Skip to main content
Log in

Clinical Pharmacokinetics and Pharmacodynamics of Erythropoiesis-Stimulating Agents

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The cloning of the EPO gene in the early 1980s allowed for the development of recombinant erythropoietins and analogues [erythropoiesis-stimulating agents (ESAs)], offering an alternative to transfusion as a method of raising haemoglobin (Hb) levels, which have been used for more than 20 years to treat anaemia in millions of anaemic patients. There are now a number of ESAs available worldwide for the treatment of anaemia, approved for different routes of administration (intravenous and subcutaneous) and dosing intervals (three times weekly, weekly, biweekly and monthly). In this review, we discuss the pharmacokinetic characteristics, including absorption, distribution and elimination processes, across the different ESAs. Incomplete and slow lymphatic absorption, with limited extravascular distribution, and minor contributions of the target-mediated drug disposition to the overall elimination are the common characteristics across the marketed ESA. Additionally, we assess the similarities and differences of ESAs related to pharmacodynamics in the context of the different biomarkers used to monitor the magnitude and duration of the effect, and introduce the concept of the minimum effective concentration of the ESA. The relationship between the minimum effective concentration and the half-life suggests that the time during which drug concentrations are above the minimum effective concentration is the main determinant of ESA efficacy in increasing Hb levels. The tolerance phenomenon and its physiological mechanism and implications for ESA dosing are discussed. Finally, the areas of future clinical pharmacology research are envisioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Jacobson LO, Goldwasser E, Fried W, Plzak L. Role of the kidney in erythropoiesis. Nature. 1957;179(4560):633–4.

    PubMed  CAS  Google Scholar 

  2. Miyake T, Kung CK, Goldwasser E. Purification of human erythropoietin. J Biol Chem. 1977;252(15):5558–64.

    PubMed  CAS  Google Scholar 

  3. Reissmann KR. Studies on the mechanism of erythropoietic stimulation in parabiotic rats during hypoxia. Blood. 1950;5(4):372–80.

    PubMed  CAS  Google Scholar 

  4. Fisher JW, Birdwell BJ. The production of an erythropoietic factor by the in situ perfused kidney. Acta Haematol. 1961;26(4):224–32.

    PubMed  CAS  Google Scholar 

  5. Kuratowska Z, Lewartowski B, Michalak E. Studies on the production of erythropoietin by isolated perfused organs. Blood. 1961;18:527–34.

    PubMed  CAS  Google Scholar 

  6. Lin FK, Suggs S, Lin CH, Browne JK, Smalling R, Egrie JC, et al. Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci USA. 1985;82(22):7580–4.

    PubMed  CAS  Google Scholar 

  7. Jacobs K, Shoemaker C, Rudersdorf R, Neill SD, Kaufman RJ, Mufson A, et al. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature. 1985;313(6005):806–10.

    PubMed  CAS  Google Scholar 

  8. Halstenson CE, Macres M, Katz SA, Schnieders JR, Watanabe M, Sobota JT, et al. Comparative pharmacokinetics and pharmacodynamics of epoetin alfa and epoetin beta. Clin Pharmacol Ther. 1991;50(6):702–12.

    PubMed  CAS  Google Scholar 

  9. Elliott S, Pham E, Macdougall IC. Erythropoietins: a common mechanism of action. Exp Hematol. 2008;36(12):1573–84.

    PubMed  CAS  Google Scholar 

  10. Egrie JC, Strickland TW, Lane J, Aoki K, Cohen AM, Smalling R, et al. Characterization and biological effects of recombinant human erythropoietin. Immunobiology. 1986;172(3–5):213–24.

    PubMed  CAS  Google Scholar 

  11. Imai N, Kawamura A, Higuchi M, Oh-eda M, Orita T, Kawaguchi T, et al. Physicochemical and biological comparison of recombinant human erythropoietin with human urinary erythropoietin. J Biochem. 1990;107(3):352–9.

    PubMed  CAS  Google Scholar 

  12. Rency MA, Scoble HA, Kim Y. Structural characterization of natural human urinary and recombinant DNA-derived erythropoietin: identification of des-arginine 166 erythropoietin. J Biochem. 1987;262:17156–63.

    Google Scholar 

  13. Jelkmann W. Use of recombinant human erythropoietin as an antianemic and performance enhancing drug. Curr Pharm Biotechnol. 2000;1(1):11–31.

    PubMed  CAS  Google Scholar 

  14. Egrie JC, Browne JK. Development and characterization of novel erythropoiesis stimulating protein (NESP). Nephrol Dial Transplant. 2001;16(Suppl 3):3–13.

    PubMed  Google Scholar 

  15. Macdougall IC, Gray SJ, Elston O, Breen C, Jenkins B, Browne J, et al. Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J Am Soc Nephrol. 1999;10(11):2392–5.

    PubMed  CAS  Google Scholar 

  16. Elliott S, Lorenzini T, Asher S, Aoki K, Brankow D, Buck L, et al. Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat Biotechnol. 2003;21(4):414–21.

    PubMed  CAS  Google Scholar 

  17. Sinclair AM, Elliott S. Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci. 2005;94(8):1626–35.

    PubMed  CAS  Google Scholar 

  18. Egrie JC, Dwyer E, Browne JK, Hitz A, Lykos MA. Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol. 2003;31(4):290–9.

