Clinical Pharmacokinetics

, Volume 55, Issue 8, pp 907–923 | Cite as

Ebola Virus Infection: Review of the Pharmacokinetic and Pharmacodynamic Properties of Drugs Considered for Testing in Human Efficacy Trials

  • Vincent Madelain
  • Thi Huyen Tram Nguyen
  • Anaelle Olivo
  • Xavier de Lamballerie
  • Jérémie Guedj
  • Anne-Marie Taburet
  • France MentréEmail author
Review Article


The 2014–2015 outbreak of Ebola virus disease is the largest epidemic to date in terms of the number of cases, deaths, and affected areas. In October 2015, no antiviral agents had proven antiviral efficacy in patients. However, in September 2014, the World Health Organization inventoried and has since regularly updated a list of potential drug candidates with demonstrated antiviral efficacy in in vitro or animal models. This includes agents belonging to various therapeutic classes, namely direct antiviral agents (favipiravir and BCX4430), a combination of antibodies (ZMapp), type I interferons, RNA interference-based drugs (TKM-Ebola and AVI-7537), and anticoagulant drugs (rNAPc2). Here, we review the pharmacokinetic and pharmacodynamic information presently available for these drugs, using data obtained in healthy volunteers for pharmacokinetics and data obtained in human clinical trials or animal models for pharmacodynamics. Future studies evaluating these drugs in clinical trials are critical to confirm their efficacy in humans, propose appropriate doses, and evaluate the possibility of treatment combinations.


Rhesus Macaque Cynomolgus Macaque Formal Safety Assessment EBOV Infection Peak Viral Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Toyama Chemicals for providing us with the favipiravir pharmacokinetic data from their phase I clinical trials. We also wish to acknowledge Benoit Visseaux for his assistance with Fig. 2.

Compliance with Ethical Standards


This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 666092.

Conflicts of interest

The UMR 1137 research team, to which belong Vincent Madelain, Thi Huyen Tram Nguyen, Jeremie Guedj, and France Mentre, as well as Xavier de Lamballerie, received grants from the European Union and from Saint Luke University (Japan) to evaluate the PKPD of favipiravir in NHPs and in patients. THT Nguyen is conducting a post-doctoral research funded by the European Union project for favipiravir evaluation in Ebola virus patients. Anaelle Olivo and Anne-Marie Taburet declare that they have no conflict of interest related to the submitted manuscript.


