Clinical Pharmacokinetics

, Volume 55, Issue 9, pp 1059–1077 | Cite as

Ketamine: A Review of Clinical Pharmacokinetics and Pharmacodynamics in Anesthesia and Pain Therapy

  • Marko A. PeltoniemiEmail author
  • Nora M. Hagelberg
  • Klaus T. Olkkola
  • Teijo I. Saari
Review Article


Ketamine is a phencyclidine derivative, which functions primarily as an antagonist of the N-methyl-d-aspartate receptor. It has no affinity for gamma-aminobutyric acid receptors in the central nervous system. Ketamine shows a chiral structure consisting of two optical isomers. It undergoes oxidative metabolism, mainly to norketamine by cytochrome P450 (CYP) 3A and CYP2B6 enzymes. The use of S-ketamine is increasing worldwide, since the S(+)-enantiomer has been postulated to be a four times more potent anesthetic and analgesic than the R(−)-enantiomer and approximately two times more effective than the racemic mixture of ketamine. Because of extensive first-pass metabolism, oral bioavailability is poor and ketamine is vulnerable to pharmacokinetic drug interactions. Sublingual and nasal formulations of ketamine are being developed, and especially nasal administration produces rapid maximum plasma ketamine concentrations with relatively high bioavailability. Ketamine produces hemodynamically stable anesthesia via central sympathetic stimulation without affecting respiratory function. Animal studies have shown that ketamine has neuroprotective properties, and there is no evidence of elevated intracranial pressure after ketamine dosing in humans. Low-dose perioperative ketamine may reduce opioid consumption and chronic postsurgical pain after specific surgical procedures. However, long-term analgesic effects of ketamine in chronic pain patients have not been demonstrated. Besides analgesic properties, ketamine has rapid-acting antidepressant effects, which may be useful in treating therapy-resistant depressive patients. Well-known psychotomimetic and cognitive adverse effects restrict the clinical usefulness of ketamine, even though fewer psychomimetic adverse effects have been reported with S-ketamine in comparison with the racemate. Safety issues in long-term use are yet to be resolved.


Ketamine NMDA Receptor Complex Regional Pain Syndrome Racemate Opioid Consumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with Ethical Standards

No funding was received for the conduct of this study. Marko A. Peltoniemi, Nora M. Hagelberg, Klaus T. Olkkola and Teijo I. Saari have no conflicts of interest that are directly relevant to the content of this study.


  1. 1.
    Domino EF. Taming the ketamine tiger. 1965. Anesthesiology. 2010;113:678–84.PubMedGoogle Scholar
  2. 2.
    Domino EF, Chodoff P, Corssen G. Pharmacologic effects of CI-581, a new dissociative anesthetic, in man. Clin Pharmacol Ther. 1965;6:279–91.PubMedCrossRefGoogle Scholar
  3. 3.
    Bhutta AT. Ketamine: a controversial drug for neonates. Semin Perinatol. 2007;31:303–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Sinner B, Graf BM. Ketamine. Handb Exp Pharmacol. 2008;182:313–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Weber F, Wulf H, Gruber M, Biallas R. S-ketamine and s-norketamine plasma concentrations after nasal and i.v. administration in anesthetized children. Paediatr Anaesth. 2004;14:983–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Sigtermans MJ, van Hilten JJ, Bauer MCR, Arbous MS, Marinus J, Sarton EY, et al. Ketamine produces effective and long-term pain relief in patients with complex regional pain syndrome type 1. Pain. 2009;145:304–11.PubMedCrossRefGoogle Scholar
  7. 7.
    Chong C, Schug SA, Page-Sharp M, Jenkins B, Ilett KF. Development of a sublingual/oral formulation of ketamine for use in neuropathic pain: preliminary findings from a three-way randomized, crossover study. Clin Drug Investig. 2009;29:317–24.PubMedCrossRefGoogle Scholar
  8. 8.
    Huge V, Lauchart M, Magerl W, Schelling G, Beyer A, Thieme D, et al. Effects of low-dose intranasal (S)-ketamine in patients with neuropathic pain. Eur J Pain. 2010;14:387–94.PubMedCrossRefGoogle Scholar
  9. 9.
    Riediger C, Haschke M, Bitter C, Fabbro T, Schaeren S, Urwyler A, et al. The analgesic effect of combined treatment with intranasal S-ketamine and intranasal midazolam compared with morphine patient-controlled analgesia in spinal surgery patients: a pilot study. J Pain Res. 2015;8:87–94.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Grant IS, Nimmo WS, Clements JA. Pharmacokinetics and analgesic effects of i.m. and oral ketamine. Br J Anaesth. 1981;53:805–10.PubMedCrossRefGoogle Scholar
  11. 11.
    Clements JA, Nimmo WS, Grant IS. Bioavailability, pharmacokinetics, and analgesic activity of ketamine in humans. J Pharm Sci. 1982;71:539–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Yanagihara Y, Ohtani M, Kariya S, Uchino K, Hiraishi T, Ashizawa N, et al. Plasma concentration profiles of ketamine and norketamine after administration of various ketamine preparations to healthy Japanese volunteers. Biopharm Drug Dispos. 2003;24:37–43.PubMedCrossRefGoogle Scholar
  13. 13.