    PubMed  CAS  Google Scholar 

  19. Vansteenkiste J, Pirker R, Massuti B, Barata F, Font A, Fiegl M, et al. Double-blind, placebo-controlled, randomized phase III trial of darbepoetin alfa in lung cancer patients receiving chemotherapy. J Natl Cancer Inst. 2002;94(16):1211–20.

    PubMed  CAS  Google Scholar 

  20. Nissenson AR, Swan SK, Lindberg JS, Soroka SD, Beatey R, Wang C, et al. Randomized, controlled trial of darbepoetin alfa for the treatment of anemia in hemodialysis patients. Am J Kidney Dis. 2002;40(1):110–8.

    PubMed  CAS  Google Scholar 

  21. Macdougall IC. CERA (continuous erythropoietin receptor activator): a new erythropoiesis-stimulating agent for the treatment of anemia. Curr Hematol Rep. 2005;4(6):436–40.

    PubMed  CAS  Google Scholar 

  22. Gascon P, Pirker R, Del Mastro L, Durrwell L. Effects of CERA (continuous erythropoietin receptor activator) in patients with advanced non-small-cell lung cancer (NSCLC) receiving chemotherapy: results of a phase II study. Ann Oncol. 2010;21(10):2029–39.

    PubMed  CAS  Google Scholar 

  23. Jarsch M, Brandt M, Lanzendorfer M, Haselbeck A. Comparative erythropoietin receptor binding kinetics of C.E.R.A. and epoetin-beta determined by surface plasmon resonance and competition binding assay. Pharmacology. 2008;81(1):63–9.

    PubMed  CAS  Google Scholar 

  24. European Medicines Agency. Abseamed: EPAR summary for the public (2012). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Summary_for_the_public/human/000727/WC500020663.pdf. Accessed 19 Jun 2013.

  25. European Medicines Agency. Binocrit: EPAR summary for the public (2012). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Summary_for_the_public/human/000725/WC500053613.pdf. Accessed 19 Jun 2013.

  26. European Medicines Agency. Epoetin Alfa HEXAL: EPAR summary for the public (2012). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Summary_for_the_public/human/000726/WC500028285.pdf. Accessed 19 Jun 2013.

  27. European Medicines Agency. Retacrit: EPAR summary for the public (2011). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Summary_for_the_public/human/000872/WC500054372.pdf. Accessed 19 Jun 2013.

  28. European Medicines Agency. Silapo: EPAR summary for the public (2012). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Summary_for_the_public/human/000760/WC500050912.pdf. Accessed 19 Jun 2013.

  29. European Medicines Agency. Silapo: scientific discussion (2007). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Scientific_Discussion/human/000760/WC500050914.pdf. Accessed 19 Jun 2013.

  30. European Medicines Agency. Retacrit: scientific discussion (2007). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Scientific_Discussion/human/000872/WC500054374.pdf. Accessed 19 Jun 2013.

  31. Erslev AJ. In vitro production of erythropoietin by kidneys perfused with a serum-free solution. Blood. 1974;44(1):77–85.

    PubMed  CAS  Google Scholar 

  32. Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995;270(3):1230–7.

    PubMed  CAS  Google Scholar 

  33. Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci USA. 1991;88(13):5680–4.

    PubMed  CAS  Google Scholar 

  34. Syed RS, Reid SW, Li C, Cheetham JC, Aoki KH, Liu B, et al. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature. 1998;395(6701):511–6.

    PubMed  CAS  Google Scholar 

  35. Elliott S, Lorenzini T, Chang D, Barzilay J, Delorme E. Mapping of the active site of recombinant human erythropoietin. Blood. 1997;89(2):493–502.

    PubMed  CAS  Google Scholar 

  36. D’Andrea AD, Lodish HF, Wong GG. Expression cloning of the murine erythropoietin receptor. Cell. 1989;57(2):277–85.

    PubMed  Google Scholar 

  37. D’Andrea AD, Zon LI. Erythropoietin receptor: subunit structure and activation. J Clin Invest. 1990;86(3):681–7.

    PubMed  Google Scholar 

  38. Elliott S, Sinclair AM. The effect of erythropoietin on normal and neoplastic cells. Biologics. 2012;6:163–89.

    PubMed  CAS  Google Scholar 

  39. Fraser JK, Lin FK, Berridge MV. Expression of high affinity receptors for erythropoietin on human bone marrow cells and on the human erythroleukemic cell line. HEL Exp Hematol. 1988;16(10):836–42.

    CAS  Google Scholar 

  40. Sawyer ST, Krantz SB, Goldwasser E. Binding and receptor-mediated endocytosis of erythropoietin in Friend virus-infected erythroid cells. J Biol Chem. 1987;262(12):5554–62.

    PubMed  CAS  Google Scholar 

  41. Matthews DJ, Topping RS, Cass RT, Giebel LB. A sequential dimerization mechanism for erythropoietin receptor activation. Proc Natl Acad Sci USA. 1996;93(18):9471–6.

    PubMed  CAS  Google Scholar 

  42. Philo JS, Aoki KH, Arakawa T, Narhi LO, Wen J. Dimerization of the extracellular domain of the erythropoietin (EPO) receptor by EPO: one high-affinity and one low-affinity interaction. Biochemistry (Mosc). 1996;35(5):1681–91.

    CAS  Google Scholar 

  43. Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev. 1992;72(2):449–89.

