Advertisement

Clinical Pharmacokinetics

, Volume 55, Issue 10, pp 1217–1226 | Cite as

Pharmacodynamic Analysis of Morphine Time-to-Remedication Events in Infants and Young Children After Congenital Heart Surgery

  • Mohammed H. Elkomy
  • David R. DroverEmail author
  • Jeffery L. Galinkin
  • Gregory B. Hammer
  • Kristi L. Glotzbach
Original Research Article

Abstract

Objective

The aim of this study was to characterize the relationship between morphine plasma concentration and repeated time to postoperative remedication events in children undergoing cardiac surgery.

Methods

Data from our previously published study of morphine pharmacokinetics were utilized in this pharmacodynamic study. A population survival analysis based on hazard functions was undertaken in NONMEM®.

Results

Hazard was best described by a Gompertz function changing in steps over time. Concentration and age were the only predictors of the hazard function. Concentration producing 50 % reduction in hazard was 19.6 (bootstrap 95 % confidence interval 5.90–49.5 ng/ml). The hazard ratio for a 1-year-old child to a 1-month-old child was 1.91 (1.35–2.86). Sensitivity to morphine decreased with age and leveled off after 1-year of life. Morphine sulfate doses >0.1 mg/kg did not noticeably increase tolerable pain durations.

Conclusion

Time to remedication is a clinically useful endpoint for assessing opioid-induced analgesia. Sensitivity to morphine treatment is age-dependent. Morphine sulfate doses of 0.1–0.2 mg/kg are adequate for the management of postoperative pain in children. Our findings may help avoid unnecessary large morphine doses in children.

Keywords

Morphine Hazard Rate Hazard Function Baseline Hazard Morphine Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Author contributions

David R. Drover and Gregory B. Hammer conceived and designed the clinical study; Kristi L. Glotzbach performed the clinical study and collected the data; Jeffery L. Galinkin developed and optimized the morphine assay; and Mohammed H. Elkomy conducted the data analysis and wrote the manuscript. All authors critically reviewed and approved the manuscript content.

Compliance with Ethical Standards

This study was funded through an NCCR/NICHD CTSA consortium project grant via the Stanford University Center for Clinical and Translational and Educational Research.

Conflict of interest

Mohammed H. Elkomy, David R. Drover, Jeffery L. Galinkin, Gregory B. Hammer, and Kristi L. Glotzbach have no conflicts of interest to declare.

