Clinical Pharmacokinetics

, Volume 55, Issue 2, pp 185–196 | Cite as

Challenges Associated with Route of Administration in Neonatal Drug Delivery

  • Matthew W. Linakis
  • Jessica K. Roberts
  • Anita C. Lala
  • Michael G. Spigarelli
  • Natalie J. Medlicott
  • David M. Reith
  • Robert M. Ward
  • Catherine M. T. Sherwin
Review Article


The administration of drugs to neonates poses significant challenges. The aim of this review was to provide insight into some of these challenges and resolutions that may be encountered with several of the most commonly used routes of administration and dosage forms in neonatal care, including oral, parenteral, transdermal, intrapulmonary, and rectal. Important considerations include fluctuations in stomach pH hours to years after birth, the logistics of setting up an intravenous infusion, the need for reduced particle size for aerosol delivery to the developing neonatal lung, and variation in perirectal venous drainage. Additionally, some of the recently developed technologies for use in neonatal care are described. While the understanding of neonatal drug delivery has advanced over the past several decades, there is still a deficiency of technologies and formulations developed specifically for this population.


Dosage Form Stratum Corneum Cetirizine Preterm Neonate Oral Delivery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with Ethical Standards


No sources of funding were used to assist in the preparation of this review.

Conflicts of interest

Matthew W. Linakis, Jessica K. Roberts, Anita C. Lala, Michael G. Spigarelli, Natalie J. Medlicott, David M. Reith, Robert M. Ward, and Catherine M.T. Sherwin have no conflicts of interest to declare that are directly relevant to the content of this review.


  1. 1.
    Khatri N, Misra A. Applications of polymers in parenteral drug delivery. In: Misra A, Shahiwala A, editors. Applications of polymers in drug delivery. Shrewsbury: Smithers Rapra; 2014.Google Scholar
  2. 2.
    Development of paediatric medicines: points to consider in formulation annex 5. WHO Technical Report Series. Geneva: World Health Organization; 2012. p. 1–29.Google Scholar
  3. 3.
    Pein M, Preis M, Eckert C, Kiene FE. Taste-masking assessment of solid oral dosage forms—a critical review. Int J Pharm. 2014;465(1–2):239–54.PubMedCrossRefGoogle Scholar
  4. 4.
    Maniruzzaman M, Boateng JS, Chowdhry BZ, Snowden MJ, Douroumis D. A review on the taste masking of bitter APIs: hot-melt extrusion (HME) evaluation. Drug Dev Ind Pharm. 2014;40(2):145–56.PubMedCrossRefGoogle Scholar
  5. 5.
    Papai K, Budai M, Ludanyi K, Antal I, Klebovich I. In vitro food–drug interaction study: which milk component has a decreasing effect on the bioavailability of ciprofloxacin? J Pharm Biomed Anal. 2010;52(1):37–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Knippa A. PN nursing care of children. Stilwell (KS): Assessment Technologies Institute; 2011.Google Scholar
  7. 7.
    Klingmann V. Acceptability testing of minitablets from neonates to pre-school children. 6th European Paediatric Formulation Initiative Conference; 17–18 Sep 2014; Athens.Google Scholar
  8. 8.
    Avery GB, Randolph JG, Weaver T. Gastric acidity in the first day of life. Pediatrics. 1966;37(6):1005–7.PubMedGoogle Scholar
  9. 9.
    Tayman C, Rayyan M, Allegaert K. Neonatal pharmacology: extensive interindividual variability despite limited size. J Pediatr Pharmacol Ther. 2011;16(3):170–84.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Alcorn J, McNamara PJ. Pharmacokinetics in the newborn. Adv Drug Deliv Rev. 2003;55(5):667–86.PubMedCrossRefGoogle Scholar
  11. 11.
    Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology: drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67.PubMedCrossRefGoogle Scholar
  12. 12.
    Bartelink IH, Rademaker CM, Schobben AF, van den Anker JN. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin Pharmacokinet. 2006;45(11):1077–97.PubMedCrossRefGoogle Scholar
  13. 13.