    Peltoniemi MA, Saari TI, Hagelberg NM, Laine K, Kurkinen KJ, Neuvonen PJ, et al. Rifampicin has a profound effect on the pharmacokinetics of oral S-ketamine and less on intravenous S-ketamine. Basic Clin Pharmacol Toxicol. 2012;111:325–32.PubMedCrossRefGoogle Scholar
  14. 14.
    Fanta S, Kinnunen M, Backman JT, Kalso E. Population pharmacokinetics of S-ketamine and norketamine in healthy volunteers after intravenous and oral dosing. Eur J Clin Pharmacol. 2015;71:441–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Hagelberg NM, Peltoniemi MA, Saari TI, Kurkinen KJ, Laine K, Neuvonen PJ, et al. Clarithromycin, a potent inhibitor of CYP3A, greatly increases exposure to oral S-ketamine. Eur J Pain. 2010;14:625–9.PubMedCrossRefGoogle Scholar
  16. 16.
    White PF, Johnston RR, Pudwill CR. Interaction of ketamine and halothane in rats. Anesthesiology. 1975;42:179–86.PubMedCrossRefGoogle Scholar
  17. 17.
    Leung LY, Baillie TA. Comparative pharmacology in the rat of ketamine and its two principal metabolites, norketamine and (Z)-6-hydroxynorketamine. J Med Chem. 1986;29:2396–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Ebert B, Mikkelsen S, Thorkildsen C, Borgbjerg FM. Norketamine, the main metabolite of ketamine, is a non-competitive NMDA receptor antagonist in the rat cortex and spinal cord. Eur J Pharmacol. 1997;333:99–104.PubMedCrossRefGoogle Scholar
  19. 19.
    Holtman JR, Crooks PA, Johnson-Hardy JK, Hojomat M, Kleven M, Wala EP. Effects of norketamine enantiomers in rodent models of persistent pain. Pharmacol Biochem Behav. 2008;90:676–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Laskowski K, Stirling A, McKay WP, Lim HJ. A systematic review of intravenous ketamine for postoperative analgesia. Can J Anesth. 2011;58:911–23.PubMedCrossRefGoogle Scholar
  21. 21.
    Adams HA, Werner C. From the racemate to the eutomer: (S)-ketamine. Renaissance of a substance? Anaesthesist. 1997;46:1026–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Mion G, Villevieille T. Ketamine pharmacology: an update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci Ther. 2013;19:370–80.PubMedCrossRefGoogle Scholar
  23. 23.
    White PF, Ham J, Way WL, Trevor AJ. Pharmacology of ketamine isomers in surgical patients. Anesthesiology. 1980;52:231–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Oye I, Paulsen O, Maurset A. Effects of ketamine on sensory perception: evidence for a role of N-methyl-d-aspartate receptors. J Pharmacol Exp Ther. 1992;260:1209–13.PubMedGoogle Scholar
  25. 25.
    Arendt-Nielsen L, Nielsen J, Petersen-Felix S, Schnider TW, Zbinden AM. Effect of racemic mixture and the (S+)-isomer of ketamine on temporal and spatial summation of pain. Br J Anaesth. 1996;77:625–31.PubMedCrossRefGoogle Scholar
  26. 26.
    Bell RF, Eccleston C, Kalso EA. Ketamine as an adjuvant to opioids for cancer pain. Cochrane Database Syst Rev. 2012;11:CD003351.Google Scholar
  27. 27.
    Bell RF, Dahl JB, Moore RA, Kalso E. Peri-operative ketamine for acute post-operative pain: a quantitative and qualitative systematic review (Cochrane review). Acta Anaesthesiol Scand. 2005;49:1405–28.PubMedCrossRefGoogle Scholar
  28. 28.
    Abdallah CG, Averill LA, Krystal JH. Ketamine as a promising prototype for a new generation of rapid-acting antidepressants. Ann N Y Acad Sci. 2015;1344:66–77.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Fang Y, Wang X. Ketamine for the treatment of refractory status epilepticus. Seizure. 2015;30:14–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Dayton PG, Stiller RL, Cook DR, Perel JM. The binding of ketamine to plasma proteins: emphasis on human plasma. Eur J Clin Pharmacol. 1983;24:825–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Hijazi Y, Bodonian C, Bolon M, Salord F, Boulieu R. Pharmacokinetics and haemodynamics of ketamine in intensive care patients with brain or spinal cord injury. Br J Anaesth. 2003;90:155–60.PubMedCrossRefGoogle Scholar
  32. 32.
    Geisslinger G, Hering W, Thomann P, Knoll R, Kamp HD, Brune K. Pharmacokinetics and pharmacodynamics of ketamine enantiomers in surgical patients using a stereoselective analytical method. Br J Anaesth. 1993;70:666–71.PubMedCrossRefGoogle Scholar
  33. 33.
    Dahan A, Olofsenl E, Sigtermans M, Noppers I, Niesters M, Aarts L, et al. Population pharmacokinetic-pharmacodynamic modeling of ketamine-induced pain relief of chronic pain. Eur J Pain. 2011;15:258–67.PubMedCrossRefGoogle Scholar
  34. 34.
    Sigtermans M, Dahan A, Mooren R, Bauer M, Kest B, Sarton E, et al. S(+)-ketamine effect on experimental pain and cardiac output. Anesthesiology. 2009;111:892–903.PubMedCrossRefGoogle Scholar
  35. 35.