References

  1. 1.
    Olkkola KT, Maunuksela EL, Korpela R, et al. Kinetics and dynamics of postoperative intravenous morphine in children. Clin Pharmacol Ther. 1988;44(2):128–36.CrossRefPubMedGoogle Scholar
  2. 2.
    Way WL, Costley EC, Leongway E. Respiratory sensitivity of the newborn infant to meperidine and morphine. Clin Pharmacol Ther. 1965;6:454–61.CrossRefPubMedGoogle Scholar
  3. 3.
    Bray RJ. Postoperative analgesia provided by morphine infusion in children. Anaesthesia. 1983;38(11):1075–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Anand KJS, Anderson BJ, Holford NHG, et al. Morphine pharmacokinetics and pharmacodynamics in preterm and term neonates: secondary results from the NEOPAIN trial. Br J Anaesth. 2008;101(5):680–9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chay PCW, Duffy BJ, Walker JS. Pharmacokinetic-pharmacodynamic relationships of morphine in neonates. Clin Pharmacol Ther. 1992;51(3):334–42.CrossRefPubMedGoogle Scholar
  6. 6.
    Mashayekhi SO, Ghandforoush-Sattari M, Routledge PA, et al. Pharmacokinetic and pharmacodynamic study of morphine and morphine 6-glucuronide after oral and intravenous administration of morphine in children with cancer. Biopharm Drug Dispos. 2009;30(3):99–106.CrossRefPubMedGoogle Scholar
  7. 7.
    Monk TG, Parker RK, White PF. Use of PCA in geriatric patients-effect of aging on the postoperative analgesic requirement. Anesth Analg. 1990;70(2):S272.CrossRefGoogle Scholar
  8. 8.
    Martini C, Olofsen E, Yassen A, et al. Pharmacokinetic-pharmacodynamic modeling in acute and chronic pain: an overview of the recent literature. Expert Rev Clin Pharmacol. 2011;4(6):719–28.CrossRefPubMedGoogle Scholar
  9. 9.
    Lorenzini K, Daali Y, Dayer P, et al. Pharmacokinetic–pharmacodynamic modelling of opioids in healthy human volunteers. A minireview. Basic Clin Pharmacol Toxicol. 2012;110(3):219–26.CrossRefGoogle Scholar
  10. 10.
    Plan EL, Karlsson KE, Karlsson MO. Approaches to simultaneous analysis of frequency and severity of symptoms. Clin Pharmacol Ther. 2010;88(2):255–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Ong CKS, Lirk P, Seymour RA, et al. The efficacy of preemptive analgesia for acute postoperative pain management: a meta-analysis. Anesth Analg. 2005;100(3):757–73.CrossRefPubMedGoogle Scholar
  12. 12.
    Heard SO, Edwards WT, Ferrari D, et al. Analgesic effect of intraarticular bupivacaine or morphine after arthroscopic knee surgery: a randomized, prospective, double-blind study. Anesth Analg. 1992;74(6):822–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Juul RV, Rasmussen S, Kreilgaard M, et al. Repeated time-to-event analysis of consecutive analgesic events in postoperative pain. Anesthesiology. 2015;123(6):1411–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Elkomy MH, Drover DR, Glotzbach KL, et al. Pharmacokinetics of morphine and its metabolites in infants and young children after congenital heart surgery. AAPS J. 2016;18(1):124–33.CrossRefPubMedGoogle Scholar
  15. 15.
    Holford N. A time to event tutorial for pharmacometricians. CPT Pharmacomet Syst Pharmacol. 2013;2(5):1–8.CrossRefGoogle Scholar
  16. 16.
    Holford N, Lavielle M. A tutorial on time to event analysis for mixed effects modellers [abstract no. 2281]. 2011. Available at: http://www.page-meeting.org/?abstract=2281.
  17. 17.
    Beal SL, Sheiner LB, Boeckmann AJ. NONMEM user’s guides: part V. San Francisco: NONMEM Project Group, University of California at San Francisco; 1994.Google Scholar
  18. 18.
    Lindbom L, Pihlgren P, Jonsson EN. PsN-Toolkit: a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79(3):241–57.CrossRefPubMedGoogle Scholar
  19. 19.
    Frobel A-K, Karlsson MO, Backman JT, et al. A time-to-event model for acute rejections in paediatric renal transplant recipients treated with ciclosporin A. Br J Clin Pharmacol. 2013;76(4):603–15.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Mandema JW, Stanski DR. Population pharmacodynamic model for ketorolac analgesia. Clin Pharmacol Ther. 1996;60(6):619–35.CrossRefPubMedGoogle Scholar
  21. 21.
    EnH Cox, Veyrat-Follet C, Beal SL, et al. A population pharmacokinetic-pharmacodynamic analysis of repeated measures time-to-event pharmacodynamic responses: the antiemetic effect of ondansetron. J Pharmacokinet Biopharm. 1999;27(6):625–44.CrossRefGoogle Scholar