    Marsot A, Brevaut-Malaty V, Vialet R, Boulamery A, Bruguerolle B, Simon N. Pharmacokinetics and absolute bioavailability of phenobarbital in neonates and young infants: a population pharmacokinetic modelling approach. Fundam Clin Pharmacol. 2014;28(4):465–71.PubMedCrossRefGoogle Scholar
  14. 14.
    Silverio J, Poole JW. Serum concentrations of ampicillin in newborn infants after oral administration. Pediatrics. 1973;51(3):578–80.PubMedGoogle Scholar
  15. 15.
    Koren G. Therapeutic drug monitoring principles in the neonate. National Academy of Clinical Biochemistry. Clin Chem. 1997;43(1):222–7.PubMedGoogle Scholar
  16. 16.
    Carlos MA, Babyn PS, Marcon MA, Moore AM. Changes in gastric emptying in early postnatal life. J Pediatr. 1997;130(6):931–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Czinn SJ, Blanchard S. Gastroesophageal reflux disease in neonates and infants: when and how to treat. Paediatr Drugs. 2013;15(1):19–27.PubMedCrossRefGoogle Scholar
  18. 18.
    Hillemeier AC, Lange R, McCallum R, Seashore J, Gryboski J. Delayed gastric emptying in infants with gastroesophageal reflux. J Pediatr. 1981;98(2):190–3.PubMedCrossRefGoogle Scholar
  19. 19.
    Martinussen M, Brubakk AM, Linker DT, Vik T, Yao AC. Mesenteric blood flow velocity and its relation to circulatory adaptation during the first week of life in healthy term infants. Pediatr Res. 1994;36(3):334–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Martinussen M, Brubakk AM, Vik T, Yao AC. Mesenteric blood flow velocity and its relation to transitional circulatory adaptation in appropriate for gestational age preterm infants. Pediatr Res. 1996;39(2):275–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Nankervis CA, Giannone PJ, Reber KM. The neonatal intestinal vasculature: contributing factors to necrotizing enterocolitis. Semin Perinatol. 2008;32(2):83–91.PubMedCrossRefGoogle Scholar
  22. 22.
    Reber KM, Mager GM, Miller CE, Nowicki PT. Relationship between flow rate and NO production in postnatal mesenteric arteries. Am J Physiol Gastrointest Liver Physiol. 2001;280(1):G43–50.PubMedGoogle Scholar
  23. 23.
    Nankervis CA, Nowicki PT. Role of nitric oxide in regulation of vascular resistance in postnatal intestine. Am J Physiol. 1995;268(6 Pt 1):G949–58.PubMedGoogle Scholar
  24. 24.
    Reed MD. The ontogeny of drug disposition: focus on drug absorption, distribution, and excretion. Drug Inf J. 1996;30:1129–34.Google Scholar
  25. 25.
    Shankaran S, Kauffman RE. Use of chloramphenicol palmitate in neonates. J Pediatr. 1984;105(1):113–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet. 1978;3(2):108–27.PubMedCrossRefGoogle Scholar
  27. 27.
    Hill JM, Maloney A, Stephens K, Adrezin RS, Eisenfeld L. Stethoscope for monitoring neonatal abdominal sounds. Int J Mod Eng. 2008;9(1):5.Google Scholar
  28. 28.
    Dumas J, Hill KM, Adrezin RS, et al. Feasibility of an electronic stethoscope system for monitoring neonatal bowel sounds. Conn Med. 2013;77(8):467–71.PubMedGoogle Scholar
  29. 29.
    van Kalken CK, Giaccone G, van der Valk P, et al. Multidrug resistance gene (P-glycoprotein) expression in the human fetus. Am J Pathol. 1992;141(5):1063–72.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Boucher FD, Modlin JF, Weller S, et al. Phase I evaluation of zidovudine administered to infants exposed at birth to the human immunodeficiency virus. J Pediatr. 1993;122(1):137–44.PubMedCrossRefGoogle Scholar
  31. 31.
    Capparelli EV, Mirochnick M, Dankner WM, et al. Pharmacokinetics and tolerance of zidovudine in preterm infants. J Pediatr. 2003;142(1):47–52.PubMedCrossRefGoogle Scholar
  32. 32.
    Wu CY, Benet LZ, Hebert MF, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther. 1995;58(5):492–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Paine MF, Shen DD, Kunze KL, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther. 1996;60(1):14–24.PubMedCrossRefGoogle Scholar
  34. 34.