    PubMed  CAS  Google Scholar 

  44. Fisher JW. Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood). 2003;228(1):1–14.

    PubMed  CAS  Google Scholar 

  45. Fisher JW. Landmark advances in the development of erythropoietin. Exp Biol Med (Maywood). 2010;235(12):1398–411.

    PubMed  CAS  Google Scholar 

  46. Sawyer ST, Krantz SB, Sawada K. Receptors for erythropoietin in mouse and human erythroid cells and placenta. Blood. 1989;74(1):103–9.

    PubMed  CAS  Google Scholar 

  47. Walrafen P, Verdier F, Kadri Z, Chretien S, Lacombe C, Mayeux P. Both proteasomes and lysosomes degrade the activated erythropoietin receptor. Blood. 2005;105(2):600–8.

    PubMed  CAS  Google Scholar 

  48. Gross AW, Lodish HF. Cellular trafficking and degradation of erythropoietin and novel erythropoiesis stimulating protein (NESP). J Biol Chem. 2006;281(4):2024–32.

    PubMed  CAS  Google Scholar 

  49. Koury MJ, Bondurant MC. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science. 1990;248(4953):378–81.

    PubMed  CAS  Google Scholar 

  50. Rodak B, Fritsma G, Doig K. Hematology: clinical principles and applications. 3rd ed. Philadelphia: Elsevier Health Sciences; 2007.

    Google Scholar 

  51. Glaspy J, Crawford J, Vansteenkiste J, Henry D, Rao S, Bowers P, et al. Erythropoiesis-stimulating agents in oncology: a study-level meta-analysis of survival and other safety outcomes. Br J Cancer. 2010;102(2):301–15.

    PubMed  CAS  Google Scholar 

  52. Bohlius J, Tonia T, Schwarzer G. Twist and shout: one decade of meta-analyses of erythropoiesis-stimulating agents in cancer patients. Acta Haematol. 2011;125(1–2):55–67.

    PubMed  Google Scholar 

  53. Elliott S, Busse L, Bass MB, Lu H, Sarosi I, Sinclair AM, et al. Anti-EPO receptor antibodies do not predict EPO receptor expression. Blood. 2006;107(5):1892–5.

    PubMed  CAS  Google Scholar 

  54. Swift S, Ellison AR, Kassner P, McCaffery I, Rossi J, Sinclair AM, et al. Absence of functional EpoR expression in human tumor cell lines. Blood. 2010;115(21):4254–63.

    PubMed  CAS  Google Scholar 

  55. Sinclair AM, Coxon A, McCaffery I, Kaufman S, Paweletz K, Liu L, et al. Functional erythropoietin receptor is undetectable in endothelial, cardiac, neuronal, and renal cells. Blood. 2010;115(21):4264–72.

    PubMed  CAS  Google Scholar 

  56. Fisher JW, Koury S, Ducey T, Mendel S. Erythropoietin production by interstitial cells of hypoxic monkey kidneys. Br J Haematol. 1996;95(1):27–32.

    PubMed  CAS  Google Scholar 

  57. Koury MJ, Bondurant MC. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cells. J Cell Physiol. 1988;137(1):65–74.

    PubMed  CAS  Google Scholar 

  58. Spivak JL. The biology and clinical applications of recombinant erythropoietin. Semin Oncol. 1998;25(3 Suppl 7):7–11.

    PubMed  CAS  Google Scholar 

  59. Spivak JL. Changing paradigms in anemia management. Adv Stud Med. 2002;22:610–9.

    Google Scholar 

  60. Besarab A. Physiological and pharmacodynamic considerations for route of EPO administration. Semin Nephrol. 2000;20(4):364–74.

    PubMed  CAS  Google Scholar 

  61. Souillard A, Audran M, Bressolle F, Gareau R, Duvallet A, Chanal JL. Pharmacokinetics and pharmacodynamics of recombinant human erythropoietin in athletes: blood sampling and doping control. Br J Clin Pharmacol. 1996;42(3):355–64.

    PubMed  CAS  Google Scholar 

  62. Koopman MG, Koomen GC, Krediet RT, de Moor EA, Hoek FJ, Arisz L. Circadian rhythm of glomerular filtration rate in normal individuals. Clin Sci (Lond). 1989;77(1):105–11.

    PubMed  CAS  Google Scholar 

  63. Wide L, Bengtsson C, Birgegard G. Circadian rhythm of erythropoietin in human serum. Br J Haematol. 1989;72(1):85–90.

    PubMed  CAS  Google Scholar 

  64. Pasqualetti P, Collacciani A, Casale R. Circadian rhythm of serum erythropoietin in myelodysplastic syndromes. Eur Rev Med Pharmacol Sci. 2000;4(5–6):111–5.

    PubMed  CAS  Google Scholar 

  65. Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin: results of a combined phase I and II clinical trial. N Engl J Med. 1987;316(2):73–8.

    PubMed  CAS  Google Scholar 

  66. Eschbach JW, Abdulhadi MH, Browne JK, Delano BG, Downing MR, Egrie JC, et al. Recombinant human erythropoietin in anemic patients with end-stage renal disease: results of a phase III multicenter clinical trial. Ann Intern Med. 1989;111(12):992–1000.