    Persson J, Hasselström J, Maurset A, Oye I, Svensson JO, Almqvist O, et al. Pharmacokinetics and non-analgesic effects of S- and R-ketamines in healthy volunteers with normal and reduced metabolic capacity. Eur J Clin Pharmacol. 2002;57:869–75.PubMedCrossRefGoogle Scholar
  36. 36.
    White PF, Schüttler J, Shafer A, Stanski DR, Horai Y, Trevor AJ. Comparative pharmacology of the ketamine isomers. Studies in volunteers. Br J Anaesth. 1985;57:197–203.PubMedCrossRefGoogle Scholar
  37. 37.
    White M, de Graaff P, Renshof B, van Kan E, Dzoljic M. Pharmacokinetics of S(+) ketamine derived from target controlled infusion. Br J Anaesth. 2006;96:330–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Schüttler J, Stanski DR, White PF, Trevor AJ, Horai Y, Verotta D, et al. Pharmacodynamic modeling of the EEG effects of ketamine and its enantiomers in man. J Pharmacokinet Biopharm. 1987;15:241–53.PubMedCrossRefGoogle Scholar
  39. 39.
    Ihmsen H, Geisslinger G, Schüttler J. Stereoselective pharmacokinetics of ketamine: R(−)-ketamine inhibits the elimination of S(+)-ketamine. Clin Pharmacol Ther. 2001;70:431–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Peltoniemi MA, Saari TI, Hagelberg NM, Laine K, Neuvonen PJ, Olkkola KT. St John’s wort greatly decreases the plasma concentrations of oral S-ketamine. Fundam Clin Pharmacol. 2012;26:743–50.PubMedCrossRefGoogle Scholar
  41. 41.
    Peltoniemi MA, Saari TI, Hagelberg NM, Laine K, Neuvonen PJ, Olkkola KT. S-ketamine concentrations are greatly increased by grapefruit juice. Eur J Clin Pharmacol. 2012;68:979–86.PubMedCrossRefGoogle Scholar
  42. 42.
    Peltoniemi MA, Saari TI, Hagelberg NM, Reponen P, Turpeinen M, Laine K, et al. Exposure to oral S-ketamine is unaffected by itraconazole but greatly increased by ticlopidine. Clin Pharmacol Ther. 2011;90:296–302.PubMedCrossRefGoogle Scholar
  43. 43.
    Woolf TF, Adams JD. Biotransformation of ketamine, (Z)-6-hydroxyketamine, and (E)-6-hydroxyketamine by rat, rabbit, and human liver microsomal preparations. Xenobiotica. 1987;17:839–47.PubMedCrossRefGoogle Scholar
  44. 44.
    Hijazi Y, Boulieu R. Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos. 2002;30:853–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Kharasch ED, Labroo R. Metabolism of ketamine stereoisomers by human liver microsomes. Anesthesiology. 1992;77:1201–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Yanagihara Y, Kariya S, Ohtani M, Uchino K, Aoyama T, Yamamura Y, et al. Involvement of CYP2B6 in n-demethylation of ketamine in human liver microsomes. Drug Metab Dispos. 2001;29:887–90.PubMedGoogle Scholar
  47. 47.
    Noppers I, Olofsen E, Niesters M, Aarts L, Mooren R, Dahan A, et al. Effect of rifampicin on S-ketamine and S-norketamine plasma concentrations in healthy volunteers after intravenous S-ketamine administration. Anesthesiology. 2011;114:1435–45.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Herd D, Anderson BJ. Ketamine disposition in children presenting for procedural sedation and analgesia in a children’s emergency department. Paediatr Anaesth. 2007;17:622–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Herd DW, Anderson BJ, Keene NA, Holford NHG. Investigating the pharmacodynamics of ketamine in children. Paediatr Anaesth. 2008;18:36–42.PubMedCrossRefGoogle Scholar
  50. 50.
    Herd DW, Anderson BJ, Holford NHG. Modeling the norketamine metabolite in children and the implications for analgesia. Pediatr Anesth. 2007;17:831–40.CrossRefGoogle Scholar
  51. 51.
    Dallimore D, Herd DW, Short T, Anderson BJ. Dosing ketamine for pediatric procedural sedation in the emergency department. Pediatr Emerg Care. 2008;24:529–33.PubMedCrossRefGoogle Scholar
  52. 52.
    Brunette KEJ, Anderson BJ, Thomas J, Wiesner L, Herd DW, Schulein S. Exploring the pharmacokinetics of oral ketamine in children undergoing burns procedures. Paediatr Anaesth. 2011;21:653–62.PubMedCrossRefGoogle Scholar
  53. 53.
    Elkomy MH, Drover DR, Hammer GB, Galinkin JL, Ramamoorthy C. Population pharmacokinetics of ketamine in children with heart disease. Int J Pharm. 2015;478:223–31.PubMedCrossRefGoogle Scholar
  54. 54.
    Olofsen E, Noppers I, Niesters M, Kharasch E, Aarts L, Sarton E, et al. Estimation of the contribution of norketamine to ketamine-induced acute pain relief and neurocognitive impairment in healthy volunteers. Anesthesiology. 2012;117:353–64.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zhao X, Venkata SLV, Moaddel R, Luckenbaugh DA, Brutsche NE, Ibrahim L, et al. Simultaneous population pharmacokinetic modelling of ketamine and three major metabolites in patients with treatment-resistant bipolar depression. Br J Clin Pharmacol. 2012;74:304–14.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Absalom AR, Lee M, Menon DK, Sharar SR, De Smet T, Halliday J, et al. Predictive performance of the Domino, Hijazi, and Clements models during low-dose target-controlled ketamine infusions in healthy volunteers. Br J Anaesth. 2007;98:615–23.PubMedCrossRefGoogle Scholar
  57. 57.