    Ince I, Knibbe CA, Danhof M, de Wildt SN. Developmental changes in the expression and function of cytochrome P450 3A isoforms: evidence from in vitro and in vivo investigations. Clin Pharmacokinet. 2013;52(5):333–45.PubMedCrossRefGoogle Scholar
  35. 35.
    de Wildt SN, Kearns GL, Hop WC, Murry DJ, Abdel-Rahman SM, van den Anker JN. Pharmacokinetics and metabolism of oral midazolam in preterm infants. Br J Clin Pharmacol. 2002;53(4):390–2.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Pacifici GM. Clinical pharmacology of midazolam in neonates and children: effect of disease-a review. Int J Pediatr. 2014;2014:309342.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Gritz EC, Bhandari V. The human neonatal gut microbiome: a brief review. Front Pediatr. 2015;3:17.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65.PubMedCrossRefGoogle Scholar
  39. 39.
    Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta Paediatr. 2009;98(2):229–38.PubMedCrossRefGoogle Scholar
  40. 40.
    Scholtens PA, Oozeer R, Martin R, Amor KB, Knol J. The early settlers: intestinal microbiology in early life. Annu Rev Food Sci Technol. 2012;3:425–47.PubMedCrossRefGoogle Scholar
  41. 41.
    Stewart CJ, Marrs EC, Nelson A, et al. Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis. PLoS One. 2013;8(8):e73465.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Peppercorn MA, Goldman P. The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J Pharmacol Exp Ther. 1972;181(3):555–62.PubMedGoogle Scholar
  43. 43.
    Saha JR, Butler VP Jr, Neu HC, Lindenbaum J. Digoxin-inactivating bacteria: identification in human gut flora. Science. 1983;220(4594):325–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Lindenbaum J, Rund DG, Butler VP Jr, Tse-Eng D, Saha JR. Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med. 1981;305(14):789–94.PubMedCrossRefGoogle Scholar
  45. 45.
    Carmody RN, Turnbaugh PJ. Host–microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. J Clin Invest. 2014;124(10):4173–81.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Broussard L. Small size, big risk: preventing neonatal and pediatric medication errors. Nurs Womens Health. 2010;14(5):405–8.PubMedCrossRefGoogle Scholar
  47. 47.
    D’Antonio YC, Cohen MR. Pediatric medication errors. In: Cohen MR, editor. Medication errors: causes, prevention, and risk management. Sudbury (MA): Jones and Bartlett Publishers, Inc.; 1999.Google Scholar
  48. 48.
    Lass J, Naelapaa K, Shah U, et al. Hospitalised neonates in Estonia commonly receive potentially harmful excipients. BMC Pediatr. 2012;12:136.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Allegaert K, Vanhaesebrouck S, Kulo A, et al. Prospective assessment of short-term propylene glycol tolerance in neonates. Arch Dis Child. 2010;95(12):1054–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Salunke S, Brandys B, Giacoia G, Tuleu C. The STEP (Safety and Toxicity of Excipients for Paediatrics) database: part 2—the pilot version. Int J Pharm. 2013;457(1):310–22.PubMedCrossRefGoogle Scholar
  51. 51.
    Turner MA, Duncan J, Shah U, et al. European study of neonatal exposure to excipients: an update. Int J Pharm. 2013;457(1):357–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Stiers JL, Ward RM. Newborns, one of the last therapeutic orphans to be adopted. JAMA Pediatr. 2014;168(2):106–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Usher R, Shephard M, Lind J. The blood volume of the newborn infant and placental transfusion. Acta Paediatr. 1963;52:497–512.PubMedCrossRefGoogle Scholar
  54. 54.
    Sherwin CM, Medlicott NJ, Reith DM, Broadbent RS. Intravenous drug delivery in neonates: lessons learnt. Arch Dis Child. 2014;99(6):590–4.PubMedCrossRefGoogle Scholar
  55. 55.
    Sherwin CM, McCaffrey F, Broadbent RS, Reith DM, Medlicott NJ. Discrepancies between predicted and observed rates of intravenous gentamicin delivery for neonates. J Pharm Pharmacol. 2009;61(4):465–71.PubMedCrossRefGoogle Scholar
  56. 56.