    PubMed  CAS  Google Scholar 

  67. Erslev AJ. Erythropoietin. N Engl J Med. 1991;324(19):1339–44.

    PubMed  CAS  Google Scholar 

  68. Thorling EB, Ersbak J. Erythrocytosis and hypernephroma. Scand J Haematol. 1964;1:38–46.

    PubMed  CAS  Google Scholar 

  69. Kazal LA, Erslev AJ. Erythropoietin production in renal tumors. Ann Clin Lab Sci. 1975;5(2):98–109.

    PubMed  CAS  Google Scholar 

  70. Ueno M, Seferynska I, Beckman B, Brookins J, Nakashima J, Fisher JW. Enhanced erythropoietin secretion in hepatoblastoma cells in response to hypoxia. Am J Physiol. 1989;257(4 Pt 1):C743–9.

    PubMed  CAS  Google Scholar 

  71. Trimble M, Caro J, Talalla A, Brain M. Secondary erythrocytosis due to a cerebellar hemangioblastoma: demonstration of erythropoietin mRNA in the tumor. Blood. 1991;78(3):599–601.

    PubMed  CAS  Google Scholar 

  72. Fried W, Ward HP, Hopeman AR. Leiomyoma and erythrocytosis: a tumor producing a factor which increases erythropoietin production. Report of case. Blood. 1968;31(6):813–6.

    PubMed  CAS  Google Scholar 

  73. Davies SV, Fegan CD, Kendall R, Beguin Y, Cavill I. Serum erythropoietin during autologous bone marrow transplantation: relationship to measures of erythroid activity. Clin Lab Haematol. 1995;17(2):139–44.

    PubMed  CAS  Google Scholar 

  74. Pavlovic-Kentera V, Milenkovic P, Ruvidic R, Jovanovic V, Biljanovic-Paunovic L. Erythropoietin in aplastic anemia. Blut. 1979;39(5):345–50.

    PubMed  CAS  Google Scholar 

  75. Hammond D, Shore N, Movassaghi N. Production, utilization and excretion of erythropoietin. I: Chronic anemias. II: Aplastic crisis. 3: Erythropoietic effects of normal plasma. Ann N Y Acad Sci. 1968;149(1):516–27.

    PubMed  CAS  Google Scholar 

  76. Alexanian R. Erythropoietin excretion in bone marrow failure and hemolytic anemia. J Lab Clin Med. 1973;82(3):438–45.

    PubMed  CAS  Google Scholar 

  77. Embury SH, Garcia JF, Mohandas N, Pennathur-Das R, Clark MR. Effects of oxygen inhalation on endogenous erythropoietin kinetics, erythropoiesis, and properties of blood cells in sickle-cell anemia. N Engl J Med. 1984;311(5):291–5.

    PubMed  CAS  Google Scholar 

  78. Lee FS, Percy MJ. The HIF pathway and erythrocytosis. Annu Rev Pathol. 2011;6:165–92.

    PubMed  CAS  Google Scholar 

  79. McMahon FG, Vargas R, Ryan M, Jain AK, Abels RI, Perry B, et al. Pharmacokinetics and effects of recombinant human erythropoietin after intravenous and subcutaneous injections in healthy volunteers. Blood. 1990;76(9):1718–22.

    PubMed  CAS  Google Scholar 

  80. Boxenbaum H. Pharmacokinetics tricks and traps: flip-flop models. J Pharm Pharm Sci. 1998;1(3):90–1.

    PubMed  CAS  Google Scholar 

  81. Yang BB, Kido A. Pharmacokinetics and pharmacodynamics of pegfilgrastim. Clin Pharmacokinet. 2011;50(5):295–306.

    PubMed  CAS  Google Scholar 

  82. Wang YM, Krzyzanski W, Doshi S, Xiao JJ, Perez-Ruixo JJ, Chow AT. Pharmacodynamics-mediated drug disposition (PDMDD) and precursor pool lifespan model for single dose of romiplostim in healthy subjects. AAPS J. 2010;12(4):729–40.

    PubMed  CAS  Google Scholar 

  83. Porter CJ, Charman SA. Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci. 2000;89(3):297–310.

    PubMed  CAS  Google Scholar 

  84. Supersaxo A, Hein WR, Steffen H. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res. 1990;7(2):167–9.

    PubMed  CAS  Google Scholar 

  85. Leak LV. The structure of lymphatic capillaries in lymph formation. Fed Proc. 1976;35(8):1863–71.

    PubMed  CAS  Google Scholar 

  86. McLennan DN, Porter CJ, Edwards GA, Martin SW, Heatherington AC, Charman SA. Lymphatic absorption is the primary contributor to the systemic availability of epoetin alfa following subcutaneous administration to sheep. J Pharmacol Exp Ther. 2005;313(1):345–51.

    PubMed  CAS  Google Scholar 

  87. Olsson-Gisleskog P, Jacqmin P, Perez-Ruixo JJ. Population pharmacokinetics meta-analysis of recombinant human erythropoietin in healthy subjects. Clin Pharmacokinet. 2007;46(2):159–73.

    PubMed  CAS  Google Scholar 

  88. Ait-Oudhia S, Vermeulen A, Krzyzanski W. Non-linear mixed effect modeling of the time-variant disposition of erythropoietin in anemic cancer patients. Biopharm Drug Dispos. 2011;32(1):1–15.

    PubMed  CAS  Google Scholar 

  89. Krzyzanski W, Jusko WJ, Wacholtz MC, Minton N, Cheung WK. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after multiple subcutaneous doses in healthy subjects. Eur J Pharm Sci. 2005;26(3–4):295–306.

    PubMed  CAS  Google Scholar 

  90. Ramakrishnan R, Cheung WK, Wacholtz MC, Minton N, Jusko WJ. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after single and multiple doses in healthy volunteers. J Clin Pharmacol. 2004;44(9):991–1002.

