Li J, Milne RW, Nation RL, Turnidge JD, Smeaton TC, Coulthard K. Pharmacokinetics of colistin methanesulphonate and colistin in rats following an intravenous dose of colistin methanesulphonate. J Antimicrob Chemother. 2004;53(5):837–40.PubMedCrossRefGoogle Scholar
  18. 18.
    Chepyala D, Tsai IL, Sun HY, Lin SW, Kuo CH. Development and validation of a high-performance liquid chromatography-fluorescence detection method for the accurate quantification of colistin in human plasma. J Chromatogr B Anal Technol Biomed Life Sci. 2015;1(980):48–54.CrossRefGoogle Scholar
  19. 19.
    Li J, Milne RW, Nation RL, Turnidge JD, Coulthard K, Johnson DW. A simple method for the assay of colistin in human plasma, using pre-column derivatization with 9-fluorenylmethyl chloroformate in solid-phase extraction cartridges and reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 2001;761(2):167–75.PubMedCrossRefGoogle Scholar
  20. 20.
    Van den Meersche T, Pamel EV, Poucke CV, Herman L, Heyndrickx M, Rasschaert G, et al. Development, validation and application of an ultra high performance liquid chromatographic-tandem mass spectrometric method for the simultaneous detection and quantification of five different classes of veterinary antibiotics in swine manure. J Chromatogr A. 2016;15(1429):248–57.CrossRefGoogle Scholar
  21. 21.
    Jansson B, Karvanen M, Cars O, Plachouras D, Friberg LE. Quantitative analysis of colistin A and colistin B in plasma and culture medium using a simple precipitation step followed by LC/MS/MS. J Pharm Biomed Anal. 2009;49(3):760–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Marchand S, Gobin P, Brillault J, Baptista S, Adier C, Olivier JC, et al. Aerosol therapy with colistin methanesulfonate: a biopharmaceutical issue illustrated in rats. Antimicrob Agents Chemother. 2010;54(9):3702–7.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Nation RL, Velkov T, Li J. Colistin and polymyxin B: peas in a pod, or chalk and cheese? Clin Infect Dis. 2014;59(1):88–94.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bialvaei AZ, Samadi Kafil H. Colistin, mechanisms and prevalence of resistance. Curr Med Res Opin. 2015;31(4):707–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Dixon RA, Chopra I. Leakage of periplasmic proteins from Escherichia coli mediated by polymyxin B nonapeptide. Antimicrob Agents Chemother. 1986;29(5):781–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Chen CC, Feingold DS. Locus of divalent cation inhibition of the bactericidal action of polymyxin B. Antimicrob Agents Chemother. 1972;2(5):331–5.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Schindler M, Osborn MJ. Interaction of divalent cations and polymyxin B with lipopolysaccharide. Biochemistry. 1979;18(20):4425–30.PubMedCrossRefGoogle Scholar
  28. 28.
    Davis SD, Iannetta A, Wedgwood RJ. Activity of colistin against Pseudomonas aeruginosa: inhibition by calcium. J Infect Dis. 1971;124(6):610–2.PubMedCrossRefGoogle Scholar
  29. 29.
    Clausell A, Garcia-Subirats M, Pujol M, Busquets MA, Rabanal F, Cajal Y. Gram-negative outer and inner membrane models: insertion of cyclic cationic lipopeptides. J Phys Chem B. 2007;111(3):551–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Peterson AA, Hancock RE, McGroarty EJ. Binding of polycationic antibiotics and polyamines to lipopolysaccharides of Pseudomonas aeruginosa. J Bacteriol. 1985;164(3):1256–61.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Gough M, Hancock RE, Kelly NM. Antiendotoxin activity of cationic peptide antimicrobial agents. Infect Immun. 1996;64(12):4922–7.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Martis N, Leroy S, Blanc V. Colistin in multi-drug resistant Pseudomonas aeruginosa blood-stream infections: a narrative review for the clinician. J Infect. 2014;69(1):1–12.PubMedCrossRefGoogle Scholar
  33. 33.
    Gardiner KR, Erwin PJ, Anderson NH, McCaigue MD, Halliday MI, Rowlands BJ. Lactulose as an antiendotoxin in experimental colitis. Br J Surg. 1995;82(4):469–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Escartin P, Rodriguez-Montes JA, Cuervas-Mons V, Rossi I, Alvarez-Cienfuegos J, Maganto P, et al. Effect of colistin on reduction of biliary flow induced by endotoxin in E. coli. Dig Dis Sci. 1982;27(10):875–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Lopes J, Inniss WE. Electron microscopy of effect of polymyxin on Escherichia coli lipopolysaccharide. J Bacteriol. 1969;100(2):1128–9.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Storm DR, Rosenthal KS, Swanson PE. Polymyxin and related peptide antibiotics. Annu Rev Biochem. 1977;46:723–63.PubMedCrossRefGoogle Scholar
  37. 37.
    Deris ZZ, Akter J, Sivanesan S, Roberts KD, Thompson PE, Nation RL, et al. A secondary mode of action of polymyxins against Gram-negative bacteria involves the inhibition of NADH-quinone oxidoreductase activity. J Antibiot (Tokyo). 2014;67(2):147–51.CrossRefGoogle Scholar
  38. 38.
    Clinical and Laboratory Standards Institute (CLSI). M100-S25. Performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement. Wayne: Clinical and Laboratory Standards Institute; 2015.Google Scholar
  39. 39.
    EUCAST. Recommendations for MIC determination of colistin (polymyxin E). As recommended by the joint CLSI-EUCAST Polymyxin Breakpoints Working Group. European Committee on Antimicrobial Susceptibility Testing; 2016. Accessed 24 May 2017.
  40. 40.
    Cai Y, Lee W, Kwa AL. Polymyxin B versus colistin: an update. Expert Rev Anti Infect Ther. 2015;13(12):1481–97.PubMedCrossRefGoogle Scholar
  41. 41.