    Medlicott NJ, Reith DM, McCaffrey F, Krittaphol W, Broadbent RS. Delayed delivery of intravenous gentamicin in neonates: impact of infusion variables. J Pharm Pharmacol. 2013;65(3):370–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Colacchio K, Deng Y, Northrup V, Bizzarro MJ. Complications associated with central and non-central venous catheters in a neonatal intensive care unit. J Perinatol. 2012;32(12):941–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Katheria AC, Fleming SE, Kim JH. A randomized controlled trial of ultrasound-guided peripherally inserted central catheters compared with standard radiograph in neonates. J Perinatol. 2013;33(10):791–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Panagiotounakou P, Antonogeorgos G, Gounari E, Papadakis S, Labadaridis J, Gounaris AK. Peripherally inserted central venous catheters: frequency of complications in premature newborn depends on the insertion site. J Perinatol. 2014;34(6):461–3.PubMedCrossRefGoogle Scholar
  60. 60.
    Bradley JS, Wassel RT, Lee L, Nambiar S. Intravenous ceftriaxone and calcium in the neonate: assessing the risk for cardiopulmonary adverse events. Pediatrics. 2009;123(4):e609–13.PubMedCrossRefGoogle Scholar
  61. 61.
    Evans C, Dixon A. Intravenous therapy: practice issues. Infant. 2006;2(4):133–6.Google Scholar
  62. 62.
    Robinson CA, Sawyer JE. Y-site compatibility of medications with parenteral nutrition. J Pediatr Pharmacol Ther. 2009;14(1):48–56.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Kenner C, Lott JW. Comprehensive neonatal care: an interdisciplinary approach. 4th ed. St. Louis (MO): Elsevier Health Sciences; 2007.Google Scholar
  64. 64.
    Jew RK, Owen D, Kaufman D, Balmer D. Osmolality of commonly used medications and formulas in the neonatal intensive care unit. Nutr Clin Pract. 1997;12(4):158–63.CrossRefGoogle Scholar
  65. 65.
    Alade SL, Brown RE, Paquet A Jr. Polysorbate 80 and E-Ferol toxicity. Pediatrics. 1986;77(4):593–7.PubMedGoogle Scholar
  66. 66.
    Gershanik J, Boecler B, Ensley H, McCloskey S, George W. The gasping syndrome and benzyl alcohol poisoning. N Engl J Med. 1982;307(22):1384–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Ward RM, Kern SE. Clinical trials in neonates: a therapeutic imperative. Clin Pharmacol Ther. 2009;86(6):585–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Uppal N, Yasseen B, Seto W, Parshuram CS. Drug formulations that require less than 0.1 mL of stock solution to prepare doses for infants and children. CMAJ. 2011;183(4):E246–8.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Strolin Benedetti M, Baltes EL. Drug metabolism and disposition in children. Fundam Clin Pharmacol. 2003;17(3):281–99.PubMedCrossRefGoogle Scholar
  70. 70.
    National Center for Immunization and Respiratory Diseases. General recommendations on immunization: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2011;60(RR2):1–64.Google Scholar
  71. 71.
    Khambalia AZ, Roberts CL, Bowen JR, Nassar N. Maternal and infant characteristics by mode of vitamin K prophylaxis administration. J Paediatr Child Health. 2012;48(8):665–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Ipema HJ. Use of oral vitamin K for prevention of late vitamin k deficiency bleeding in neonates when injectable vitamin K is not available. Ann Pharmacother. 2012;46(6):879–83.PubMedCrossRefGoogle Scholar
  73. 73.
    Bellieni CV, Aloisi AM, Ceccarelli D, et al. Intramuscular injections in newborns: analgesic treatment and sex-linked response. J Matern Fetal Neonatal Med. 2013;26(4):419–22.PubMedCrossRefGoogle Scholar
  74. 74.
    Patel IH, Weinfeld RE, Konikoff J, Parsonnet M. Pharmacokinetics and tolerance of ceftriaxone in humans after single-dose intramuscular administration in water and lidocaine diluents. Antimicrob Agents Chemother. 1982;21(6):957–62.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Powell KR, Mawhorter SD. Outpatient treatment of serious infections in infants and children with ceftriaxone. J Pediatr. 1987;110(6):898–901.PubMedCrossRefGoogle Scholar
  76. 76.