  1. 1.
    Report of an International Commission. Ebola haemorrhagic fever in Zaire, 1976. Bull World Health Organ. 1978;56:271–93.PubMedCentralGoogle Scholar
  2. 2.
    World Health Organization. Ebola Situation Report, 23 September 2015. Ebola [Internet]. Cited 28 Sep 2015.
  3. 3.
    Feldmann H, Geisbert TW. Ebola haemorrhagic fever. Lancet. 2011;377:849–62.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bukreyev AA, Chandran K, Dolnik O, Dye JM, Ebihara H, Leroy EM, et al. Discussions and decisions of the 2012–2014 International Committee on Taxonomy of Viruses (ICTV) Filoviridae Study Group, January 2012–June 2013. Arch Virol. 2014;159:821–30.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y, et al. Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Arch Virol. 2010;155:2083–103.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ansari AA. Clinical features and pathobiology of Ebolavirus infection. J Autoimmun. 2014;55:1–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Choi JH, Croyle MA. Emerging targets and novel approaches to Ebola virus prophylaxis and treatment. BioDrugs Clin Immunother Biopharm Gene Ther. 2013;27:565–83.Google Scholar
  8. 8.
    Dudas G, Rambaut A. Phylogenetic analysis of Guinea 2014 EBOV Ebolavirus outbreak. PLoS Curr Outbreaks. 2014;6. doi: 10.1371/currents.outbreaks.84eefe5ce43ec9dc0bf0670f7b8b417d.
  9. 9.
    Beeching NJ, Fenech M, Houlihan CF. Ebola virus disease. BMJ. 2014;349:g7348.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Moyen N, Thirion L, Emmerich P, Dzia-Lepfoundzou A, Richet H, Boehmann Y, et al. Risk factors associated with Ebola and Marburg viruses seroprevalence in blood donors in the Republic of Congo. PLoS Negl Trop Dis. 2015;9:e0003833.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Leroy EM, Baize S, Volchkov VE, Fisher-Hoch SP, Georges-Courbot MC, Lansoud-Soukate J, et al. Human asymptomatic Ebola infection and strong inflammatory response. Lancet Lond Engl. 2000;355:2210–5.CrossRefGoogle Scholar
  12. 12.
    Schieffelin JS, Shaffer JG, Goba A, Gbakie M, Gire SK, Colubri A, et al. Clinical illness and outcomes in patients with Ebola in Sierra Leone. N Engl J Med. 2014;371:2092–100.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yazdanpanah Y, Arribas JR, Malvy D. Treatment of Ebola virus disease. Intensive Care Med. 2015;41:115–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Fowler RA, Fletcher T, Fischer WA, Lamontagne F, Jacob S, Brett-Major D, et al. Caring for critically ill patients with Ebola virus disease: perspectives from West Africa. Am J Respir Crit Care Med. 2014;190:733–7.CrossRefPubMedGoogle Scholar
  15. 15.
    van Griensven J, De Weiggheleire A, Delamou A, Smith PG, Edwards T, Vandekerckhove P, et al. The use of Ebola convalescent plasma to treat Ebola virus disease in resource-constrained settings: a perspective from the field. Clin Infect Dis. 2016;62(1):69–74.Google Scholar
  16. 16.
    World Health Organization. Categorization and prioritization of drugs for consideration for testing or use in patients infected with Ebola. In: Ebola treatments and interventions. 3 July 2015 [Internet]. Cited 7 Sep 2015.
  17. 17.
    Li TCM, Chan MCW, Lee N. Clinical implications of antiviral resistance in influenza. Viruses. 2015;7:4929–44.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antivir Res. 2013;100:446–54.CrossRefPubMedGoogle Scholar
  19. 19.
    Arias A, Thorne L, Goodfellow I. Favipiravir elicits antiviral mutagenesis during virus replication in vivo. eLife. 2014;3:e03679.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Toyama Chemicals. Summary of product characteristics of Avigan (unpublished reference).Google Scholar
  21. 21.
    Oestereich L, Lüdtke A, Wurr S, Rieger T, Muñoz-Fontela C, Günther S. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antivir Res. 2014;105:17–21.CrossRefPubMedGoogle Scholar
  22. 22.