    Hindler JA, Humphries RM. Colistin MIC variability by method for contemporary clinical isolates of multidrug-resistant Gram-negative bacilli. J Clin Microbiol. 2013;51(6):1678–84.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lo-Ten-Foe JR, de Smet AM, Diederen BM, Kluytmans JA, van Keulen PH. Comparative evaluation of the VITEK 2, disk diffusion, etest, broth microdilution, and agar dilution susceptibility testing methods for colistin in clinical isolates, including heteroresistant Enterobacter cloacae and Acinetobacter baumannii strains. Antimicrob Agents Chemother. 2007;51(10):3726–30.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Dafopoulou K, Zarkotou O, Dimitroulia E, Hadjichristodoulou C, Gennimata V, Pournaras S, et al. Comparative evaluation of colistin susceptibility testing methods among carbapenem-nonsusceptible Klebsiella pneumoniae and Acinetobacter baumannii clinical isolates. Antimicrob Agents Chemother. 2015;59(8):4625–30.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    European Committee on Antimicrobial Susceptibility Testing. Version 7.1, 2017. Breakpoint tables for interpretation of MICs and zone diameters. Available from: Accessed 24 May 2017.
  45. 45.
    Kwa AL, Tam VH, Falagas ME. Polymyxins: a review of the current status including recent developments. Ann Acad Med Singap. 2008;37(10):870–83.PubMedGoogle Scholar
  46. 46.
    Park YK, Choi JY, Shin D, Ko KS. Correlation between overexpression and amino acid substitution of the PmrAB locus and colistin resistance in Acinetobacter baumannii. Int J Antimicrob Agents. 2011;37(6):525–30.PubMedCrossRefGoogle Scholar
  47. 47.
    Gunn JS. The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol. 2008;16(6):284–90.PubMedCrossRefGoogle Scholar
  48. 48.
    Kim SY, Choi HJ, Ko KS. Differential expression of two-component systems, pmrAB and phoPQ, with different growth phases of Klebsiella pneumoniae in the presence or absence of colistin. Curr Microbiol. 2014;69(1):37–41.PubMedCrossRefGoogle Scholar
  49. 49.
    Raetz CR, Guan Z, Ingram BO, Six DA, Song F, Wang X, et al. Discovery of new biosynthetic pathways: the lipid A story. J Lipid Res. 2009;50(Suppl):S103–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Fernandez L, Jenssen H, Bains M, Wiegand I, Gooderham WJ, Hancock RE. The two-component system CprRS senses cationic peptides and triggers adaptive resistance in Pseudomonas aeruginosa independently of ParRS. Antimicrob Agents Chemother. 2012;56(12):6212–22.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    McPhee JB, Bains M, Winsor G, Lewenza S, Kwasnicka A, Brazas MD, et al. Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa. J Bacteriol. 2006;188(11):3995–4006.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Beceiro A, Llobet E, Aranda J, Bengoechea JA, Doumith M, Hornsey M, et al. Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother. 2011;55(7):3370–9.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Snitkin ES, Zelazny AM, Gupta J, Palmore TN, Murray PR, Segre JA. Genomic insights into the fate of colistin resistance and Acinetobacter baumannii during patient treatment. Genome Res. 2013;23(7):1155–62.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Schwarz S, Johnson AP. Transferable resistance to colistin: a new but old threat. J Antimicrob Chemother. 2016;71(8):2066–70.PubMedCrossRefGoogle Scholar
  56. 56.
    Moffatt JH, Harper M, Harrison P, Hale JD, Vinogradov E, Seemann T, et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother. 2010;54(12):4971–7.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Li J, Rayner CR, Nation RL, Owen RJ, Spelman D, Tan KE, et al. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2006;50(9):2946–50.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lee JY, Park YK, Chung ES, Na IY, Ko KS. Evolved resistance to colistin and its loss due to genetic reversion in Pseudomonas aeruginosa. Sci Rep. 2016;06(6):25543.CrossRefGoogle Scholar
  59. 59.
    Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol. 2007;5(1):48–56.PubMedCrossRefGoogle Scholar
  60. 60.
    Couet W, Gregoire N, Gobin P, Saulnier PJ, Frasca D, Marchand S, et al. Pharmacokinetics of colistin and colistimethate sodium after a single 80-mg intravenous dose of CMS in young healthy volunteers. Clin Pharmacol Ther. 2011;89(6):875–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Couet W, Gregoire N, Marchand S, Mimoz O. Colistin pharmacokinetics: the fog is lifting. Clin Microbiol Infect. 2012;18(1):30–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Ma Z, Wang J, Nation RL, Li J, Turnidge JD, Coulthard K, et al. Renal disposition of colistin in the isolated perfused rat kidney. Antimicrob Agents Chemother. 2009;53(7):2857–64.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lu X, Chan T, Xu C, Zhu L, Zhou QT, Roberts KD, et al. Human oligopeptide transporter 2 (PEPT2) mediates cellular uptake of polymyxins. J Antimicrob Chemother. 2016;71(2):403–12.PubMedCrossRefGoogle Scholar
  64. 64.
    Suzuki T, Yamaguchi H, Ogura J, Kobayashi M, Yamada T, Iseki K. Megalin contributes to kidney accumulation and nephrotoxicity of colistin. Antimicrob Agents Chemother. 2013;57(12):6319–24.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Diao L, Meibohm B. Pharmacokinetics and pharmacokinetic–pharmacodynamic correlations of therapeutic peptides. Clin Pharmacokinet. 2013;52(10):855–68.PubMedCrossRefGoogle Scholar
  66. 66.