    Shah VS, Taddio A, Hancock R, Shah P, Ohlsson A. Topical amethocaine gel 4% for intramuscular injection in term neonates: a double-blind, placebo-controlled, randomized trial. Clin Ther. 2008;30(1):166–74.PubMedCrossRefGoogle Scholar
  77. 77.
    Liaw JJ, Zeng WP, Yang L, Yuh YS, Yin T, Yang MH. Nonnutritive sucking and oral sucrose relieve neonatal pain during intramuscular injection of hepatitis vaccine. J Pain Symptom Manag. 2011;42(6):918–30.CrossRefGoogle Scholar
  78. 78.
    Hensel D, Morson GL, Preuss EA. Best practices in newborn injections. MCN Am J Matern Child Nurs. 2013;38(3):163–7 (quiz 168–169).PubMedCrossRefGoogle Scholar
  79. 79.
    Ohls RK, Ehrenkranz RA, Wright LL, et al. Effects of early erythropoietin therapy on the transfusion requirements of preterm infants below 1250 grams birth weight: a multicenter, randomized, controlled trial. Pediatrics. 2001;108(4):934–42.PubMedCrossRefGoogle Scholar
  80. 80.
    Costa S, Romagnoli C, Zuppa AA, et al. How to administrate erythropoietin, intravenous or subcutaneous? Acta Paediatr. 2013;102(6):579–83.PubMedCrossRefGoogle Scholar
  81. 81.
    Ghadially R, Shear NH. Topical therapy and percutaneous absorption. In: Fletcher J, editor. Pediatric pharmacology: therapeutic principles in practice. 2nd ed. Philadelphia: W.B. Saunders Company; 1992. p. 72–7.Google Scholar
  82. 82.
    Choonara I. Percutaneous drug absorption and administration. Arch Dis Child. 1994;71(2):F73–4.PubMedCrossRefGoogle Scholar
  83. 83.
    Kearns GL. Impact of developmental pharmacology on pediatric study design: overcoming the challenges. J Allergy Clin Immunol. 2000;106(3 Suppl):S128–38.PubMedCrossRefGoogle Scholar
  84. 84.
    West DP, Worobec S, Solomon LM. Pharmacology and toxicology of infant skin. J Investig Dermatol. 1981;76(3):147–50.PubMedCrossRefGoogle Scholar
  85. 85.
    Powell H, Swarner O, Gluck L, Lampert P. Hexachlorophene myelinopathy in premature infants. J Pediatr. 1973;82(6):976–81.PubMedCrossRefGoogle Scholar
  86. 86.
    Dilly SA. Scanning electron microscope study of the development of the human respiratory acinus. Thorax. 1984;39(10):733–42.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Everard ML. Inhalation therapy for infants. Adv Drug Deliv Rev. 2003;55(7):869–78.PubMedCrossRefGoogle Scholar
  88. 88.
    Amirav I, Newhouse MT. Aerosol therapy in infants and toddlers: past, present and future. Expert Rev Respir Med. 2008;2(5):597–605.PubMedCrossRefGoogle Scholar
  89. 89.
    Amirav I, Newhouse MT. Deposition of small particles in the developing lung. Paediatr Respir Rev. 2012;13(2):73–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Schuepp KG, Jauernig J, Janssens HM, et al. In vitro determination of the optimal particle size for nebulized aerosol delivery to infants. J Aerosol Med. 2005;18(2):225–35.PubMedCrossRefGoogle Scholar
  91. 91.
    Kohler E, Jilg G, Avenarius S, Jorch G. Lung deposition after inhalation with various nebulisers in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2008;93(4):F275–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Fok TF, Monkman S, Dolovich M, et al. Efficiency of aerosol medication delivery from a metered dose inhaler versus jet nebulizer in infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 1996;21(5):301–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Sood BG, Peterson J, Malian M, et al. Jet nebulization of prostaglandin E1 during neonatal mechanical ventilation: stability, emitted dose and aerosol particle size. Pharmacol Res. 2007;56(6):531–41.PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Fink JB. Delivery of inhaled drugs for infants and small children: a commentary on present and future needs. Clin Ther. 2012;34(11):S36–45.PubMedCrossRefGoogle Scholar
  95. 95.
