Clinical Pharmacokinetics

, Volume 56, Issue 5, pp 525–536 | Cite as

Evaluation of Concomitant Antiretrovirals and CYP2C9/CYP2C19 Polymorphisms on the Pharmacokinetics of Etravirine

  • Bruce Green
  • Herta Crauwels
  • Thomas N. Kakuda
  • Simon Vanveggel
  • Anne Brochot
Original Research Article



Etravirine is a non-nucleoside reverse transcriptase inhibitor indicated in combination with other antiretrovirals for treatment-experienced HIV patients ≥6 years of age. Etravirine is primarily metabolized by cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A. This analysis determined the impact of concomitant antiretrovirals and CYP2C9/CYP2C19 phenotype on the pharmacokinetics of etravirine.


We used 4728 plasma concentrations from 817 adult subjects collected from four clinical studies to develop the population pharmacokinetic model. The presence of atazanavir/ritonavir, lopinavir/ritonavir, darunavir/ritonavir, tenofovir disoproxil fumarate, or enfuvirtide together with the CYP2C9 and CYP2C19 phenotype and other demographics were evaluated.


A one-compartment model with first-order input and a lag-time best described the data. Estimates of apparent total clearance (CL/F), apparent central volume of distribution (V c/F), first-order absorption rate constant (k a), and absorption lag-time were 41.7 L/h, 972 L, 1.16 h, and 1.32 h, respectively. Estimates of between-subject variability on CL/F, V c/F, and relative bioavailability (F) were 39.4 %CV (percentage coefficient of variation), 35.9 %CV and 35.5 %CV, respectively. Between-occasion variability on F was estimated to be 30.0 %CV. CL/F increased non-linearly with body weight and creatinine clearance (CLCR), and also varied based on CYP2C9/CYP2C19 phenotype.


In this analysis, body weight, CLCR, and CYP2C9/CYP2C19 phenotype were found to describe some of the variability in CL/F. It was not possible to show an impact of concomitant antiretrovirals on the pharmacokinetics of etravirine for adults predominantly taking coadministered boosted protease inhibitors as a background antiretroviral regimen.


Total Body Weight Darunavir Population Pharmacokinetic Model Maraviroc Etravirine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with Ethical Standards


Janssen R&D provided financial reimbursement to complete the population pharmacokinetic analysis and prepare the manuscript.

Conflict of interest

Bruce Green is an employee and stock holder of Model Answers Pty Ltd, which received funding from Janssen R&D to complete the population pharmacokinetic analysis and prepare the manuscript. Herta Crauwels and Simon Vanveggel are employees of Janssen R&D and own stock in Johnson & Johnson. Thomas N. Kakuda is an employee of Alios BioPharma and owns stock in Johnson & Johnson. Anne Brochot is currently an employee of Ablynx, and was an employee of Janssen R&D at the time of this study.

Supplementary material

40262_2016_454_MOESM1_ESM.docx (4.4 mb)
Supplementary material 1 (DOCX 4538 kb)