    Azad MA, Huang JX, Cooper MA, Roberts KD, Thompson PE, Nation RL, et al. Structure-activity relationships for the binding of polymyxins with human alpha-1-acid glycoprotein. Biochem Pharmacol. 2012;84(3):278–91.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Cheah SE, Wang J, Nguyen VT, Turnidge JD, Li J, Nation RL. New pharmacokinetic/pharmacodynamic studies of systemically administered colistin against Pseudomonas aeruginosa and Acinetobacter baumannii in mouse thigh and lung infection models: smaller response in lung infection. J Antimicrob Chemother. 2015;70(12):3291–7.PubMedGoogle Scholar
  68. 68.
    Li J, Milne RW, Nation RL, Turnidge JD, Smeaton TC, Coulthard K. Use of high-performance liquid chromatography to study the pharmacokinetics of colistin sulfate in rats following intravenous administration. Antimicrob Agents Chemother. 2003;47(5):1766–70.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Matzneller P, Gobin P, Lackner E, Zeitlinger M. Feasibility of microdialysis for determination of protein binding and target site pharmacokinetics of colistin in vivo. J Clin Pharmacol. 2015;55(4):431–7.PubMedCrossRefGoogle Scholar
  70. 70.
    al-Khayyat AA, Aronson AL. Pharmacologic and toxicologic studies with the polymyxins. 3. Consideration regarding clinical use in dogs. Chemotherapy. 1973;19(2):98–108.PubMedCrossRefGoogle Scholar
  71. 71.
    Mohamed AF, Karaiskos I, Plachouras D, Karvanen M, Pontikis K, Jansson B, et al. Application of a loading dose of colistin methanesulphonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill. Antimicrob Agents Chemother. 2012;56(8):4241–9.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kremer JM, Wilting J, Janssen LH. Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacol Rev. 1988;40(1):1–47.PubMedGoogle Scholar
  73. 73.
    Zavascki AP, Goldani LZ, Cao G, Superti SV, Lutz L, Barth AL, et al. Pharmacokinetics of intravenous polymyxin B in critically ill patients. Clin Infect Dis. 2008;47(10):1298–304.PubMedCrossRefGoogle Scholar
  74. 74.
    Huang JX, Blaskovich MA, Pelingon R, Ramu S, Kavanagh A, Elliott AG, et al. Mucin binding reduces colistin antimicrobial activity. Antimicrob Agents Chemother. 2015;59(10):5925–31.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Imberti R, Cusato M, Villani P, Carnevale L, Iotti GA, Langer M, et al. Steady-state pharmacokinetics and BAL concentration of colistin in critically Ill patients after IV colistin methanesulfonate administration. Chest. 2010;138(6):1333–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Boisson M, Jacobs M, Gregoire N, Gobin P, Marchand S, Couet W, et al. Comparison of intrapulmonary and systemic pharmacokinetics of colistin methanesulfonate (CMS) and colistin after aerosol delivery and intravenous administration of cms in critically ill patients. Antimicrob Agents Chemother. 2014;58(12):7331–9.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Yapa SWS, Li J, Patel K, Wilson JW, Dooley MJ, George J, et al. Pulmonary and systemic pharmacokinetics of inhaled and intravenous colistin methanesulfonate in cystic fibrosis patients: targeting advantage of inhalational administration. Antimicrob Agents Chemother. 2014;58(5):2570–9.CrossRefGoogle Scholar
  78. 78.
    Nickel S, Clerkin CG, Selo MA, Ehrhardt C. Transport mechanisms at the pulmonary mucosa: implications for drug delivery. Expert Opin Drug Deliv. 2016;13(5):667–90.PubMedCrossRefGoogle Scholar
  79. 79.
    Nakamura T, Nakanishi T, Haruta T, Shirasaka Y, Keogh JP, Tamai I. Transport of ipratropium, an anti-chronic obstructive pulmonary disease drug, is mediated by organic cation/carnitine transporters in human bronchial epithelial cells: implications for carrier-mediated pulmonary absorption. Mol Pharm. 2010;7(1):187–95.PubMedCrossRefGoogle Scholar
  80. 80.
    Swaan PW, Bensman T, Bahadduri PM, Hall MW, Sarkar A, Bao S, et al. Bacterial peptide recognition and immune activation facilitated by human peptide transporter PEPT2. Am J Respir Cell Mol Biol. 2008;39(5):536–42.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kofteridis DP, Alexopoulou C, Valachis A, Maraki S, Dimopoulou D, Georgopoulos D, et al. Aerosolized plus intravenous colistin versus intravenous colistin alone for the treatment of ventilator-associated pneumonia: a matched case–control study. Clin Infect Dis. 2010;51(11):1238–44.PubMedCrossRefGoogle Scholar
  82. 82.
    Korbila IP, Michalopoulos A, Rafailidis PI, Nikita D, Samonis G, Falagas ME. Inhaled colistin as adjunctive therapy to intravenous colistin for the treatment of microbiologically documented ventilator-associated pneumonia: a comparative cohort study. Clin Microbiol Infect. 2010;16(8):1230–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Michalopoulos A, Fotakis D, Virtzili S, Vletsas C, Raftopoulou S, Mastora Z, et al. Aerosolized colistin as adjunctive treatment of ventilator-associated pneumonia due to multidrug-resistant Gram-negative bacteria: a prospective study. Respir Med. 2008;102(3):407–12.PubMedCrossRefGoogle Scholar
  84. 84.
    Tumbarello M, De Pascale G, Trecarichi EM, De Martino S, Bello G, Maviglia R, et al. Effect of aerosolized colistin as adjunctive treatment on the outcomes of microbiologically documented ventilator-associated pneumonia caused by colistin-only susceptible gram-negative bacteria. Chest. 2013;144(6):1768–75.PubMedCrossRefGoogle Scholar
  85. 85.