    Jamsen KM, McLeay SC, Barras M, Green B. Reporting a population pharmacokinetic–pharmacodynamic study: a journal’s perspective. Clin Pharmacokinet. 2014;53:111–22.PubMedCrossRefGoogle Scholar
  58. 58.
    Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacomet Syst Pharmacol. 2012;1:e6.CrossRefGoogle Scholar
  59. 59.
    Kleinloog D, Uit den Boogaard A, Dahan A, Mooren R, Klaassen E, Stevens J, et al. Optimizing the glutamatergic challenge model for psychosis, using S+-ketamine to induce psychomimetic symptoms in healthy volunteers. J Psychopharmacol. 2015;29:401–13.PubMedCrossRefGoogle Scholar
  60. 60.
    Lodge D, Anis NA. Effects of ketamine and three other anaesthetics on spinal reflexes and inhibitions in the cat. Br J Anaesth. 1984;56:1143–51.PubMedCrossRefGoogle Scholar
  61. 61.
    Anis NA, Berry SC, Burton NR, Lodge D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol. 1983;79:565–75.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Traynelis SF, Cull-Candy SG. Proton inhibition of N-methyl-d-aspartate receptors in cerebellar neurons. Nature. 1990;345:347–50.PubMedCrossRefGoogle Scholar
  63. 63.
    Fan W, Huang F, Wu Z, Zhu X, Li D, He H. The role of nitric oxide in orofacial pain. Nitric Oxide. 2012;26:32–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Orser BA, Pennefather PS, MacDonald JF. Multiple mechanisms of ketamine blockade of N-methyl-d-aspartate receptors. Anesthesiology. 1997;86:903–17.PubMedCrossRefGoogle Scholar
  65. 65.
    Pelissier T, Laurido C, Kramer V, Hernández A, Paeile C. Antinociceptive interactions of ketamine with morphine or methadone in mononeuropathic rats. Eur J Pharmacol. 2003;477:23–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Petersen-Felix S, Arendt-Nielsen L, Bak P, Roth D, Fischer M, Bjerring P, et al. Analgesic effect in humans of subanaesthetic isoflurane concentrations evaluated by experimentally induced pain. Br J Anaesth. 1995;75:55–60.PubMedCrossRefGoogle Scholar
  67. 67.
    Bennett GJ. Update on the neurophysiology of pain transmission and modulation: focus on the NMDA-receptor. J Pain Symptom Manage. 2000;19:S2–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Eide PK. Wind-up and the NMDA receptor complex from a clinical perspective. Eur J Pain. 2000;4:5–15.PubMedCrossRefGoogle Scholar
  69. 69.
    Smith DJ, Bouchal RL, deSanctis CA, Monroe PJ, Amedro JB, Perrotti JM, et al. Properties of the interaction between ketamine and opiate binding sites in vivo and in vitro. Neuropharmacology. 1987;26:1253–60.PubMedCrossRefGoogle Scholar
  70. 70.
    Finck AD, Samaniego E, Ngai SH. Morphine tolerance decreases the analgesic effects of ketamine in mice. Anesthesiology. 1988;68:397–400.PubMedCrossRefGoogle Scholar
  71. 71.
    Hustveit O, Maurset A, Oye I. Interaction of the chiral forms of ketamine with opioid, phencyclidine, sigma and muscarinic receptors. Pharmacol Toxicol. 1995;77:355–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Mikkelsen S, Ilkjaer S, Brennum J, Borgbjerg FM, Dahl JB. The effect of naloxone on ketamine-induced effects on hyperalgesia and ketamine-induced side effects in humans. Anesthesiology. 1999;90:1539–45.PubMedCrossRefGoogle Scholar
  73. 73.
    Nishimura M, Sato K, Okada T, Yoshiya I, Schloss P, Shimada S, et al. Ketamine inhibits monoamine transporters expressed in human embryonic kidney 293 cells. Anesthesiology. 1998;88:768–74.PubMedCrossRefGoogle Scholar
  74. 74.
    Kohrs R, Durieux ME. Ketamine: teaching an old drug new tricks. Anesth Analg. 1998;87:1186–93.PubMedGoogle Scholar
  75. 75.
    Levänen J, Mäkelä ML, Scheinin H. Dexmedetomidine premedication attenuates ketamine-induced cardiostimulatory effects and postanesthetic delirium. Anesthesiology. 1995;82:1117–25.PubMedCrossRefGoogle Scholar
  76. 76.
    Salmi E, Långsjö JW, Aalto S, Någren K, Metsähonkala L, Kaisti KK, et al. Subanesthetic ketamine does not affect 11C-flumazenil binding in humans. Anesth. Analg. 2005;101:722–5 (table of contents).PubMedCrossRefGoogle Scholar
  77. 77.
    Shafer SL, Siegel LC, Cooke JE, Scott JC. Testing computer-controlled infusion pumps by simulation. Anesthesiology. 1988;68:261–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Flood P, Krasowski MD. Intravenous anesthetics differentially modulate ligand-gated ion channels. Anesthesiology. 2000;92:1418–25.PubMedCrossRefGoogle Scholar
  79. 79.