    PubMed  CAS  Google Scholar 

  91. Jensen JD, Jensen LW, Madsen JK. The pharmacokinetics of recombinant human erythropoietin after subcutaneous injection at different sites. Eur J Clin Pharmacol. 1994;46(4):333–7.

    PubMed  CAS  Google Scholar 

  92. Fishbane S, Pannier A, Liogier X, Jordan P, Dougherty FC, Reigner B. Pharmacokinetic and pharmacodynamic properties of methoxy polyethylene glycol-epoetin beta are unaffected by the site of subcutaneous administration. J Clin Pharmacol. 2007;47(11):1390–7.

    Google Scholar 

  93. McLennan DN, Porter CJ, Edwards GA, Heatherington AC, Martin SW, Charman SA. The absorption of darbepoetin alfa occurs predominantly via the lymphatics following subcutaneous administration to sheep. Pharm Res. 2006;23(9):2060–6.

    PubMed  CAS  Google Scholar 

  94. Glaspy J, Henry D, Patel R, Tchekmedyian S, Applebaum S, Berdeaux D, et al. Effects of chemotherapy on endogenous erythropoietin levels and the pharmacokinetics and erythropoietic response of darbepoetin alfa: a randomised clinical trial of synchronous versus asynchronous dosing of darbepoetin alfa. Eur J Cancer. 2005;41(8):1140–9.

    PubMed  CAS  Google Scholar 

  95. Padhi D, Ni L, Cooke B, Marino R, Jang G. An extended terminal half-life for darbepoetin alfa: results from a single-dose pharmacokinetic study in patients with chronic kidney disease not receiving dialysis. Clin Pharmacokinet. 2006;45(5):503–10.

    PubMed  CAS  Google Scholar 

  96. Agoram B, Heatherington AC, Gastonguay MR. Development and evaluation of a population pharmacokinetic-pharmacodynamic model of darbepoetin alfa in patients with nonmyeloid malignancies undergoing multicycle chemotherapy. AAPS J. 2006;8(3):E552–63.

    PubMed  CAS  Google Scholar 

  97. Agoram B, Sutjandra L, Sullivan JT. Population pharmacokinetics of darbepoetin alfa in healthy subjects. Br J Clin Pharmacol. 2007;63(1):41–52.

    PubMed  CAS  Google Scholar 

  98. Doshi S, Chow A, Perez Ruixo JJ. Exposure-response modeling of darbepoetin alfa in anemic patients with chronic kidney disease not receiving dialysis. J Clin Pharmacol. 2010;50(9 Suppl):75S–90S.

    Google Scholar 

  99. Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev. 2003;55(10):1261–77.

    PubMed  CAS  Google Scholar 

  100. European Medicines Agency. Mircera: EPAR—product information (2012). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000739/WC500033672.pdf. Accessed 19 Jun 2012.

  101. Fishbane S, Pannier A, Liogier X, Jordan P, Dougherty FC, Reigner B. Pharmacokinetic and pharmacodynamic properties of methoxy polyethylene glycol-epoetin beta are unaffected by the site of subcutaneous administration. J Clin Pharmacol. 2007;47(11):1390–7.

    PubMed  CAS  Google Scholar 

  102. Sutjandra L, Rodriguez RD, Doshi S, Ma M, Peterson MC, Jang GR, et al. Population pharmacokinetic meta-analysis of denosumab in healthy subjects and postmenopausal women with osteopenia or osteoporosis. Clin Pharmacokinet. 2011;50(12):793–807.

    PubMed  CAS  Google Scholar 

  103. Kakkar T, Sung C, Gibiansky L, Vu T, Narayanan A, Lin SL, et al. Population PK and IgE pharmacodynamic analysis of a fully human monoclonal antibody against IL4 receptor. Pharm Res. 2011;28(10):2530–42.

    PubMed  CAS  Google Scholar 

  104. Salmonson T, Danielson BG, Wikstrom B. The pharmacokinetics of recombinant human erythropoietin after intravenous and subcutaneous administration to healthy subjects. Br J Clin Pharmacol. 1990;29(6):709–13.

    PubMed  CAS  Google Scholar 

  105. Jensen JD, Madsen JK, Jensen LW, Pedersen EB. Reduced production, absorption, and elimination of erythropoietin in uremia compared with healthy volunteers. J Am Soc Nephrol. 1994;5(2):177–85.

    PubMed  CAS  Google Scholar 

  106. Deicher R, Horl WH. Differentiating factors between erythropoiesis-stimulating agents: a guide to selection for anaemia of chronic kidney disease. Drugs. 2004;64(5):499–509.

    PubMed  CAS  Google Scholar 

  107. Cheung WK, Goon BL, Guilfoyle MC, Wacholtz MC. Pharmacokinetics and pharmacodynamics of recombinant human erythropoietin after single and multiple subcutaneous doses to healthy subjects. Clin Pharmacol Ther. 1998;64(4):412–23.

    PubMed  CAS  Google Scholar 

  108. Cheung W, Minton N, Gunawardena K. Pharmacokinetics and pharmacodynamics of epoetin alfa once weekly and three times weekly. Eur J Clin Pharmacol. 2001;57(5):411–8.