    Gontijo AV, Gregoire N, Lamarche I, Gobin P, Couet W, Marchand S. Biopharmaceutical characterization of nebulized antimicrobial agents in rats: 2. Colistin. Antimicrob Agents Chemother. 2014;58(7):3950–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Ratjen F, Rietschel E, Kasel D, Schwiertz R, Starke K, Beier H, et al. Pharmacokinetics of inhaled colistin in patients with cystic fibrosis. J Antimicrob Chemother. 2006;57(2):306–11.PubMedCrossRefGoogle Scholar
  87. 87.
    Athanassa ZE, Markantonis SL, Fousteri MZ, Myrianthefs PM, Boutzouka EG, Tsakris A, et al. Pharmacokinetics of inhaled colistimethate sodium (CMS) in mechanically ventilated critically ill patients. Intensive Care Med. 2012;38(11):1779–86.PubMedCrossRefGoogle Scholar
  88. 88.
    Markantonis SL, Markou N, Fousteri M, Sakellaridis N, Karatzas S, Alamanos I, et al. Penetration of colistin into cerebrospinal fluid. Antimicrob Agents Chemother. 2009;53(11):4907–10.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ziaka M, Markantonis SL, Fousteri M, Zygoulis P, Panidis D, Karvouniaris M, et al. Combined intravenous and intraventricular administration of colistin methanesulfonate in critically ill patients with central nervous system infection. Antimicrob Agents Chemother. 2013;57(4):1938–40.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Antachopoulos C, Karvanen M, Iosifidis E, Jansson B, Plachouras D, Cars O, et al. Serum and cerebrospinal fluid levels of colistin in pediatric patients. Antimicrob Agents Chemother. 2010;54(9):3985–7.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Jin L, Nation RL, Li J, Nicolazzo JA. Species-dependent blood–brain barrier disruption of lipopolysaccharide: amelioration by colistin in vitro and in vivo. Antimicrob Agents Chemother. 2013;57(9):4336–42.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Imberti R, Cusato M, Accetta G, Marino V, Procaccio F, Del Gaudio A, et al. Pharmacokinetics of colistin in cerebrospinal fluid after intraventricular administration of colistin methanesulfonate. Antimicrob Agents Chemother. 2012;56(8):4416–21.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Mimoz O, Petitpas F, Gregoire N, Gobin P, Marchand S, Couet W. Colistin distribution into the peritoneal fluid of a patient with severe peritonitis. Antimicrob Agents Chemother. 2012;56(7):4035–6.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Guyonnet J, Manco B, Baduel L, Kaltsatos V, Aliabadi MH, Lees P. Determination of a dosage regimen of colistin by pharmacokinetic/pharmacodynamic integration and modeling for treatment of G.I.T. disease in pigs. Res Vet Sci. 2010;88(2):307–14.PubMedCrossRefGoogle Scholar
  95. 95.
    Abis GS, Oosterling SJ, Stockmann HB, van der Bij GJ, van Egmond M, Vandenbroucke-Grauls CM, et al. Perioperative selective decontamination of the digestive tract and standard antibiotic prophylaxis versus standard antibiotic prophylaxis alone in elective colorectal cancer patients. Dan Med J. 2014;61(4):A4695.PubMedGoogle Scholar
  96. 96.
    Huttner B, Haustein T, Uckay I, Renzi G, Stewardson A, Schaerrer D, et al. Decolonization of intestinal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae with oral colistin and neomycin: a randomized, double-blind, placebo-controlled trial. J Antimicrob Chemother. 2013;68(10):2375–82.PubMedCrossRefGoogle Scholar
  97. 97.
    Melsen WG, de Smet AM, Kluytmans JA, Bonten MJ. Selective decontamination of the oral and digestive tract in surgical versus non-surgical patients in intensive care in a cluster-randomized trial. Br J Surg. 2012;99(2):232–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Oren I, Sprecher H, Finkelstein R, Hadad S, Neuberger A, Hussein K, et al. Eradication of carbapenem-resistant Enterobacteriaceae gastrointestinal colonization with nonabsorbable oral antibiotic treatment: a prospective controlled trial. Am J Infect Control. 2013;41(12):1167–72.PubMedCrossRefGoogle Scholar
  99. 99.
    Saidel-Odes L, Polachek H, Peled N, Riesenberg K, Schlaeffer F, Trabelsi Y, et al. A randomized, double-blind, placebo-controlled trial of selective digestive decontamination using oral gentamicin and oral polymyxin E for eradication of carbapenem-resistant Klebsiella pneumoniae carriage. Infect Control Hosp Epidemiol. 2012;33(1):14–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Brink AJ, Coetzee J, Corcoran C, Clay CG, Hari-Makkan D, Jacobson RK, et al. Emergence of OXA-48 and OXA-181 carbapenemases among Enterobacteriaceae in South Africa and evidence of in vivo selection of colistin resistance as a consequence of selective decontamination of the gastrointestinal tract. J Clin Microbiol. 2013;51(1):369–72.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Halaby T, Al Naiemi N, Kluytmans J, van der Palen J, Vandenbroucke-Grauls CM. Emergence of colistin resistance in Enterobacteriaceae after the introduction of selective digestive tract decontamination in an intensive care unit. Antimicrob Agents Chemother. 2013;57(7):3224–9.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Lubbert C, Faucheux S, Becker-Rux D, Laudi S, Durrbeck A, Busch T, et al. Rapid emergence of secondary resistance to gentamicin and colistin following selective digestive decontamination in patients with KPC-2-producing Klebsiella pneumoniae: a single-centre experience. Int J Antimicrob Agents. 2013;42(6):565–70.PubMedCrossRefGoogle Scholar
  103. 103.