  22. 22.
    Lindsey JK. A study of interval censoring in parametric regression models. Lifetime Data Anal. 1998;4(4):329–54.CrossRefPubMedGoogle Scholar
  23. 23.
    Cesselin F, Benoliel J-J, Bourgoin S, et al. Spinal mechanisms of opioid analgesia. In: Stein C, editor. Opioids in pain control: basic and clinical aspects. Cambridge: Cambridge University Press; 1999. p. 70–95.Google Scholar
  24. 24.
    Lötsch J. Pharmacokinetic–pharmacodynamic modeling of opioids. J Pain Symptom Manage. 2005;29(5):90–103.CrossRefGoogle Scholar
  25. 25.
    Dahlström B, Tamsen A, Paalzow L, et al. Patient-controlled analgesic therapy. Part IV: pharmacokinetics and analgesic plasma concentrations of morphine. Clin Pharmacokinet. 1982;7(3):266–79.CrossRefPubMedGoogle Scholar
  26. 26.
    Nayman J. Measurement and control of postoperative pain. Ann R Coll Surg Engl. 1979;61(6):419.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Dahlström B, Bolme P, Feychting H, et al. Morphine kinetics in children. Clin Pharmacol Ther. 1979;26(3):354–65.CrossRefPubMedGoogle Scholar
  28. 28.
    Lynn AM, Opheim KE, Tyler DC. Morphine infusion after pediatric cardiac surgery. Crit Care Med. 1984;12(10):863–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Maunuksela E-L, Olkkola KT. Pediatric pain management. Int Anesthesiol Clin. 1991;29(1):37–56.CrossRefPubMedGoogle Scholar
  30. 30.
    Nichols DG, Yaster M, Lynn AM, et al. Disposition and respiratory effects of intrathecal morphine in children. Anesthesiology. 1993;79(4):733–8 (discussion 25A).CrossRefPubMedGoogle Scholar
  31. 31.
    Lynn AM, Nespeca MK, Opheim KE, et al. Respiratory effects of intravenous morphine infusions in neonates, infants, and children after cardiac surgery. Anesth Analg. 1993;77(4):695–701.CrossRefPubMedGoogle Scholar
  32. 32.
    Macintyre PE, Jarvis DA. Age is the best predictor of postoperative morphine requirements. Pain. 1996;64(2):357–64.CrossRefPubMedGoogle Scholar
  33. 33.
    Burns JW, Hodsman NBA, McLintock TTC, et al. The influence of patient characteristics on the requirements for postoperative analgesia. Anaesthesia. 1989;44(1):2–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Ginsberg B, Cohen NA, Ossey KD, et al. The use of PCA to assess the influence of demographic factors on analgesic requirements. Anesthesiology. 1989;71:A688.CrossRefGoogle Scholar
  35. 35.
    Choonara I, Lawrence A, Michalkiewicz A, et al. Morphine metabolism in neonates and infants. Br J Clin Pharmacol. 1992;34(5):434–7.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lynn AM, Slattery JT. Morphine pharmacokinetics in early infancy. Anesthesiology. 1987;66(2):136–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Milne RW, Nation RL, Somogyi AA, et al. The influence of renal function on the renal clearance of morphine and its glucuronide metabolites in intensive-care patients. Br J Clin Pharmacol. 1992;34(1):53–9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Peterson GM, Randall CTC, Paterson J. Plasma levels of morphine and morphine glucuronides in the treatment of cancer pain: relationship to renal function and route of administration. Eur J Clin Pharmacol. 1990;38(2):121–4.CrossRefPubMedGoogle Scholar
  39. 39.
    Wolff J, Bigler D, Christensen CB, et al. Influence of renal function on the elimination of morphine and morphine glucuronides. Eur J Clin Pharmacol. 1988;34(4):353–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mohammed H. Elkomy
    • 2
  • David R. Drover
    • 1
    Email author
  • Jeffery L. Galinkin
    • 5
  • Gregory B. Hammer
    • 1
    • 4
  • Kristi L. Glotzbach
    • 3
  1. 1.Department of Anesthesiology, Perioperative and Pain MedicineStanford University School of MedicineStanfordUSA
  2. 2.Department of Pharmaceutics and Industrial PharmacyBeni-Suef UniversityBeni-SuefEgypt
  3. 3.Division of Pediatric CardiologyChildren’s Hospital at Montefiore, Albert Einstein College of MedicineBronxUSA
  4. 4.Department of PediatricsStanford University School of MedicineStanfordUSA
  5. 5.Department of AnesthesiologyUniversity of ColoradoAuroraUSA

Personalised recommendations