    PubMed  CAS  Google Scholar 

  109. Bommer J, Barth HP, Zeier M, Mandelbaum A, Bommer G, Ritz E, et al. Efficacy comparison of intravenous and subcutaneous recombinant human erythropoietin administration in hemodialysis patients. Contrib Nephrol. 1991;88:136–43.

    PubMed  CAS  Google Scholar 

  110. Kaufman JS, Reda DJ, Fye CL, Goldfarb DS, Henderson WG, Kleinman JG, et al. Subcutaneous compared with intravenous epoetin in patients receiving hemodialysis. Department of Veterans Affairs Cooperative Study Group on Erythropoietin in Hemodialysis Patients. N Engl J Med. 1998;339(9):578–83.

    PubMed  CAS  Google Scholar 

  111. Kampf D, Kahl A, Passlick J, et al. Single-dose kinetics of recombinant human erythropoietin after intravenous, subcutaneous and intraperitoneal administration: preliminary results. Contrib Nephrol. 1989;76:106–11.

    PubMed  CAS  Google Scholar 

  112. Perez-Ruixo JJ, Cucala-Ramos M, Garcia-Gonzalo E, Del Val Romero B, Valveny N. Between-subjects hemoglobin variability is not associated with the erythropoiesis-stimulating agent used to treat anemia in dialysis: a meta-analysis. Br J Clin Pharmacol. 2012 (In press).

  113. Macdougall IC, Roberts DE, Coles GA, Williams JD. Clinical pharmacokinetics of epoetin (recombinant human erythropoietin). Clin Pharmacokinet. 1991;20(2):99–113.

    PubMed  CAS  Google Scholar 

  114. Flaharty KK, Caro J, Erslev A, Whalen JJ, Morris EM, Bjornsson TD, et al. Pharmacokinetics and erythropoietic response to human recombinant erythropoietin in healthy men. Clin Pharmacol Ther. 1990;47(5):557–64.

    PubMed  Google Scholar 

  115. Kompella A. Pharmacokinetics of peptide and protein drugs. In: Lee V, editor. Peptide and protein drug delivery. New York: Marcel Dekker; 1991. p. 391–84.

  116. Braeckman R. Pharmacokinetics and pharmacodynamics of protein therapeutics. In: Reid E, editor. Peptides and protein drug analysis. New York: Marcel Dekker; 2000. p. 633–69.

    Google Scholar 

  117. Kinoshita H, Ohishi N, Kato M, Tokura S, Okazaki A. Pharmacokinetics and distribution of recombinant erythropoietin in rats. Arzneimittelforschung. 1992;42(2):174–8.

    PubMed  CAS  Google Scholar 

  118. Spivak JL, Hogans BB. The in vivo metabolism of recombinant human erythropoietin in the rat. Blood. 1989;73(1):90–9.

    PubMed  CAS  Google Scholar 

  119. Uji Y, Hirashima K, Hirasawa Y, Tohira Y, Mizuno K. Recombinant erythropoietin phase I clinical study—single intravenous administration. Med Consult N Rem. 1989;26:1–28.

    Google Scholar 

  120. Uji Y, Hirashima K, Hirasawa Y, Tohira Y, Mizuno K. Recombinant erythropoietin phase I clinical study—multiple intravenous administration. Med Consult N Rem. 1989;26:29–44.

    Google Scholar 

  121. Woo S, Jusko WJ. Interspecies comparisons of pharmacokinetics and pharmacodynamics of recombinant human erythropoietin. Drug Metab Dispos. 2007;35(9):1672–8.

    PubMed  CAS  Google Scholar 

  122. Allon M, Kleinman K, Walczyk M, Kaupke C, Messer-Mann L, Olson K, et al. Pharmacokinetics and pharmacodynamics of darbepoetin alfa and epoetin in patients undergoing dialysis. Clin Pharmacol Ther. 2002;72(5):546–55.

    PubMed  CAS  Google Scholar 

  123. Heatherington AC, Schuller J, Mercer AJ. Pharmacokinetics of novel erythropoiesis stimulating protein (NESP) in cancer patients: preliminary report. Br J Cancer. 2001;84(Suppl 1):11–6.

    PubMed  CAS  Google Scholar 

  124. Yoon WH, Park SJ, Kim IC, Lee MG. Pharmacokinetics of recombinant human erythropoietin in rabbits and 3/4 nephrectomized rats. Res Commun Mol Pathol Pharmacol. 1997;96(2):227–40.

    PubMed  CAS  Google Scholar 

  125. Jang G. Darbepoetin alfa (Aranesp) pharmacokinetics is comparable in chronic kidney disease (CKD) patients receiving and not receiving dialysis, in pediatric patients and in healthy adults. American Society of Nephrology 38th Annual Renal Week Meeting; 8–13 November 2005; Philadelphia.

  126. Nielsen OJ, Egfjord M, Hirth P. The metabolism of recombinant erythropoietin in the isolated perfused rat liver. Liver. 1990;10(6):343–9.

    PubMed  CAS  Google Scholar 

  127. Widness JA, Veng-Pedersen P, Schmidt RL, Lowe LS, Kisthard JA, Peters C. In vivo 125I-erythropoietin pharmacokinetics are unchanged after anesthesia, nephrectomy and hepatectomy in sheep. J Pharmacol Exp Ther. 1996;279(3):1205–10.

    PubMed  CAS  Google Scholar 

  128. Jensen JD, Jensen LW, Madsen JK, Poulsen L. The metabolism of erythropoietin in liver cirrhosis patients compared with healthy volunteers. Eur J Haematol. 1995;54(2):111–6.