    Ballard J, Lugo RA, Salyer JW. A survey of albuterol administration practices in intubated patients in the neonatal intensive care unit. Respir Care. 2002;47(1):31–8.PubMedGoogle Scholar
  96. 96.
    Lugo RA, Kenney JK, Keenan J, Salyer JW, Ballard J, Ward RM. Albuterol delivery in a neonatal ventilated lung model: nebulization versus chlorofluorocarbon- and hydrofluoroalkane-pressurized metered dose inhalers. Pediatr Pulmonol. 2001;31(3):247–54.PubMedCrossRefGoogle Scholar
  97. 97.
    Fok TF, Lam K, Ng PC, et al. Delivery of salbutamol to nonventilated preterm infants by metered-dose inhaler, jet nebulizer, and ultrasonic nebulizer. Eur Respir J. 1998;12(1):159–64.PubMedCrossRefGoogle Scholar
  98. 98.
    Engle WA. Surfactant-replacement therapy for respiratory distress in the preterm and term neonate. Pediatrics. 2008;121(2):419–32.PubMedCrossRefGoogle Scholar
  99. 99.
    El-Gendy N, Kaviratna A, Berkland C, Dhar P. Delivery and performance of surfactant replacement therapies to treat pulmonary disorders. Ther Deliv. 2013;4(8):951–80.PubMedCrossRefGoogle Scholar
  100. 100.
    Sweet DG, Halliday HL. The use of surfactants in 2009. Arch Dis Child Educ Pract Ed. 2009;94(3):78–83.PubMedCrossRefGoogle Scholar
  101. 101.
    Nimmo AJ, Carstairs JR, Patole SK, Whitehall J, Davidson K, Vink R. Intratracheal administration of glucocorticoids using surfactant as a vehicle. Clin Exp Pharmacol Physiol. 2002;29(8):661–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Hughes WT, Sillos EM, LaFon S, et al. Effects of aerosolized synthetic surfactant, atovaquone, and the combination of these on murine Pneumocystis carinii pneumonia. J Infect Dis. 1998;177(4):1046–56.PubMedCrossRefGoogle Scholar
  103. 103.
    van’t Veen A, Mouton JW, Gommers D, Lachmann B. Pulmonary surfactant as vehicle for intratracheally instilled tobramycin in mice infected with Klebsiella pneumoniae. Br J Pharmacol. 1996;119(6):1145–8.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Yeh TF, Lin HC, Chang CH, et al. Early intratracheal instillation of budesonide using surfactant as a vehicle to prevent chronic lung disease in preterm infants: a pilot study. Pediatrics. 2008;121(5):e1310–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Ari A, Restrepo RD. Aerosol delivery device selection for spontaneously breathing patients: 2012. Respir Care. 2012;57(4):613–26.PubMedCrossRefGoogle Scholar
  106. 106.
    Iles R, Lister P, Edmunds AT. Crying significantly reduces absorption of aerosolised drug in infants. Arch Dis Child. 1999;81(2):163–5.PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Murakami G, Igarashi T, Adachi Y, et al. Measurement of bronchial hyperreactivity in infants and preschool children using a new method. Ann Allergy. 1990;64(4):383–7.PubMedGoogle Scholar
  108. 108.
    Moss ML. The veloepiglottic sphincter and obligate nose breathing in the neonate. J Pediatr. 1965;67(2):330–1.CrossRefGoogle Scholar
  109. 109.
    Djupesland PG, Skretting A, Winderen M, Holand T. Bi-directional nasal delivery of aerosols can prevent lung deposition. J Aerosol Med. 2004;17(3):249–59.PubMedCrossRefGoogle Scholar
  110. 110.
    Guerin C, Fassier T, Bayle F, Lemasson S, Richard JC. Inhaled bronchodilator administration during mechanical ventilation: how to optimize it, and for which clinical benefit? J Aerosol Med Pulm Drug Deliv. 2008;21(1):85–96.PubMedCrossRefGoogle Scholar
  111. 111.