    Kornhuber J, Mack-Burkhardt F, Kornhuber ME, Riederer P. [3H]MK-801 binding sites in post-mortem human frontal cortex. Eur J Pharmacol. 1989;162:483–90.PubMedCrossRefGoogle Scholar
  80. 80.
    Kapur S, Seeman P. NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D(2) and serotonin 5-HT(2)receptors-implications for models of schizophrenia. Mol Psychiatry. 2002;7:837–44.PubMedCrossRefGoogle Scholar
  81. 81.
    Toro-Matos A, Rendon-Platas AM, Avila-Valdez E, Villarreal-Guzman RA. Physostigmine antagonizes ketamine. Anesth Analg. 1980;59:764–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Hamilton-Davies C, Bailie R, Restall J. Physostigmine in recovery from anaesthesia. Anaesthesia. 1995;50:456–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Drummond JC, Brebner J, Galloon S, Young PS. A randomized evaluation of the reversal of ketamine by physostigmine. Can Anaesth Soc J. 1979;26:288–95.PubMedCrossRefGoogle Scholar
  84. 84.
    Haeseler G, Tetzlaff D, Bufler J, Dengler R, Münte S, Hecker H, et al. Blockade of voltage-operated neuronal and skeletal muscle sodium channels by S(+)- and R(−)-ketamine. Anesth Analg. 2003;96:1019–26 (table of contents).PubMedCrossRefGoogle Scholar
  85. 85.
    Servin FS, Sear JW. Pharmacokinetics of intravenous anesthetics. In: Evers AS, Maze M, Kharasch ED, editors. Anesthetic pharmacology: basic principles and clinical practice. Cambridge: Cambridge University Press; 2011.Google Scholar
  86. 86.
    Bowdle TA, Radant AD, Cowley DS, Kharasch ED, Strassman RJ, Roy-Byrne PP. Psychedelic effects of ketamine in healthy volunteers: relationship to steady-state plasma concentrations. Anesthesiology. 1998;88:82–8.Google Scholar
  87. 87.
    Clements JA, Nimmo WS. Pharmacokinetics and analgesic effect of ketamine in man. Br J Anaesth. 1981;53:27–30.PubMedCrossRefGoogle Scholar
  88. 88.
    Leung A, Wallace MS, Ridgeway B, Yaksh T. Concentration–effect relationship of intravenous alfentanil and ketamine on peripheral neurosensory thresholds, allodynia and hyperalgesia of neuropathic pain. Pain. 2001;91:177–87.PubMedCrossRefGoogle Scholar
  89. 89.
    Himmelseher S, Pfenninger E. The clinical use of S-(+)-ketamine–a determination of its place. Anasthesiol Intensivmed Notfallmed Schmerzther. 1998;33:764–70.PubMedCrossRefGoogle Scholar
  90. 90.
    Mathisen LC, Skjelbred P, Skoglund LA, Oye I. Effect of ketamine, an NMDA receptor inhibitor, in acute and chronic orofacial pain. Pain. 1995;61:215–20.PubMedCrossRefGoogle Scholar
  91. 91.
    Green SM, Krauss B. Ketamine is a safe, effective, and appropriate technique for emergency department paediatric procedural sedation. Emerg Med J. 2004;21:271–2.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Freye E, Sundermann S, Wilder-Smith OH. No inhibition of gastro-intestinal propulsion after propofol- or propofol/ketamine-N2O/O2 anaesthesia. A comparison of gastro-caecal transit after isoflurane anaesthesia. Acta Anaesthesiol Scand. 1998;42:664–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Jennings PA, Cameron P, Bernard S, Walker T, Jolley D, Fitzgerald M, et al. Morphine and ketamine is superior to morphine alone for out-of-hospital trauma analgesia: a randomized controlled trial. Ann Emerg Med. 2012;59:497–503.PubMedCrossRefGoogle Scholar
  94. 94.
    Ahern TL, Herring AA, Anderson ES, Madia VA, Fahimi J, Frazee BW. The first 500: initial experience with widespread use of low-dose ketamine for acute pain management in the ED. Am J Emerg Med. 2015;33:197–201.PubMedCrossRefGoogle Scholar
  95. 95.
    Beaudoin FL, Lin C, Guan W, Merchant RC. Low-dose ketamine improves pain relief in patients receiving intravenous opioids for acute pain in the emergency department: results of a randomized, double-blind, clinical trial. Acad Emerg Med. 2014;21:1193–202.PubMedCrossRefGoogle Scholar
  96. 96.
    Richebé P, Julien M, Brulotte V. Potential strategies for preventing chronic postoperative pain: a practical approach: continuing professional development. Anaesth: Can J; 2015.Google Scholar
  97. 97.
    Schmid RL, Sandler AN, Katz J. Use and efficacy of low-dose ketamine in the management of acute postoperative pain: a review of current techniques and outcomes. Pain. 1999;82:111–25.PubMedCrossRefGoogle Scholar
  98. 98.
    Jouguelet-Lacoste J, La Colla L, Schilling D, Chelly JE. The use of intravenous infusion or single dose of low-dose ketamine for postoperative analgesia: a review of the current literature. Pain Med. 2015;16:383–403.PubMedCrossRefGoogle Scholar
  99. 99.
    Elia N, Tramèr MR. Ketamine and postoperative pain—a quantitative systematic review of randomised trials. Pain. 2005;113:61–70.PubMedCrossRefGoogle Scholar
  100. 100.