  1. 1.
    Andries K, Azijn H, Thielemans T, et al. TMC125, a novel next-generation nonnucleoside reverse transcriptase inhibitor active against nonnucleoside reverse transcriptase inhibitor-resistant human immunodeficiency virus type 1. Society. 2004;48(12):4680–6. doi: 10.1128/AAC.48.12.4680.Google Scholar
  2. 2.
    Yanakakis LJ, Bumpus NN. Biotransformation of the antiretroviral drug etravirine: metabolite identification, reaction phenotyping, and characterization of autoinduction of cytochrome P450-dependent metabolism. Drug Metab Dispos. 2012;40(4):803–14. doi: 10.1124/dmd.111.044404.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kakuda TN, Schöller-Gyüre M, Hoetelmans RMW. Pharmacokinetic interactions between etravirine and non-antiretroviral drugs. Clin Pharmacokinet. 2011;50(1):25–39. doi: 10.2165/11534740-000000000-00000.CrossRefPubMedGoogle Scholar
  4. 4.
    Kakuda TN, Scholler-Gyure M, Hoetelmans RM. Clinical perspective on antiretroviral drug-drug interactions with the non-nucleoside reverse transcriptase inhibitor etravirine. Antivir Ther. 2010;15(6):817–29. doi: 10.3851/IMP1652.CrossRefPubMedGoogle Scholar
  5. 5.
    Kakuda TN, Wade JR, Snoeck E, et al. Pharmacokinetics and pharmacodynamics of the non-nucleoside reverse-transcriptase inhibitor etravirine in treatment-experienced HIV-1-infected patients. Clin Pharmacol Ther. 2010;88(5):695–703. doi: 10.1038/clpt.2010.181.CrossRefPubMedGoogle Scholar
  6. 6.
    Schöller-Gyüre M, Boffito M, Pozniak AL, et al. Effects of different meal compositions and fasted state on the oral bioavailability of etravirine. Pharmacotherapy. 2008;28(10):1215–22. doi: 10.1592/phco.28.10.1215.CrossRefPubMedGoogle Scholar
  7. 7.
    Lubomirov R, Arab-Alameddine M, Rotger M, et al. Pharmacogenetics-based population pharmacokinetic analysis of etravirine in HIV-1 infected individuals. Pharmacogenet Genomics. 2013;23(1):9–18. doi: 10.1097/FPC.0b013e32835ade82.CrossRefPubMedGoogle Scholar
  8. 8.
    Kakuda TN, Brochot A, Green B, et al. Pharmacokinetics and pharmacokinetic/pharmacodynamic relationships of etravirine in HIV-1-infected, treatment-experienced children and adolescents in PIANO. J Clin Pharmacol. Epub. 2016;. doi: 10.1002/jcph.746.Google Scholar
  9. 9.
    Di Perri G, Green B, Morrish G, et al. Pharmacokinetics and pharmacodynamics of etravirine 400 mg once daily in treatment-naïve patients. HIV Clin Trials. 2013;14(3):92–8. doi: 10.1310/hct1403-92.CrossRefPubMedGoogle Scholar
  10. 10.
    Scholler-Gyure M, Kakuda TN, Raoof A, et al. Clinical pharmacokinetics and pharmacodynamics of etravirine. Clin Pharmacokinet. 2009;48(9):561–74. doi: 10.2165/10895940-000000000-00000.CrossRefPubMedGoogle Scholar
  11. 11.
    Song I, Borland J, Min S, et al. Effects of etravirine alone and with ritonavir-boosted protease inhibitors on the pharmacokinetics of dolutegravir. Antimicrob Agents Chemother. 2011;55(7):3517–21. doi: 10.1128/AAC.00073-11.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kakuda TN, Abel S, Davis J, et al. Pharmacokinetic interactions of maraviroc with darunavir-ritonavir, etravirine, and etravirine-darunavir-ritonavir in healthy volunteers: results of two drug interaction trials. Antimicrob Agents Chemother. 2011;55(5):2290–6. doi: 10.1128/AAC.01046-10.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Di Perri G, Green B, Morrish G, et al. Pharmacokinetics and pharmacodynamics of etravirine 400 mg once daily in treatment-naïve patients. HIV Clin Trials. 2013;14(3):92–8. doi: 10.1310/hct1403-92.CrossRefPubMedGoogle Scholar
  14. 14.
    Scholler-Gyure M, Kakuda TN, De Smedt G, et al. A pharmacokinetic study of etravirine (TMC125) co-administered with ranitidine and omeprazole in HIV-negative volunteers. Br J Clin Pharmacol. 2008;66(4):508–16. doi: 10.1111/j.1365-2125.2008.03214.x.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481–504. doi: 10.1023/A:1012299115260.CrossRefPubMedGoogle Scholar
  16. 16.
    Wählby U, Bouw MR, Jonsson EN, et al. Assessment of type I error rates for the statistical sub-model in NONMEM. J Pharmacokinet Pharmacodyn. 2002;29(3):251–69. doi: 10.1023/A:1020254823597.CrossRefPubMedGoogle Scholar