    Fink JB, Dhand R, Duarte AG, Jenne JW, Tobin MJ. Aerosol delivery from a metered-dose inhaler during mechanical ventilation. An in vitro model. Am J Respir Crit Care Med. 1996;154(2 Pt 1):382–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Hess DR, Dillman C, Kacmarek RM. In vitro evaluation of aerosol bronchodilator delivery during mechanical ventilation: pressure-control vs. volume control ventilation. Intensive Care Med. 2003;29(7):1145–50.PubMedCrossRefGoogle Scholar
  113. 113.
    Mazela J, Polin RA. Aerosol delivery to ventilated newborn infants: historical challenges and new directions. Eur J Pediatr. 2011;170(4):433–44.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Diot P, Morra L, Smaldone GC. Albuterol delivery in a model of mechanical ventilation. Comparison of metered-dose inhaler and nebulizer efficiency. Am J Respir Crit Care Med. 1995;152(4 Pt 1):1391–4.PubMedCrossRefGoogle Scholar
  115. 115.
    Fink JB, Dhand R, Grychowski J, Fahey PJ, Tobin MJ. Reconciling in vitro and in vivo measurements of aerosol delivery from a metered-dose inhaler during mechanical ventilation and defining efficiency-enhancing factors. Am J Respir Crit Care Med. 1999;159(1):63–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Sood BG, Latif Z, Shen Y, et al. Aerosol delivery during high frequency jet ventilation: an MRI evaluation. Respir Care. 2012;57(11):1901–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Baleine J, Milesi C, Mesnage R, et al. Intubation in the delivery room: experience with nasal midazolam. Early Hum Dev. 2014;90(1):39–43.PubMedCrossRefGoogle Scholar
  118. 118.
    Sharma R, Harish R. Comparative study on the efficacy of intranasal midazolam vs intravenous midazolam in convulsing neonates and children. Res Rev J Med Health Sci. 2013;2(4):54–7.Google Scholar
  119. 119.
    Chiaretti A, Barone G, Rigante D, et al. Intranasal lidocaine and midazolam for procedural sedation in children. Arch Dis Child. 2011;96(2):160–3.PubMedCrossRefGoogle Scholar
  120. 120.
    Keane EF. Another way to administer antiepileptic medications in infants and children. MCN Am J Matern Child Nurs. 1993;18(5):270–4.PubMedCrossRefGoogle Scholar
  121. 121.
    Graves NM, Kriel RL. Rectal administration of antiepileptic drugs in children. Pediatr Neurol. 1987;3(6):321–6.PubMedCrossRefGoogle Scholar
  122. 122.
    van Lingen RA, Deinum JT, Quak JM, et al. Pharmacokinetics and metabolism of rectally administered paracetamol in preterm neonates. Arch Dis Child Fetal Neonatal Ed. 1999;80(1):F59–63.PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Anderson BJ, Holford NH, Woolard GA. Paracetamol kinetics in neonates. Anaesth Intensive Care. 1997;25:721–2.Google Scholar
  124. 124.
    Hopkins CS, Underhill S, Booker PD. Pharmacokinetics of paracetamol after cardiac surgery. Arch Dis Child. 1990;65(9):971–6.PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Keinanen S, Hietula M, Simila S, Kouvalainen K. Antipyretic therapy. Comparison of rectal and oral paracetamol. Eur J Clin Pharmacol. 1977;12(1):77–80.PubMedCrossRefGoogle Scholar
  126. 126.
    Arana A, Morton NS, Hansen TG. Treatment with paracetamol in infants. Acta Anaesthesiol Scand. 2001;45(1):20–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Anderson BJ, Woollard GA, Holford NH. A model for size and age changes in the pharmacokinetics of paracetamol in neonates, infants and children. Br J Clin Pharmacol. 2000;50(2):125–34.PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Zuo XC, Ng CM, Barrett JS, et al. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis. Pharmacogenet Genomics. 2013;23(5):251–61.PubMedCrossRefGoogle Scholar
  129. 129.
    Slomkowski S, Aleman JV, Gilbert RG, et al. Terminology of polymers and polymerization processes in dispersed systems (IUPAC recommendations 2011). Pure Appl Chem. 2011;83(12):2229–59.CrossRefGoogle Scholar
  130. 130.