    Smither SJ, Eastaugh LS, Steward JA, Nelson M, Lenk RP, Lever MS. Post-exposure efficacy of oral T-705 (Favipiravir) against inhalational Ebola virus infection in a mouse model. Antivir Res. 2014;104:153–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Madelain V, Oestereich L, Graw F, Nguyen THT, de Lamballerie X, Mentré F, et al. Ebola virus dynamics in mice treated with favipiravir. Antivir Res. 2015;123:70–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Sissoko D, Laouenan C, Folkessons E, M’Lebing AB, Beavogui AH, Baize S et al. Favipiravir for treatment of Ebola virus disease (the JIKI Trial): a historically-controlled, single arm proof-of-concept trial in Guinea. PLOS Medicine. 2016. (In press)Google Scholar
  25. 25.
    Mentré F, Taburet A-M, Guedj J, Anglaret X, Keïta S, de Lamballerie X, et al. Dose regimen of favipiravir for Ebola virus disease. Lancet Infect Dis. 2015;15:150–1.CrossRefPubMedGoogle Scholar
  26. 26.
    Bouazza N, Treluyer J-M, Foissac F, Mentré F, Taburet A-M, Guedj J, et al. Favipiravir for children with Ebola. Lancet. 2015;385:603–4.CrossRefPubMedGoogle Scholar
  27. 27.
    Warren TK, Wells J, Panchal RG, Stuthman KS, Garza NL, Van Tongeren SA, et al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature. 2014;508:402–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Stonehouse J, Staab T, Bennett R. 26th Annual Piper Jaffray Healthcare Conference. New York, USA; 2014.Google Scholar
  29. 29.
    Stonehouse J, Sheridan B, Staab T, Bennett R. Citi 10th Annual Biotech Conference. Boston, USA; 2015.Google Scholar
  30. 30.
    BioCryst Pharmaceuticals Inc. BioCryst announces study results for BCX4430 in a non-human primate model of Ebola virus infection. In: Press Release. 23 Dec 2014 [Internet]. Cited 7 Sep 2015.
  31. 31.
    Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti JB, et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature. 2014;514:47–53.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Murin CD, Fusco ML, Bornholdt ZA, Qiu X, Olinger GG, Zeitlin L, et al. Structures of protective antibodies reveal sites of vulnerability on Ebola virus. Proc Natl Acad Sci. 2014;111:17182–7.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zeitlin L, Pettitt J, Scully C, Bohorova N, Kim D, Pauly M, et al. Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proc Natl Acad Sci. 2011;108:20690–4.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    National Institute of Allergy and Infectious Diseases. Safety and Pharmacokinetics of a Single ZMappTM Administration in Healthy Adult Volunteers [Internet]. Cited 7 Sep 2015.
  35. 35.
    European Medicines Agency. Medicinal products under development for the treatment of Ebola. In: Interim assessment report, 22 Jan 2015 [Internet]. Cited 7 Sep 2015.
  36. 36.
    Pettitt J, Zeitlin L, Kim DH, Working C, Johnson JC, Bohorov O, et al. Therapeutic intervention of ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci Transl Med. 2013;5:199ra113.CrossRefPubMedGoogle Scholar
  37. 37.
    Olinger GG, Pettitt J, Kim D, Working C, Bohorov O, Bratcher B, et al. Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proc Natl Acad Sci. 2012;109:18030–5.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Qiu X, Audet J, Wong G, Fernando L, Bello A, Pillet S, et al. Sustained protection against Ebola virus infection following treatment of infected nonhuman primates with ZMAb. Sci Rep. 2013;3:3365.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Qiu X, Wong G, Fernando L, Audet J, Bello A, Strong J, et al. mAbs and Ad-vectored IFN-α therapy rescue Ebola-infected nonhuman primates when administered after the detection of viremia and symptoms. Sci Transl Med. 2013;5:207ra143.CrossRefPubMedGoogle Scholar
  40. 40.
    National Institute of Allergy and Infectious Diseases. Putative investigational therapeutics in the treatment of patients with known ebola infection—full text view— [Internet]. Cited 7 Sep 2015.
  41. 41.
    George PM, Badiger R, Alazawi W, Foster GR, Mitchell JA. Pharmacology and therapeutic potential of interferons. Pharmacol Ther. 2012;135:44–53.CrossRefPubMedGoogle Scholar
  42. 42.
    Bekisz J, Schmeisser H, Hernandez J, Goldman ND, Zoon KC. Human interferons alpha, beta and omega. Growth Factors. 2004;22:243–51.CrossRefPubMedGoogle Scholar
  43. 43.