  17. 17.
    Stram DO, Lee JW, Kee J. Variance components testing in the longitudinal mixed effects model. Biometrics. 1994;50(4):1171–7. doi: 10.2307/2533455.CrossRefPubMedGoogle Scholar
  18. 18.
    Green B, Holford NH. Critical values for rejecting the null involving mixture models—identification of poor metabolizers and non-responders [poster]. AAPS Annual Meeting; 6–10 Nov 2005; Nashville.Google Scholar
  19. 19.
    Ette E, Sun H, Ludden T. Balanced designs in longitudinal population pharmacokinetic studies. J Clin Pharmacol. 1998;38(5):417–23.CrossRefPubMedGoogle Scholar
  20. 20.
    Karlsson MMO, Savic RMRM. Diagnosing model diagnostics. Clin Pharmacol Ther. 2007;82(1):17–20. doi: 10.1038/sj.clpt.2007.6100241.CrossRefPubMedGoogle Scholar
  21. 21.
    Bonate PL. Pharmacokinetic-pharmacodynamic modeling and simulation. New York: Springer; 2006.Google Scholar
  22. 22.
    Han PY, Kirkpatrick CM, Green B. Informative study designs to identify true parameter-covariate relationships. J Pharmacokinet Pharmacodyn. 2009;36(2):147–63. doi: 10.1007/s10928-009-9115-y.CrossRefPubMedGoogle Scholar
  23. 23.
    Hamberg A-K, Dahl M-L, Barban M, et al. A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin Pharmacol Ther. 2007;81(4):529–38. doi: 10.1038/sj.clpt.6100084.CrossRefPubMedGoogle Scholar
  24. 24.
    Wright DFB, Duffull SB. Development of a bayesian forecasting method for warfarin dose individualization. Pharm Res. 2011;28(5):1100–11. doi: 10.1007/s11095-011-0369-x.CrossRefPubMedGoogle Scholar
  25. 25.
    Wright DFB, Duffull SB. A Bayesian dose-individualization method for warfarin. Clin Pharmacokinet. 2013;52(1):59–68. doi: 10.1007/s40262-012-0017-6.CrossRefPubMedGoogle Scholar
  26. 26.
    Scott SA, Sangkuhl K, Stein CM, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013;94(3):317–23. doi: 10.1038/clpt.2013.105.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kleiber M. Body size and metabolism. Hilgardia. 1932;6:315–53.CrossRefGoogle Scholar
  28. 28.
    Rubner M. Uber den Einfluss der Korpergrosse auf Stoff- und Kraftwechsel. Zeitscrift fur Biol. 1883;19:535–62.Google Scholar
  29. 29.
    Miller AJ, Blyth C. Lean body mass as a metabolic reference standard. J Appl Physiol. 1953;5(7):311–6.PubMedGoogle Scholar
  30. 30.
    White CR, Seymour RS. Mammalian basal metabolic rate is proportional to body mass2/3. Proc Natl Acad Sci USA. 2003;100(7):4046–9. doi: 10.1073/pnas.0436428100.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Janmahasatian S, Janmahasatian S, Duffull SB, et al. Quantification of lean body weight. Master Philos. 2005;44(10):1051–65. doi: 10.2165/00003088-200544100-00004.Google Scholar
  32. 32.
    McLeay S, Morrish G, Kirkpatrick C, et al. The relationship between drug clearance and body size: systematic review and meta-analysis of the literature published from 2000 to 2007. Clin Pharmacokinet. 2012;51(5):319–30. doi: 10.2165/11598930-000000000-00000.CrossRefPubMedGoogle Scholar
  33. 33.
    Han PPY, Kirkpatrick CMC, Green B, et al. Informative study designs to identify true parameter-covariate relationships. J Pharmacokinet Pharmacodyn. 2009;36(2):147–63. doi: 10.1007/s10928-009-9115-y.CrossRefPubMedGoogle Scholar
  34. 34.
    Orrell C, Felizarta F, Nell A, et al. Pharmacokinetics of etravirine combined with atazanavir/ritonavir and a nucleoside reverse transcriptase inhibitor in antiretroviral treatment-experienced, HIV-1-infected patients. AIDS Res Treat. 2015;2015:938628. doi: 10.1155/2015/938628.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Arathoon E, Bhorat A, Silaghi R, et al. Week 48 results of a phase IV trial of etravirine with antiretrovirals other than darunavir/ritonavir in HIV-1-infected treatment-experienced adults. J Int AIDS Soc. 2014;4(Suppl 3):19783.Google Scholar
  36. 36.
    AutoGenomics. INFINITI CYP450 2C19+ assay. Accessed 12 Sept 2016.
  37. 37.
    AutoGenomics. INFINITI CYP450 2C9-VKORC1 assay. Accessed 12 Sept 2016.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Model Answers Pty LtdBrisbaneAustralia
  2. 2.Janssen R&DBeerseBelgium
  3. 3.Alios BioPharmaSouth San FranciscoUSA

Personalised recommendations