    Amirav I, Newhouse MT, Luder A, Halamish A, Omar H, Gorenberg M. Feasibility of aerosol drug delivery to sleeping infants: a prospective observational study. BMJ Open. 2014;4(3):e004124.PubMedCentralPubMedCrossRefGoogle Scholar
  131. 131.
    Dvorak M. Medicine dispensing pacifier. US Patent 5,512,047; 1996.Google Scholar
  132. 132.
    Noble DE. Medication dispensing pacifier. US Patent 5,078,734; 1992.Google Scholar
  133. 133.
    Luehne-Porath L. Medicine dispensing pacifier. US Patent D445,902; 2001.Google Scholar
  134. 134.
    Dumont KE, Dumont D. Medication dispensing pacifier. US Patent D476,085; 2003.Google Scholar
  135. 135.
    Brenner V. Infant medicine dispenser. US Patent 2,013,009,0595; 2013.Google Scholar
  136. 136.
    Walsh J, Bickmann D, Breitkreutz J, Chariot-Goulet M. Delivery devices for the administration of paediatric formulations: overview of current practice, challenges and recent developments. Int J Pharm. 2011;415(1–2):221–31.PubMedCrossRefGoogle Scholar
  137. 137.
    Kraus DM, Stohlmeyer LA, Hannon PR, Freels SA. Effectiveness and infant acceptance of the Rx medibottle versus the oral syringe. Pharmacotherapy. 2001;21(4):416–23.PubMedCrossRefGoogle Scholar
  138. 138.
    Purswani MU, Radhakrishnan J, Irfan KR, Walter-Glickman C, Hagmann S, Neugebauer R. Infant acceptance of a bitter-tasting liquid medication: a randomized controlled trial comparing the Rx medibottle with an oral syringe. Arch Pediatr Adolesc Med. 2009;163(2):186–8.PubMedCrossRefGoogle Scholar
  139. 139.
    Foinard A, Decaudin B, Barthelemy C, Debaene B, Odou P. Prevention of drug delivery disturbances during continuous intravenous infusion: an in vitro study on a new multi-lumen infusion access device. Ann Fr Anesth Reanim. 2013;32(9):e107–12.PubMedCrossRefGoogle Scholar
  140. 140.
    World Health Organization. Report of the informal expert meeting on dosage forms of medicines for children. Geneva: World Health Organization; 2008.Google Scholar
  141. 141.
    Kayitare E, Vervaet C, Ntawukulilyayo JD, Seminega B, Bortel V, Remon JP. Development of fixed dose combination tablets containing zidovudine and lamivudine for paediatric applications. Int J Pharm. 2009;370(1–2):41–6.PubMedCrossRefGoogle Scholar
  142. 142.
    Laulicht B, Langer R, Karp JM. Quick-release medical tape. Proc Natl Acad Sci U S A. 2012;109(46):18803–8.PubMedCentralPubMedCrossRefGoogle Scholar
  143. 143.
    Huang NN, High RH. Comparison of serum levels following the administration of oral and parenteral preparations of penicillin to infants and children of various age groups. J Pediatr. 1953;42(6):657–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Matthew W. Linakis
    • 1
    • 2
  • Jessica K. Roberts
    • 1
  • Anita C. Lala
    • 3
  • Michael G. Spigarelli
    • 1
  • Natalie J. Medlicott
    • 4
  • David M. Reith
    • 3
  • Robert M. Ward
    • 1
    • 5
    • 6
  • Catherine M. T. Sherwin
    • 1
  1. 1.Division of Clinical Pharmacology, Department of PediatricsUniversity of Utah School of MedicineSalt Lake CityUSA
  2. 2.Department of Pharmaceutical ChemistryUniversity of Utah, School of PharmacySalt Lake CityUSA
  3. 3.Department of Women’s and Children’s Health, Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
  4. 4.School of PharmacyUniversity of OtagoDunedinNew Zealand
  5. 5.Division of Neonatology, Department of PediatricsUniversity of Utah, School of MedicineSalt Lake CityUSA
  6. 6.Department of Pharmacology/ToxicologyUniversity of Utah College of PharmacySalt Lake CityUSA

Personalised recommendations