    PubMed  CAS  Google Scholar 

  129. Chapel S, Veng-Pedersen P, Hohl RJ, Schmidt RL, McGuire EM, Widness JA. Changes in erythropoietin pharmacokinetics following busulfan-induced bone marrow ablation in sheep: evidence for bone marrow as a major erythropoietin elimination pathway. J Pharmacol Exp Ther. 2001;298(2):820–4.

    PubMed  CAS  Google Scholar 

  130. Widness JA, Schmidt RL, Hohl RJ, Goldman FD, Al-Huniti NH, Freise KJ, et al. Change in erythropoietin pharmacokinetics following hematopoietic transplantation. Clin Pharmacol Ther. 2007;81(6):873–9.

    PubMed  CAS  Google Scholar 

  131. Heatherington AC, Dittrich C, Sullivan JT, Rossi G, Schueller J. Pharmacokinetics of darbepoetin alfa after intravenous or subcutaneous administration in patients with non-myeloid malignancies undergoing chemotherapy. Clin Pharmacokinet. 2006;45(2):199–211.

    PubMed  CAS  Google Scholar 

  132. Agoram B, Aoki K, Doshi S, Gegg C, Jang G, Molineux G, et al. Investigation of the effects of altered receptor binding activity on the clearance of erythropoiesis-stimulating proteins: nonerythropoietin receptor-mediated pathways may play a major role. J Pharm Sci. 2009;98(6):2198–211.

    PubMed  CAS  Google Scholar 

  133. Elliott S, Egrie J, Browne J, Lorenzini T, Busse L, Rogers N, et al. Control of rHuEPO biological activity: the role of carbohydrate. Exp Hematol. 2004;32(12):1146–55.

    PubMed  CAS  Google Scholar 

  134. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2(3):214–21.

    PubMed  CAS  Google Scholar 

  135. Molineux G. Pegylation: engineering improved biopharmaceuticals for oncology. Pharmacotherapy. 2003;23(8 Pt 2):3S–8S.

    PubMed  CAS  Google Scholar 

  136. Jolling K, Ruixo JJ, Hemeryck A, Piotrovskij V, Greway T. Population pharmacokinetic analysis of pegylated human erythropoietin in rats. J Pharm Sci. 2004;93(12):3027–38.

    PubMed  CAS  Google Scholar 

  137. Jolling K, Perez Ruixo JJ, Hemeryck A, Vermeulen A, Greway T. Mixed-effects modelling of the interspecies pharmacokinetic scaling of pegylated human erythropoietin. Eur J Pharm Sci. 2005;24(5):465–75.

    PubMed  CAS  Google Scholar 

  138. Veng-Pedersen P, Widness JA, Pereira LM, Peters C, Schmidt RL, Lowe LS. Kinetic evaluation of nonlinear drug elimination by a disposition decomposition analysis: application to the analysis of the nonlinear elimination kinetics of erythropoietin in adult humans. J Pharm Sci. 1995;84(6):760–7.

    PubMed  CAS  Google Scholar 

  139. Kato M, Kamiyama H, Okazaki A, Kumaki K, Kato Y, Sugiyama Y. Mechanism for the nonlinear pharmacokinetics of erythropoietin in rats. J Pharmacol Exp Ther. 1997;283(2):520–7.

    PubMed  CAS  Google Scholar 

  140. Ramakrishnan R, Cheung WK, Farrell F, Joffee L, Jusko WJ. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after intravenous and subcutaneous dose administration in cynomolgus monkeys. J Pharmacol Exp Ther. 2003;306(1):324–31.

    PubMed  CAS  Google Scholar 

  141. Veng-Pedersen P, Chapel S, Al-Huniti NH, Schmidt RL, Sedars EM, Hohl RJ, et al. Pharmacokinetic tracer kinetics analysis of changes in erythropoietin receptor population in phlebotomy-induced anemia and bone marrow ablation. Biopharm Drug Dispos. 2004;25(4):149–56.

    PubMed  CAS  Google Scholar 

  142. Veng-Pedersen P, Widness JA, Pereira LM, Schmidt RL, Lowe LS. A comparison of nonlinear pharmacokinetics of erythropoietin in sheep and humans. Biopharm Drug Dispos. 1999;20(4):217–23.

    PubMed  CAS  Google Scholar 

  143. Widness JA, Veng-Pedersen P, Peters C, Pereira LM, Schmidt RL, Lowe LS. Erythropoietin pharmacokinetics in premature infants: developmental, nonlinearity, and treatment effects. J Appl Physiol. 1996;80(1):140–8.

    PubMed  CAS  Google Scholar 

  144. Doshi S, Perez-Ruixo JJ, Jang GR, Chow AT. Pharmacokinetics of erythropoiesis-stimulating agents. In: Molineaux G, Foote MA, Elliott S, editors. Erythropoietins and erythropoiesis: molecular, cellular, preclinical, and clinical biology. 2nd ed. Basel: Birkhauser Verlag AG; 2009. p. 195–224.

    Google Scholar 

  145. Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28(6):507–32.

    PubMed  CAS  Google Scholar 

  146. Mager DE, Krzyzanski W. Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res. 2005;22(10):1589–96.

    PubMed  CAS  Google Scholar 

  147. Woo S, Krzyzanski W, Jusko WJ. Target-mediated pharmacokinetic and pharmacodynamic model of recombinant human erythropoietin (rHuEPO). J Pharmacokinet Pharmacodyn. 2007;34(6):849–68.