    Lin F, Young HA. Interferons: success in anti-viral immunotherapy. Cytokine Growth Factor Rev. 2014;25:369–76.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Basler CF, Amarasinghe GK. Evasion of interferon responses by Ebola and Marburg viruses. J Interferon Cytokine Res. 2009;29:511–20.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wong G, Kobinger GP, Qiu X. Characterization of host immune responses in Ebola virus infections. Expert Rev Clin Immunol. 2014;10:781–90.CrossRefPubMedGoogle Scholar
  46. 46.
    Geisbert TW, Hensley LE, Gibb TR, Steele KE, Jaax NK, Jahrling PB. Apoptosis induced in vitro and in vivo during infection by Ebola and Marburg viruses. Lab Invest. 2000;80:171–86.CrossRefPubMedGoogle Scholar
  47. 47.
    Jonasch E, Haluska FG. Interferon in oncological practice: review of interferon biology, clinical applications, and toxicities. Oncologist. 2001;6:34–55.CrossRefPubMedGoogle Scholar
  48. 48.
    Radwanski E, Perentesis G, Jacobs S, Oden E, Affrime M, Symchowicz S, et al. Pharmacokinetics of Interferon α-2b in Healthy Volunteers. J Clin Pharmacol. 1987;27:432–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Vidal 2015 dictionary [Internet]. Cited 7 Sep 2015.
  50. 50.
    Rogge MC, Liu Y, Galluppi GR. Interferon beta assessment in non-Chinese and Chinese subjects: pharmacokinetics and pharmacodynamic activity of an endogenous cytokine are not race dependent. J Clin Pharmacol. 2014;54:1153–61.CrossRefPubMedGoogle Scholar
  51. 51.
    Subramanian GM, Moore PA, Gowen BB, Olsen AL, Barnard DL, Paragas J, et al. Potent in vitro activity of the albumin fusion type 1 interferons (albumin-interferon-alpha and albumin-interferon-beta) against RNA viral agents of bioterrorism and the severe acute respiratory syndrome (SARS) virus. Chemotherapy. 2008;54:176–80.CrossRefPubMedGoogle Scholar
  52. 52.
    Jahrling PB, Geisbert TW, Geisbert JB, Swearengen JR, Bray M, Jaax NK, et al. Evaluation of immune globulin and recombinant interferon-alpha2b for treatment of experimental Ebola virus infections. J Infect Dis. 1999;179(Suppl 1):S224–34.CrossRefPubMedGoogle Scholar
  53. 53.
    Smith LM, Hensley LE, Geisbert TW, Johnson J, Stossel A, Honko A, et al. Interferon-β therapy prolongs survival in rhesus macaque models of Ebola and Marburg hemorrhagic fever. J Infect Dis. 2013;208:310–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Qiu X, Audet J, Wong G, Pillet S, Bello A, Cabral T, et al. Successful treatment of Ebola virus-infected cynomolgus macaques with monoclonal antibodies. Sci Transl Med. 2012;4:138ra81–138ra81.CrossRefGoogle Scholar
  55. 55.
    Thi EP, Mire CE, Lee ACH, Geisbert JB, Zhou JZ, Agans KN, et al. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature. 2015;521:362–5.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature. 2009;457:426–33.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Tekmira Pharmaceuticals Corporation. Safety, tolerability and pharmacokinetic first in human (FIH) study for intravenous (IV) TKM-100802— [Internet]. Cited 7 Sep 2015.
  58. 58.
    Kraft CS, Hewlett AL, Koepsell S, Winkler AM, Kratochvil CJ, Larson L, et al. The use of TKM-100802 and convalescent plasma in 2 patients with Ebola virus disease in the United States. Clin Infect Dis. 2015;61:496–502.CrossRefPubMedGoogle Scholar
  59. 59.
    Geisbert TW, Lee ACH, Robbins M, Geisbert JB, Honko AN, Sood V, et al. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet. 2010;375:1896–905.CrossRefPubMedGoogle Scholar
  60. 60.
    US Securities and Exchange Commission. Tekmira provides update on TKM-Ebola-Guinea [Internet]. 2015. Cited 30 Sep 2015.
  61. 61.
    Heald AE, Iversen PL, Saoud JB, Sazani P, Charleston JS, Axtelle T, et al. Safety and pharmacokinetic profiles of phosphorodiamidate morpholino oligomers with activity against Ebola virus and marburg virus: results of two single-ascending-dose studies. Antimicrob Agents Chemother. 2014;58:6639–47.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Iversen PL, Warren TK, Wells JB, Garza NL, Mourich DV, Welch LS, et al. Discovery and early development of AVI-7537 and AVI-7288 for the treatment of Ebola virus and Marburg virus infections. Viruses. 2012;4:2806–30.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Warren TK, Warfield KL, Wells J, Swenson DL, Donner KS, Van Tongeren SA, et al. Advanced antisense therapies for postexposure protection against lethal filovirus infections. Nat Med. 2010;16:991–4.CrossRefPubMedGoogle Scholar