    Weinbroum AA. Non-opioid IV adjuvants in the perioperative period: pharmacological and clinical aspects of ketamine and gabapentinoids. Pharmacol Res. 2012;65:411–29.PubMedCrossRefGoogle Scholar
  101. 101.
    Ilkjaer S, Nikolajsen L, Hansen TM, Wernberg M, Brennum J, Dahl JB. Effect of i.v. ketamine in combination with epidural bupivacaine or epidural morphine on postoperative pain and wound tenderness after renal surgery. Br J Anaesth. 1998;81:707–12.PubMedCrossRefGoogle Scholar
  102. 102.
    Mathisen LC, Aasbø V, Raeder J. Lack of pre-emptive analgesic effect of (R)-ketamine in laparoscopic cholecystectomy. Acta Anaesthesiol Scand. 1999;43:220–4.PubMedCrossRefGoogle Scholar
  103. 103.
    Bell RF, Dahl JB, Moore RA, Kalso E. Perioperative ketamine for acute postoperative pain. Cochrane Database Syst Rev. 2006;CD004603.Google Scholar
  104. 104.
    Hans P, Dewandre P-Y, Brichant JF, Bonhomme V. Comparative effects of ketamine on bispectral index and spectral entropy of the electroencephalogram under sevoflurane anaesthesia. Br J Anaesth. 2005;94:336–40.PubMedCrossRefGoogle Scholar
  105. 105.
    Neuhäuser C, Preiss V, Feurer M-K, Müller M, Scholz S, Kwapisz M, et al. Comparison of S-(+)-ketamine- with sufentanil-based anaesthesia for elective coronary artery bypass graft surgery: effect on troponin T levels. Br J Anaesth. 2008;100:765–71.PubMedCrossRefGoogle Scholar
  106. 106.
    Sprung J, Schuetz SM, Stewart RW, Moravec CS. Effects of ketamine on the contractility of failing and nonfailing human heart muscles in vitro. Anesthesiology. 1998;88:1202–10.PubMedCrossRefGoogle Scholar
  107. 107.
    Lahtinen P, Kokki H, Hakala T, Hynynen M. S(+)-ketamine as an analgesic adjunct reduces opioid consumption after cardiac surgery. Anesth Analg. 2004;99:1295–301 (table of contents).PubMedCrossRefGoogle Scholar
  108. 108.
    Hillis LD, Smith PK, Anderson JL, Bittl JA, Bridges CR, Byrne JG, et al. Special articles: 2011 ACCF/AHA guideline for coronary artery bypass graft surgery: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Anesth Analg. 2012;114:11–45.PubMedCrossRefGoogle Scholar
  109. 109.
    Kawasaki T, Ogata M, Kawasaki C, Ogata J, Inoue Y, Shigematsu A. Ketamine suppresses proinflammatory cytokine production in human whole blood in vitro. Anesth Analg. 1999;89:665–9.PubMedGoogle Scholar
  110. 110.
    Szekely A, Heindl B, Zahler S, Conzen PF, Becker BF. S(+)-ketamine, but not R(−)-ketamine, reduces postischemic adherence of neutrophils in the coronary system of isolated guinea pig hearts. Anesth Analg. 1999;88:1017–24.PubMedCrossRefGoogle Scholar
  111. 111.
    Zilberstein G, Levy R, Rachinsky M, Fisher A, Greemberg L, Shapira Y, et al. Ketamine attenuates neutrophil activation after cardiopulmonary bypass. Anesth Analg. 2002;95:531–6 (table of contents).PubMedGoogle Scholar
  112. 112.
    Roytblat L, Talmor D, Rachinsky M, Greemberg L, Pekar A, Appelbaum A, et al. Ketamine attenuates the interleukin-6 response after cardiopulmonary bypass. Anesth Analg. 1998;87:266–71.PubMedGoogle Scholar
  113. 113.
    Olney JW, Labruyere J, Wang G, Wozniak DF, Price MT, Sesma MA. NMDA antagonist neurotoxicity: mechanism and prevention. Science. 1991;254:1515–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Hayashi H, Dikkes P, Soriano SG. Repeated administration of ketamine may lead to neuronal degeneration in the developing rat brain. Paediatr Anaesth. 2002;12:770–4.PubMedCrossRefGoogle Scholar
  115. 115.
    Jevtovic-Todorovic V, Benshoff N, Olney JW. Ketamine potentiates cerebrocortical damage induced by the common anaesthetic agent nitrous oxide in adult rats. Br J Pharmacol. 2000;130:1692–8.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Yan J, Jiang H. Dual effects of ketamine: neurotoxicity versus neuroprotection in anesthesia for the developing brain. J Neurosurg Anesthesiol. 2014;26:155–60.PubMedCrossRefGoogle Scholar
  117. 117.
    Hodgson PS, Neal JM, Pollock JE, Liu SS. The neurotoxicity of drugs given intrathecally (spinal). Anesth Analg. 1999;88:797–809.PubMedCrossRefGoogle Scholar
  118. 118.
    Bai X, Yan Y, Canfield S, Muravyeva MY, Kikuchi C, Zaja I, et al. Ketamine enhances human neural stem cell proliferation and induces neuronal apoptosis via reactive oxygen species-mediated mitochondrial pathway. Anesth Analg. 2013;116:869–80.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Yan J, Li Y, Zhang Y, Lu Y, Jiang H. Repeated exposure to anesthetic ketamine can negatively impact neurodevelopment in infants: a prospective preliminary clinical study. J Child Neurol. 2014;29:1333–8.PubMedCrossRefGoogle Scholar
  120. 120.