    Strenger V, Gschliesser T, Grisold A, Zarfel G, Feierl G, Masoud L, et al. Orally administered colistin leads to colistin-resistant intestinal flora and fails to prevent faecal colonisation with extended-spectrum beta-lactamase-producing enterobacteria in hospitalised newborns. Int J Antimicrob Agents. 2011;37(1):67–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother. 2011;55(7):3284–94.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Grégoire N, Mimoz O, Mégarbane B, Comets E, Chatelier D, Lasocki S, et al. New colistin population pharmacokinetic data in critically ill patients suggesting an alternative loading dose rationale. Antimicrob Agents Chemother. 2014;58(12):7324–30.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Plachouras D, Karvanen M, Friberg LE, Papadomichelakis E, Antoniadou A, Tsangaris I, et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by Gram-negative bacteria. Antimicrob Agents Chemother. 2009;53(8):3430–6.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Nation RL, Garonzik SM, Thamlikitkul V, Giamarellos-Bourboulis EJ, Forrest A, Paterson DL, et al. Dosing guidance for intravenous colistin in critically-ill patients. Clin Infect Dis. 2016. doi: 10.1093/cid/ciw839.Google Scholar
  108. 108.
    Karaiskos I, Friberg LE, Pontikis K, Ioannidis K, Tsagkari V, Galani L, et al. Colistin population pharmacokinetics after application of a loading dose of 9 MU colistin methanesulfonate in critically ill patients. Antimicrob Agents Chemother. 2015;59(12):7240–8.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Vardakas KZ, Rellos K, Triarides NA, Falagas ME. Colistin loading dose: evaluation of the published pharmacokinetic and clinical data. Int J Antimicrob Agents. 2016;48(5):475–84.PubMedCrossRefGoogle Scholar
  110. 110.
    European Medicines Agency, Committee for Medicinal Products for Human Use (CHMP). Assessment report. Polymyxin-based products. 2014. Accessed 23 March 2017.
  111. 111.
    Nation RL, Garonzik SM, Li J, Thamlikitkul V, Giamarellos-Bourboulis EJ, Paterson DL, et al. Updated US and European dose recommendations for intravenous colistin: how do they perform? Clin Infect Dis. 2016;62(5):552–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Jacobs M, Gregoire N, Megarbane B, Gobin P, Balayn D, Marchand S, et al. Population pharmacokinetics of colistin methanesulphonate (CMS) and colistin in critically ill patients with acute renal failure requiring intermittent haemodialysis. Antimicrob Agents Chemother. 2016;60(3):1788–93.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Honore PM, Jacobs R, Lochy S, De Waele E, Van Gorp V, De Regt J, et al. Acute respiratory muscle weakness and apnea in a critically ill patient induced by colistin neurotoxicity: key potential role of hemoadsorption elimination during continuous venovenous hemofiltration. Int J Nephrol Renovasc Dis. 2013;6:107–11.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Jitmuang A, Nation RL, Koomanachai P, Chen G, Lee HJ, Wasuwattakul S, et al. Extracorporeal clearance of colistin methanesulphonate and formed colistin in end-stage renal disease patients receiving intermittent haemodialysis: implications for dosing. J Antimicrob Chemother. 2015;70(6):1804–11.PubMedGoogle Scholar
  115. 115.
    Luque S, Sorli L, Li J, Collado S, Barbosa F, Berenguer N, et al. Effective removal of colistin methanesulphonate and formed colistin during intermittent haemodialysis in a patient infected by polymyxin-only-susceptible Pseudomonas aeruginosa. J Chemother. 2014;26(2):122–4.PubMedCrossRefGoogle Scholar
  116. 116.
    Marchand S, Frat JP, Petitpas F, Lemaitre F, Gobin P, Robert R, et al. Removal of colistin during intermittent haemodialysis in two critically ill patients. J Antimicrob Chemother. 2010;65(8):1836–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Markou N, Fousteri M, Markantonis SL, Zidianakis B, Hroni D, Boutzouka E, et al. Colistin pharmacokinetics in intensive care unit patients on continuous venovenous haemodiafiltration: an observational study. J Antimicrob Chemother. 2012;67(10):2459–62.PubMedCrossRefGoogle Scholar
  118. 118.
    Karvanen M, Plachouras D, Friberg LE, Paramythiotou E, Papadomichelakis E, Karaiskos I, et al. Colistin methanesulfonate and colistin pharmacokinetics in critically ill patients receiving continuous venovenous hemodiafiltration. Antimicrob Agents Chemother. 2013;57(1):668–71.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Karaiskos I, Friberg LE, Galani L, Ioannidis K, Katsouda E, Athanassa Z, et al. Challenge for higher colistin dosage in critically ill patients receiving continuous venovenous haemodiafiltration. Int J Antimicrob Agents. 2016;48(3):337–41.PubMedCrossRefGoogle Scholar
  120. 120.
    Fiaccadori E, Antonucci E, Morabito S, d’Avolio A, Maggiore U, Regolisti G. Colistin use in patients with reduced kidney function. Am J Kidney Dis. 2016;68(2):296–306.PubMedCrossRefGoogle Scholar
  121. 121.
    Li J, Coulthard K, Milne R, Nation RL, Conway S, Peckham D, et al. Steady-state pharmacokinetics of intravenous colistin methanesulphonate in patients with cystic fibrosis. J Antimicrob Chemother. 2003;52(6):987–92.PubMedCrossRefGoogle Scholar
  122. 122.
    Marchand S, Diot P, Gregoire N, Henriet A, Gobin P, Couet W. Plasma pharmacokinetics and sputum concentrations of colistin after nebulization or intravenous administration of colistin methansulphonate (CMS) to ambulatories cystic fibrosis patients. In: 52nd international conference on antimicrobial agents and chemotherapy (ICAAC), 9–12 Sep 2012, San Francisco (Poster A-036).Google Scholar
  123. 123.
    Banerjee D, Stableforth D. The treatment of respiratory pseudomonas infection in cystic fibrosis: what drug and which way? Drugs. 2000;60(5):1053–64.PubMedCrossRefGoogle Scholar
  124. 124.