  64. 64.
    Warren TK, Whitehouse CA, Wells J, Welch L, Heald AE, Charleston JS, et al. A single phosphorodiamidate morpholino oligomer targeting VP24 protects rhesus monkeys against lethal ebola virus infection. mBio. 2015;6:e02344–14.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Stassens P, Bergum PW, Gansemans Y, Jespers L, Laroche Y, Huang S, et al. Anticoagulant repertoire of the hookworm Ancylostoma caninum. Proc Natl Acad Sci. 1996;93:2149–54.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Geisbert TW, Young HA, Jahrling PB, Davis KJ, Kagan E, Hensley LE. Mechanisms underlying coagulation abnormalities in ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event. J Infect Dis. 2003;188:1618–29.CrossRefPubMedGoogle Scholar
  67. 67.
    de Pont ACJM, Moons AHM, de Jonge E, Meijers JCM, Vlasuk GP, Rote WE, et al. Recombinant nematode anticoagulant protein c2, an inhibitor of tissue factor/factor VIIa, attenuates coagulation and the interleukin-10 response in human endotoxemia. J Thromb Haemost. 2004;2:65–70.CrossRefPubMedGoogle Scholar
  68. 68.
    Vlasuk GP, Bradbury A, Lopez-Kinninger L, Colón S, Bergum PW, Maki S, et al. Pharmacokinetics and anticoagulant properties of the factor VIIa-tissue factor inhibitor recombinant Nematode anticoagulant protein c2 following subcutaneous administration in man. Dependence on the stoichiometric binding to circulating factor X. Thromb Haemost. 2003;90:803–12.PubMedGoogle Scholar
  69. 69.
    Giugliano RP, Wiviott SD, Stone PH, Simon DI, Schweiger MJ, Bouchard A, et al. Recombinant nematode anticoagulant protein c2 in patients with non-ST-segment elevation acute coronary syndrome: the ANTHEM-TIMI-32 trial. J Am Coll Cardiol. 2007;49:2398–407.CrossRefPubMedGoogle Scholar
  70. 70.
    Lee A, Agnelli G, Büller H, Ginsberg J, Heit J, Rote W, et al. Dose-response study of recombinant factor VIIa/tissue factor inhibitor recombinant nematode anticoagulant protein c2 in prevention of postoperative venous thromboembolism in patients undergoing total knee replacement. Circulation. 2001;104:74–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Moons AHM, Bijsterveld NR, Koch KT, Meijers JCM, Tijssen JGP, van der Poll T, et al. Inhibition of the tissue factor pathway of coagulation by recombinant nematode anticoagulant protein c2 during elective coronary stent implantation. Neth Heart J. 2004;12:48–54.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Geisbert TW, Hensley LE, Jahrling PB, Larsen T, Geisbert JB, Paragas J, et al. Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet. 2003;362:1953–8.CrossRefPubMedGoogle Scholar
  73. 73.
    Hites M, Dell’Anna AM, Scolletta S, Taccone FS. The challenges of multiple organ dysfunction syndrome and extra-corporeal circuits for drug delivery in critically ill patients. Adv Drug Deliv Rev. 2014;77:12–21.CrossRefPubMedGoogle Scholar
  74. 74.
    Roberts DJ, Hall RI. Drug absorption, distribution, metabolism and excretion considerations in critically ill adults. Expert Opin Drug Metab Toxicol. 2013;9:1067–84.PubMedGoogle Scholar
  75. 75.
    Shurtleff AC, Warren TK, Bavari S. Nonhuman primates as models for the discovery and development of ebolavirus therapeutics. Expert Opin Drug Discov. 2011;6:233–50.CrossRefPubMedGoogle Scholar
  76. 76.
    Chimerix. An Open-Label, Multicenter study of the safety and anti viral activity of brincidofovir (BCV, CMX001) for Ebola virus disease—full text view— [Internet]. Cited 25 Sep 2015.
  77. 77.
    Warren T, Jordan R, Lo M, Soloveva V, Ray A, Bannister R, et al. Nucleotide prodrug GS-5734 is a broad-spectrum filovirus inhibitor that provides complete therapeutic protection against the development of Ebola virus disease (EVD) in infected non-human primates. 2015;IDweek 2015:LB-2. Accessed 1 Dec 2015.
  78. 78.
    Gilead Sciences. Gilead provides update on investigational compound, GS-5734, for the treatment of Ebola virus disease, Gilead [Internet]. Cited 1 Dec 2015.
  79. 79.