    Koerner IP, Brambrink AM. Brain protection by anesthetic agents. Curr Opin Anaesthesiol. 2006;19:481–6.PubMedCrossRefGoogle Scholar
  121. 121.
    Sanders RD, Hassell J, Davidson AJ, Robertson NJ, Ma D. Impact of anaesthetics and surgery on neurodevelopment: an update. Br J Anaesth. 2013;110:i53–72.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Proescholdt M, Heimann A, Kempski O. Neuroprotection of S(+) ketamine isomer in global forebrain ischemia. Brain Res. 2001;904:245–51.PubMedCrossRefGoogle Scholar
  123. 123.
    Hudetz JA, Pagel PS. Neuroprotection by ketamine: a review of the experimental and clinical evidence. J Cardiothorac Vasc Anesth. 2010;24:131–42.PubMedCrossRefGoogle Scholar
  124. 124.
    Långsjö JW, Maksimow A, Salmi E, Kaisti K, Aalto S, Oikonen V, et al. S-ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans. Anesthesiology. 2005;103:258–68.PubMedCrossRefGoogle Scholar
  125. 125.
    Långsjö JW, Kaisti KK, Aalto S, Hinkka S, Aantaa R, Oikonen V, et al. Effects of subanesthetic doses of ketamine on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology. 2003;99:614–23.PubMedCrossRefGoogle Scholar
  126. 126.
    Långsjö JW, Salmi E, Kaisti KK, Aalto S, Hinkka S, Aantaa R, et al. Effects of subanesthetic ketamine on regional cerebral glucose metabolism in humans. Anesthesiology. 2004;100:1065–71.PubMedCrossRefGoogle Scholar
  127. 127.
    Himmelseher S, Durieux ME. Revising a dogma: ketamine for patients with neurological injury? Anesth. Analg. 2005;101:524–34 (table of contents).PubMedCrossRefGoogle Scholar
  128. 128.
    Zeiler FA, Teitelbaum J, West M, Gillman LM. The ketamine effect on ICP in traumatic brain injury. Neurocrit Care. 2014;21:163–73.PubMedCrossRefGoogle Scholar
  129. 129.
    Kehlet H, Jensen TS, Woolf CJ. Persistent postsurgical pain: risk factors and prevention. Lancet (London, England). 2006;367:1618–25.CrossRefGoogle Scholar
  130. 130.
    McNicol ED, Schumann R, Haroutounian S. A systematic review and meta-analysis of ketamine for the prevention of persistent post-surgical pain. Acta Anaesthesiol Scand. 2014;58:1199–213.PubMedCrossRefGoogle Scholar
  131. 131.
    Humble SR, Dalton AJ, Li L. A systematic review of therapeutic interventions to reduce acute and chronic post-surgical pain after amputation, thoracotomy or mastectomy. Eur J Pain. 2015;19:451–65.PubMedCrossRefGoogle Scholar
  132. 132.
    Tena B, Gomar C, Rios J. Perioperative epidural or intravenous ketamine does not improve the effectiveness of thoracic epidural analgesia for acute and chronic pain after thoracotomy. Clin J Pain. 2014;30:490–500.PubMedCrossRefGoogle Scholar
  133. 133.
    Hu J, Liao Q, Zhang F, Tong J, Ouyang W. Chronic postthoracotomy pain and perioperative ketamine infusion. J Pain Palliat Care Pharmacother. 2014;28:117–21.PubMedCrossRefGoogle Scholar
  134. 134.
    Bell RF. Ketamine for chronic non-cancer pain. Pain. 2009;141:210–4.PubMedCrossRefGoogle Scholar
  135. 135.
    Niesters M, Martini C, Dahan A. Ketamine for chronic pain: risks and benefits. Br J Clin Pharmacol. 2014;77:357–67.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Niesters M, Aarts L, Sarton E, Dahan A. Influence of ketamine and morphine on descending pain modulation in chronic pain patients: a randomized placebo-controlled cross-over proof-of-concept study. Br J Anaesth. 2013;110:1010–6.PubMedCrossRefGoogle Scholar
  137. 137.
    Niesters M, Dahan A, Swartjes M, Noppers I, Fillingim RB, Aarts L, et al. Effect of ketamine on endogenous pain modulation in healthy volunteers. Pain. 2011;152:656–63.PubMedCrossRefGoogle Scholar
  138. 138.
    Schwartzman RJ, Alexander GM, Grothusen JR, Paylor T, Reichenberger E, Perreault M. Outpatient intravenous ketamine for the treatment of complex regional pain syndrome: a double-blind placebo controlled study. Pain. 2009;147:107–15.PubMedCrossRefGoogle Scholar
  139. 139.
    Finch PM, Knudsen L, Drummond PD. Reduction of allodynia in patients with complex regional pain syndrome: a double-blind placebo-controlled trial of topical ketamine. Pain 2009;146:18–25PubMedCrossRefGoogle Scholar
  140. 140.