    Hansen CR, Pressler T, Hoiby N. Early aggressive eradication therapy for intermittent Pseudomonas aeruginosa airway colonization in cystic fibrosis patients: 15 years experience. J Cyst Fibros. 2008;7(6):523–30.PubMedCrossRefGoogle Scholar
  125. 125.
    Schuster A, Haliburn C, Doring G, Goldman MH. Safety, efficacy and convenience of colistimethate sodium dry powder for inhalation (Colobreathe DPI) in patients with cystic fibrosis: a randomised study. Thorax. 2013;68(4):344–50.PubMedCrossRefGoogle Scholar
  126. 126.
    Lee J, Han S, Jeon S, Hong T, Song W, Woo H, et al. Population pharmacokinetic analysis of colistin in burn patients. Antimicrob Agents Chemother. 2013;57(5):2141–6.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Mizuyachi K, Hara K, Wakamatsu A, Nohda S, Hirama T. Safety and pharmacokinetic evaluation of intravenous colistin methanesulfonate sodium in Japanese healthy male subjects. Curr Med Res Opin. 2011;27(12):2261–70.PubMedCrossRefGoogle Scholar
  128. 128.
    Falagas ME, Kasiakou SK. Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care. 2006;10(1):R27.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Dalfino L, Puntillo F, Ondok MJ, Mosca A, Monno R, Coppolecchia S, et al. Colistin-associated acute kidney injury in severely ill patients: a step toward a better renal care? A prospective cohort study. Clin Infect Dis. 2015;61(12):1771–7.PubMedCrossRefGoogle Scholar
  130. 130.
    Phe K, Johnson ML, Palmer HR, Tam VH. Validation of a model to predict the risk of nephrotoxicity in patients receiving colistin. Antimicrob Agents Chemother. 2014;58(11):6946–8.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Sorli L, Luque S, Grau S, Berenguer N, Segura C, Montero MM, et al. Trough colistin plasma level is an independent risk factor for nephrotoxicity: a prospective observational cohort study. BMC Infect Dis. 2013;13:380.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Deryke CA, Crawford AJ, Uddin N, Wallace MR. Colistin dosing and nephrotoxicity in a large community teaching hospital. Antimicrob Agents Chemother. 2010;54(10):4503–5.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Kelesidis T, Falagas ME. The safety of polymyxin antibiotics. Expert Opin Drug Saf. 2015;14(11):1687–701.PubMedCrossRefGoogle Scholar
  134. 134.
    Sirijatuphat R, Limmahakhun S, Sirivatanauksorn V, Nation RL, Li J, Thamlikitkul V. Preliminary clinical study of the effect of ascorbic acid on colistin-associated nephrotoxicity. Antimicrob Agents Chemother. 2015;59(6):3224–32.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Yun B, Azad MA, Nowell CJ, Nation RL, Thompson PE, Roberts KD, et al. Cellular uptake and localization of polymyxins in renal tubular cells using rationally designed fluorescent probes. Antimicrob Agents Chemother. 2015;59(12):7489–96.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Spapen HD, Honore PM, Gregoire N, Gobin P, de Regt J, Martens GA, et al. Convulsions and apnoea in a patient infected with New Delhi metallo-beta-lactamase-1 Escherichia coli treated with colistin. J Infect. 2011;63(6):468–70.PubMedCrossRefGoogle Scholar
  137. 137.
    Antoniu SA, Cojocaru I. Inhaled colistin for lower respiratory tract infections. Expert Opin Drug Deliv. 2012;9(3):333–42.PubMedCrossRefGoogle Scholar
  138. 138.
    Gurjar M. Colistin for lung infection: an update. J Intensive Care. 2015;3(1):3.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Bargiacchi O, De Rosa FG. Intrathecal or intraventricular colistin: a review. Infez Med. 2016;24(1):3–11.PubMedGoogle Scholar
  140. 140.
    Landersdorfer CB, Nation RL. Colistin: how should it be dosed for the critically ill? Semin Respir Crit Care Med. 2015;36(1):126–35.PubMedCrossRefGoogle Scholar
  141. 141.
    Horcajada JP, Sorli L, Luque S, Benito N, Segura C, Campillo N, et al. Validation of a colistin plasma concentration breakpoint as a predictor of nephrotoxicity in patients treated with colistin methanesulfonate. Int J Antimicrob Agents. 2016;48(6):725–7.PubMedCrossRefGoogle Scholar
  142. 142.
    Bergen PJ, Bulitta JB, Forrest A, Tsuji BT, Li J, Nation RL. Pharmacokinetic/pharmacodynamic investigation of colistin against Pseudomonas aeruginosa using an in vitro model. Antimicrob Agents Chemother. 2010;54(9):3783–9.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Dudhani RV, Turnidge JD, Coulthard K, Milne RW, Rayner CR, Li J, et al. Elucidation of pharmacokinetic/pharmacodynamic determinant of colistin activity against Pseudomonas aeruginosa in murine thigh and lung infection models. Antimicrob Agents Chemother. 2010;54(3):1117–24.PubMedCrossRefGoogle Scholar
  144. 144.
    Mohamed AF, Cars O, Friberg LE. A pharmacokinetic/pharmacodynamic model developed for the effect of colistin on Pseudomonas aeruginosa in vitro with evaluation of population pharmacokinetic variability on simulated bacterial killing. J Antimicrob Chemother. 2014;69(5):1350–61.PubMedCrossRefGoogle Scholar
  145. 145.
    Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163–75.PubMedCrossRefGoogle Scholar
  146. 146.
    Karvanen M. Optimisation of colistin dosage in the treatment of multiresistant gram-negative infections. Uppsala: Uppsala Universitet; 2013.Google Scholar
  147. 147.