    Shoemaker CJ, Schornberg KL, Delos SE, Scully C, Pajouhesh H, Olinger GG, et al. Multiple cationic amphiphiles induce a Niemann-Pick C phenotype and inhibit Ebola virus entry and infection. PLoS One. 2013;8:e56265.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Gehring G, Rohrmann K, Atenchong N, Mittler E, Becker S, Dahlmann F, et al. The clinically approved drugs amiodarone, dronedarone and verapamil inhibit filovirus cell entry. J Antimicrob Chemother. 2014;69:2123–31.CrossRefPubMedGoogle Scholar
  81. 81.
    Neveu G, Barouch-Bentov R, Ziv-Av A, Gerber D, Jacob Y, Einav S. Identification and targeting of an interaction between a tyrosine motif within hepatitis C virus core protein and AP2M1 essential for viral assembly. PLoS Pathog. 2012;8:e1002845.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Basu A, Li B, Mills DM, Panchal RG, Cardinale SC, Butler MM, et al. Identification of a small-molecule entry inhibitor for filoviruses. J Virol. 2011;85:3106–19.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Wolf MC, Freiberg AN, Zhang T, Akyol-Ataman Z, Grock A, Hong PW, et al. A broad-spectrum antiviral targeting entry of enveloped viruses. Proc Natl Acad Sci. 2010;107:3157–62.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Côté M, Misasi J, Ren T, Bruchez A, Lee K, Filone CM, et al. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature. 2011;477:344–8.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Warren TK, Warfield KL, Wells J, Enterlein S, Smith M, Ruthel G, et al. Antiviral activity of a small-molecule inhibitor of filovirus infection. Antimicrob Agents Chemother. 2010;54:2152–9.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kinch MS, Yunus AS, Lear C, Mao H, Chen H, Fesseha Z, et al. FGI-104: a broad-spectrum small molecule inhibitor of viral infection. Am J Transl Res. 2009;1:87–98.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Aman MJ, Kinch MS, Warfield K, Warren T, Yunus A, Enterlein S, et al. Development of a broad-spectrum antiviral with activity against Ebola virus. Antivir Res. 2009;83:245–51.CrossRefPubMedGoogle Scholar
  88. 88.
    Nguyen T, Guedj J. HCV kinetic models and their implications in drug development. CPT Pharmacomet Syst Pharmacol. 2015;4:231–42.CrossRefGoogle Scholar
  89. 89.
    Canini L, Perelson AS. Viral kinetic modeling: state of the art. J Pharmacokinet Pharmacodyn. 2014;41:431–43.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Bausch DG, Towner JS, Dowell SF, Kaducu F, Lukwiya M, Sanchez A, et al. Assessment of the risk of Ebola virus transmission from bodily fluids and fomites. J Infect Dis. 2007;196:S142–7.CrossRefPubMedGoogle Scholar
  91. 91.
    Varkey JB, Shantha JG, Crozier I, Kraft CS, Lyon GM, Mehta AK, et al. Persistence of Ebola virus in ocular fluid during convalescence. N Engl J Med. 2015;372:2423–7.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Tully CM, Lambe T, Gilbert SC, Hill AVS. Emergency Ebola response: a new approach to the rapid design and development of vaccines against emerging diseases. Lancet Infect Dis. 2015;15:356–9.CrossRefPubMedGoogle Scholar
  93. 93.
    Martínez MJ, Salim AM, Hurtado JC, Kilgore PE. Ebola virus infection: overview and update on prevention and treatment. Infect Dis Ther. 2015;4(4):365–90.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Henao-Restrepo AM, Longini IM, Egger M, Dean NE, Edmunds WJ, Camacho A, et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet. 2015;386:857–66.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vincent Madelain
    • 1
    • 2
  • Thi Huyen Tram Nguyen
    • 1
    • 2
  • Anaelle Olivo
    • 3
  • Xavier de Lamballerie
    • 4
    • 5
  • Jérémie Guedj
    • 1
    • 2
  • Anne-Marie Taburet
    • 3
  • France Mentré
    • 1
    Email author
  1. 1.INSERM, IAME, UMR 1137ParisFrance
  2. 2.Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris CitéParisFrance
  3. 3.Hospital Bicêtre, Assistance Publique-Hôpitaux de Paris, DHU Hepatinov, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Université Paris-SudKremlin BicêtreFrance
  4. 4.Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 “Emergence des Pathologies Virales”MarseilleFrance
  5. 5.Institut Hospitalo-Universitaire Méditerranée InfectionMarseilleFrance

Personalised recommendations