    Gewandter JS, Mohile SG, Heckler CE, Ryan JL, Kirshner JJ, Flynn PJ, et al. A phase III randomized, placebo-controlled study of topical amitriptyline and ketamine for chemotherapy-induced peripheral neuropathy (CIPN): a University of Rochester CCOP study of 462 cancer survivors. Support Care Cancer. 2014;22:1807–14.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Bell RF. Ketamine for chronic noncancer pain: concerns regarding toxicity. Curr Opin Support Palliat Care. 2012;6:183–7.PubMedCrossRefGoogle Scholar
  142. 142.
    Hardy J, Quinn S, Fazekas B, Plummer J, Eckermann S, Agar M, et al. Randomized, double-blind, placebo-controlled study to assess the efficacy and toxicity of subcutaneous ketamine in the management of cancer pain. J Clin Oncol. 2012;30:3611–7.PubMedCrossRefGoogle Scholar
  143. 143.
    Rivosecchi RM, Rice MJ, Smithburger PL, Buckley MS, Coons JC, Kane-Gill SL. An evidence based systematic review of remifentanil associated opioid-induced hyperalgesia. Expert Opin Drug Saf. 2014;13:587–603.PubMedCrossRefGoogle Scholar
  144. 144.
    Scheuing L, Chiu C-T, Liao H-M, Chuang D-M. Antidepressant mechanism of ketamine: perspective from preclinical studies. Front Neurosci. 2015;9:249.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Segmiller F, Rüther T, Linhardt A, Padberg F, Berger M, Pogarell O, et al. Repeated S-ketamine infusions in therapy resistant depression: a case series. J Clin Pharmacol. 2013;53:996–8.PubMedCrossRefGoogle Scholar
  146. 146.
    Liu R-J, Fuchikami M, Dwyer JM, Lepack AE, Duman RS, Aghajanian GK. GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine. Neuropsychopharmacology. 2013;38:2268–77.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.PubMedCrossRefGoogle Scholar
  148. 148.
    aan het Rot M, Collins K, Murrough JW, Perez AM, Reich DL, Charney DS, et al. Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry. 2010;67:139–45.PubMedCrossRefGoogle Scholar
  149. 149.
    Zhang J-C, Li S-X, Hashimoto K. R(−)-ketamine shows greater potency and longer lasting antidepressant effects than S(+)-ketamine. Pharmacol Biochem Behav. 2014;116:137–41.PubMedCrossRefGoogle Scholar
  150. 150.
    Kranaster L, Kammerer-Ciernioch J, Hoyer C, Sartorius A. Clinically favourable effects of ketamine as an anaesthetic for electroconvulsive therapy: a retrospective study. Eur Arch Psychiatry Clin Neurosci. 2011;261:575–82.PubMedCrossRefGoogle Scholar
  151. 151.
    Rolan P, Lim S, Sunderland V, Liu Y, Molnar V. The absolute bioavailability of racemic ketamine from a novel sublingual formulation. Br J Clin Pharmacol. 2014;77:1011–6.PubMedCrossRefGoogle Scholar
  152. 152.
    Fitzgibbon D, Morgan D, Dockter D, Barry C, Kharasch ED. Initial pharmacokinetic, safety and efficacy evaluation of nasal morphine gluconate for breakthrough pain in cancer patients. Pain. 2003;106:309–15.PubMedCrossRefGoogle Scholar
  153. 153.
    Carr DB, Goudas LC, Denman WT, Brookoff D, Staats PS, Brennen L, et al. Safety and efficacy of intranasal ketamine for the treatment of breakthrough pain in patients with chronic pain: a randomized, double-blind, placebo-controlled, crossover study. Pain. 2004;108:17–27.PubMedCrossRefGoogle Scholar
  154. 154.
    Malinovsky JM, Servin F, Cozian A, Lepage JY, Pinaud M. Ketamine and norketamine plasma concentrations after i.v., nasal and rectal administration in children. Br J Anaesth. 1996;77:203–7.PubMedCrossRefGoogle Scholar
  155. 155.
    Winstock AR, Mitcheson L, Gillatt DA, Cottrell AM. The prevalence and natural history of urinary symptoms among recreational ketamine users. BJU Int. 2012;110:1762–6.PubMedCrossRefGoogle Scholar
  156. 156.
    Jhang J-F, Hsu Y-H, Kuo H-C. Possible pathophysiology of ketamine-related cystitis and associated treatment strategies. Int J Urol. 2015;22:816–25.PubMedCrossRefGoogle Scholar
  157. 157.
    Liao Y, Tang J, Ma M, Wu Z, Yang M, Wang X, et al. Frontal white matter abnormalities following chronic ketamine use: a diffusion tensor imaging study. Brain. 2010;133:2115–22.PubMedCrossRefGoogle Scholar
  158. 158.
    Bokor G, Anderson PD. Ketamine: an update on its abuse. J Pharm Pract. 2014;27:582–6.PubMedCrossRefGoogle Scholar
  159. 159.
    Brown L, Christian-Kopp S, Sherwin TS, Khan A, Barcega B, Denmark TK, et al. Adjunctive atropine is unnecessary during ketamine sedation in children. Acad Emerg Med. 2008;15:314–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marko A. Peltoniemi
    • 1
    Email author
  • Nora M. Hagelberg
    • 1
  • Klaus T. Olkkola
    • 2
  • Teijo I. Saari
    • 1
  1. 1.Division of Perioperative Services, Department of Anaesthesiology, Intensive Care, Emergency Care and Pain MedicineUniversity of Turku and Turku University HospitalTurkuFinland
  2. 2.Department of Anaesthesiology, Intensive Care and Pain MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland

Personalised recommendations