    Bergen PJ, Bulitta JB, Forrest A, Tsuji BT, Li J, Nation RL. Pharmacokinetic/pharmacodynamic investigation of colistin against Pseudomonas aeruginosa using an in vitro model. Antimicrob Agents Chemother. 2010;54:3783–9.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Li J, Turnidge J, Milne R, Nation RL, Coulthard K. In vitro pharmacodynamic properties of colistin and colistin methanesulfonate against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother. 2001;45:781–5.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Li J, Rayner CR, Nation RL, Owen RJ, Spelman D, Tan KE, et al. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2006;50:2946–50.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Poudyal A, Howden BP, Bell JM, Gao W, Owen RJ, Turnidge JD, et al. In vitro pharmacodynamics of colistin against multidrug-resistant Klebsiella pneumoniae. J Antimicrob Chemother. 2008;62:1311–8.PubMedCrossRefGoogle Scholar
  151. 151.
    Tan C-H, Li J, Nation RL. Activity of colistin against heteroresistant Acinetobacter baumannii and emergence of resistance in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2007;51:3413–5.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Bergen PJ, Li J, Nation RL, Turnidge JD, Coulthard K, Milne RW. Comparison of once-, twice- and thrice-daily dosing of colistin on antibacterial effect and emergence of resistance: studies with Pseudomonas aeruginosa in an in vitro pharmacodynamic model. J Antimicrob Chemother. 2008;61:636–42.PubMedCrossRefGoogle Scholar
  153. 153.
    Bulitta JB, Yang JC, Yohonn L, Ly NS, Brown SV, D’Hondt RE, et al. Attenuation of colistin bactericidal activity by high inoculum of Pseudomonas aeruginosa characterized by a new mechanism-based population pharmacodynamic model. Antimicrob Agents Chemother. 2010;54:2051–62.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Cheah S-E, Li J, Tsuji BT, Forrest A, Bulitta JB, Nation RL. Colistin and polymyxin B dosage regimens against Acinetobacter baumannii: differences in activity and the emergence of resistance. Antimicrob Agents Chemother. 2016;60:3921–33.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Mohamed AF, Cars O, Friberg LE. A pharmacokinetic/pharmacodynamic model developed for the effect of colistin on Pseudomonas aeruginosa in vitro with evaluation of population pharmacokinetic variability on simulated bacterial killing. J Antimicrob Chemother. 2014;69:1350–61.PubMedCrossRefGoogle Scholar
  156. 156.
    Cirioni O, Ghiselli R, Silvestri C, Kamysz W, Orlando F, Mocchegiani F, et al. Efficacy of tachyplesin III, colistin, and imipenem against a multiresistant Pseudomonas aeruginosa strain. Antimicrob Agents Chemother. 2007;51:2005–10.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Di X, Wang R, Liu B, Zhang X, Ni W, Wang J, et al. In vitro activity of fosfomycin in combination with colistin against clinical isolates of carbapenem-resistant Pseudomas aeruginosa. J Antibiot. 2015;68:551–5.PubMedCrossRefGoogle Scholar
  158. 158.
    Gaibani P, Lombardo D, Lewis RE, Mercuri M, Bonora S, Landini MP, et al. In vitro activity and post-antibiotic effects of colistin in combination with other antimicrobials against colistin-resistant KPC-producing Klebsiella pneumoniae bloodstream isolates. J Antimicrob Chemother. 2014;69:1856–65.PubMedCrossRefGoogle Scholar
  159. 159.
    Gordon NC, Png K, Wareham DW. Potent synergy and sustained bactericidal activity of a vancomycin-colistin combination versus multidrug-resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother. 2010;54:5316–22.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Hornsey M, Wareham DW. In vivo efficacy of glycopeptide-colistin combination therapies in a Galleria mellonella model of Acinetobacter baumannii Infection. Antimicrob Agents Chemother. 2011;55:3534–7.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Le Minh V, Thi Khanh Nhu N, Vinh Phat V, Thompson C, Huong Lan NP, Thieu Nga TV, et al. In vitro activity of colistin in antimicrobial combination against carbapenem-resistant Acinetobacter baumannii isolated from patients with ventilator-associated pneumonia in Vietnam. J Med Microbiol. 2015;64:1162–9.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Liu B, Liu Y, Di X, Zhang X, Wang R, Bai Y, et al. Colistin and anti-Gram-positive bacterial agents against Acinetobacter baumannii. Rev Soc Bras Med Trop. 2014;47:451–6.PubMedCrossRefGoogle Scholar
  163. 163.
    Ly NS, Bulitta JB, Rao GG, Landersdorfer CB, Holden PN, Forrest A, et al. Colistin and doripenem combinations against Pseudomonas aeruginosa: profiling the time course of synergistic killing and prevention of resistance. J Antimicrob Chemother. 2015;70:1434–42.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Marie MAM, Krishnappa LG, Alzahrani AJ, Mubaraki MA, Alyousef AA. A prospective evaluation of synergistic effect of sulbactam and tazobactam combination with meropenem or colistin against multidrug resistant Acinetobacter baumannii. Bosn J Basic Med Sci. 2015;15:24–9.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Mitsugui CS, Tognim MCB, Cardoso CL, Carrara-Marroni FE, Garcia LB. In vitro activity of polymyxins in combination with β-lactams against clinical strains of Pseudomonas aeruginosa. Int J Antimicrob Agents. 2011;38:447–50.PubMedCrossRefGoogle Scholar
  166. 166.
    Ni W, Cui J, Liang B, Cai Y, Bai N, Cai X, et al. In vitro effects of tigecycline in combination with colistin (polymyxin E) and sulbactam against multidrug-resistant Acinetobacter baumannii. J Antibiot. 2013;66:705–8.PubMedCrossRefGoogle Scholar
  167. 167.
    Sheng W-H, Wang J-T, Li S-Y, Lin Y-C, Cheng A, Chen Y-C, et al. Comparative in vitro antimicrobial susceptibilities and synergistic activities of antimicrobial combinations against carbapenem-resistant Acinetobacter species: Acinetobacter baumannii versus Acinetobacter genospecies 3 and 13TU. Diagn Microbiol Infect Dis. 2011;70:380–6.PubMedCrossRefGoogle Scholar
  168. 168.
    Tangden T, Hickman RA, Forsberg P, Lagerback P, Giske CG, Cars O. Evaluation of double- and triple-antibiotic combinations for VIM- and NDM-producing Klebsiella pneumoniae by in vitro time-kill experiments. Antimicrob Agents Chemother. 2014;58:1757–62.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Wareham DW, Gordon NC, Hornsey M. In vitro activity of teicoplanin combined with colistin versus multidrug-resistant strains of Acinetobacter baumannii. J Antimicrob Chemother. 2011;66:1047–51.PubMedCrossRefGoogle Scholar
  170. 170.
    Yang H, Chen G, Hu L, Liu Y, Cheng J, Li H, et al. In vivo activity of daptomycin/colistin combination therapy in a Galleria mellonella model of Acinetobacter baumannii infection. Int J Antimicrob Agents. 2015;45:188–91.PubMedCrossRefGoogle Scholar
  171. 171.
    Yang H, Lv N, Hu L, Liu Y, Cheng J, Ye Y, et al. In vivo activity of vancomycin combined with colistin against multidrug-resistant strains of Acinetobacter baumannii in a Galleria mellonella model. Infect Dis. 2016;48:189–94.CrossRefGoogle Scholar
  172. 172.
    Leite GC, Oliveira MS, Perdigão-Neto LV, Rocha CKD, Guimarães T, Rizek C, et al. Antimicrobial combinations against pan-resistant Acinetobacter baumannii isolates with different resistance mechanisms. PloS One. 2016;11:e0151270.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Oleksiuk LM, Nguyen MH, Press EG, Updike CL, O’Hara JA, Doi Y, et al. In vitro responses of Acinetobacter baumannii to two- and three-drug combinations following exposure to colistin and doripenem. Antimicrob Agents Chemother. 2014;58:1195–9.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Vidaillac C, Benichou L, Duval RE. In vitro synergy of colistin combinations against colistin-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae isolates. Antimicrob Agents Chemother. 2012;56:4856–61.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Mohamed AF, Kristoffersson AN, Karvanen M, Nielsen EI, Cars O, Friberg LE. Dynamic interaction of colistin and meropenem on a WT and a resistant strain of Pseudomonas aeruginosa as quantified in a PK/PD model. J Antimicrob Chemother. 2016;71(5):1279–90.PubMedCrossRefGoogle Scholar
  176. 176.
    Dudhani RV, Turnidge JD, Coulthard K, Milne RW, Rayner CR, Li J, et al. Elucidation of the pharmacokinetic/pharmacodynamic determinant of colistin activity against Pseudomonas aeruginosa in murine thigh and lung infection models. Antimicrob Agents Chemother. 2010;54:1117–24.PubMedCrossRefGoogle Scholar
  177. 177.
    Dudhani RV, Turnidge JD, Nation RL, Li J. fAUC/MIC is the most predictive pharmacokinetic/pharmacodynamic index of colistin against Acinetobacter baumannii in murine thigh and lung infection models. J Antimicrob Chemother. 2010;65:1984–90.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Cheah S-E, Wang J, Nguyen VTT, Turnidge JD, Li J, Nation RL. New pharmacokinetic/pharmacodynamic studies of systemically administered colistin against Pseudomonas aeruginosa and Acinetobacter baumannii in mouse thigh and lung infection models: smaller response in lung infection. J Antimicrob Chemother. 2015;70:3291–7.PubMedGoogle Scholar
  179. 179.
    Fan B, Guan J, Wang X, Cong Y. Activity of colistin in combination with meropenem, tigecycline, fosfomycin, fusidic acid, rifampin or sulbactam against extensively drug-resistant Acinetobacter baumannii in a murine thigh-infection model. PLoS One. 2016;11:e0157757.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Michail G, Labrou M, Pitiriga V, Manousaka S, Sakellaridis N, Tsakris A, et al. Activity of tigecycline in combination with colistin, meropenem, rifampin, or gentamicin against KPC-producing Enterobacteriaceae in a murine thigh infection model. Antimicrob Agents Chemother. 2013;57:6028–33.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Demiraslan H, Dinc G, Ahmed SS, Elmali F, Metan G, Alp E, et al. Carbapenem-resistant Klebsiella pneumoniae sepsis in corticosteroid receipt mice: tigecycline or colistin monotherapy versus tigecycline/colistin combination. J Chemother. 2014;26:276–81.PubMedCrossRefGoogle Scholar
  182. 182.
    Lenhard JR, Nation RL, Tsuji BT. Synergistic combinations of polymyxins. Int J Antimicrob Agents. 2016;48:607–13.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    D’Souza BB, Padmaraj SR, Rekha PD, Tellis RC, Prabhu S, Pothen P. In vitro synergistic activity of colistin and ceftazidime or ciprofloxacin against multidrug-resistant clinical strains of Pseudomonas aeruginosa. Microb Drug Resist. 2014;20:550–4.PubMedCrossRefGoogle Scholar
  184. 184.
    Dong X, Chen F, Zhang Y, Liu H, Liu Y, Ma L. In vitro activities of rifampin, colistin, sulbactam and tigecycline tested alone and in combination against extensively drug-resistant Acinetobacter baumannii. J Antibiot. 2014;67:677–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.INSERM U1070PoitiersFrance
  2. 2.Université de Poitiers, UFR Médecine-PharmaciePoitiersFrance
  3. 3.CHU PoitiersPoitiersFrance

Personalised recommendations