    PubMed  CAS  Google Scholar 

  148. Wagner JG. Biopharmaceutics and relevant pharmacokinetics. Hamilton: Drug Intelligence Publications; 1971.

    Google Scholar 

  149. Yan X, Krzyzanski W. Dose correction for the Michaelis–Menten approximation of the target-mediated drug disposition model. J Pharmacokinet Pharmacodyn. 2012;39(2):141–6.

    PubMed  CAS  Google Scholar 

  150. Nielsen OJ. Pharmacokinetics of recombinant human erythropoietin in chronic haemodialysis patients. Pharmacol Toxicol. 1990;66(2):83–6.

    PubMed  CAS  Google Scholar 

  151. Lim VS, DeGowin RL, Zavala D, Kirchner PT, Abels R, Perry P, et al. Recombinant human erythropoietin treatment in pre-dialysis patients: a double-blind placebo-controlled trial. Ann Intern Med. 1989;110(2):108–14.

    PubMed  CAS  Google Scholar 

  152. Neumayer HH, Brockmoller J, Fritschka E, Roots I, Scigalla P, Wattenberg M. Pharmacokinetics of recombinant human erythropoietin after SC administration and in long-term IV treatment in patients on maintenance hemodialysis. Contrib Nephrol. 1989;76:131–41 (discussion 41–2).

    Google Scholar 

  153. Yan X, Lowe PJ, Fink M, Berghout A, Balser S, Krzyzanski W. Population pharmacokinetic and pharmacodynamic model-based comparability assessment of a recombinant human epoetin alfa and the biosimilar HX575. J Clin Pharmacol. 2012;52(11):1624–44.

    PubMed  CAS  Google Scholar 

  154. Vos FE, Schollum JB, Coulter CV, Doyle TC, Duffull SB, Walker RJ. Red blood cell survival in long-term dialysis patients. Am J Kidney Dis. 2011;58(4):591–8.

    PubMed  Google Scholar 

  155. Hartley C, Elliott S, Begley CG, McElroy P, Sutherland W, Khaja R, et al. Kinetics of haematopoietic recovery after dose-intensive chemo/radiotherapy in mice: optimized erythroid support with darbepoetin alpha. Br J Haematol. 2003;122(4):623–36.

    PubMed  CAS  Google Scholar 

  156. Littlewood TJ, Bajetta E, Nortier JW, Vercammen E, Rapoport B, Epoetin Alfa Study Group. Effects of epoetin alfa on hematologic parameters and quality of life in cancer patients receiving nonplatinum chemotherapy: results of a randomized, double-blind, placebo-controlled trial. J Clin Oncol. 2001;19(11):2865–74.

    PubMed  CAS  Google Scholar 

  157. Sawada K, Krantz SB, Kans JS, Dessypris EN, Sawyer S, Glick AD, et al. Purification of human erythroid colony-forming units and demonstration of specific binding of erythropoietin. J Clin Invest. 1987;80(2):357–66.

    PubMed  CAS  Google Scholar 

  158. Tepperman AD, Curtis JE, McCulloch EA. Erythropietic colonies in cultures of human marrow. Blood. 1974;44(5):659–69.

    PubMed  CAS  Google Scholar 

  159. Elliott S, Busse L, McCaffery I, Rossi J, Sinclair A, Spahr C, et al. Identification of a sensitive anti-erythropoietin receptor monoclonal antibody allows detection of low levels of EpoR in cells. J Immunol Methods. 2010;352(1–2):126–39.

    PubMed  CAS  Google Scholar 

  160. McArthur GA, Longmore GD, Klingler K, Johnson GR. Lineage-restricted recruitment of immature hematopoietic progenitor cells in response to EPO after normal hematopoietic cell transfection with EPOR. Exp Hematol. 1995;23(7):645–54.

    PubMed  CAS  Google Scholar 

  161. Song SH, Groom AC. Sequestration and possible maturation of reticulocytes in the normal spleen. Can J Physiol Pharmacol. 1972;50(5):400–6.

    PubMed  CAS  Google Scholar 

  162. Broudy VC, Lin N, Brice M, Nakamoto B, Papayannopoulou T. Erythropoietin receptor characteristics on primary human erythroid cells. Blood. 1991;77(12):2583–90.

    PubMed  CAS  Google Scholar 

  163. Berlin NI, Berk PD. The biological life of red cell. In: Surgenor DM, editor. The red blood cell biology. New York: Academic Press; 1975. p. 975–1020.

    Google Scholar 

  164. Glader B. Destruction of erythrocytes. In: Greer JP, Rodgers GM, Foerster J, Paraskevas F, Lekens JN, Glader B, editors. Wintrobe’s clinical hematology, vol. 1. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 249–65.

    Google Scholar 

  165. Alfrey CP, Rice L, Udden MM, Driscoll TB. Neocytolysis: physiological down-regulator of red-cell mass. Lancet. 1997;349(9062):1389–90.

    PubMed  CAS  Google Scholar 

  166. Willekens FL, Roerdinkholder-Stoelwinder B, Groenen-Dopp YA, Bos HJ, Bosman GJ, van den Bos AG, et al. Hemoglobin loss from erythrocytes in vivo results from spleen-facilitated vesiculation. Blood. 2003;101(2):747–51.

    PubMed  CAS  Google Scholar 

  167. Adamson JW. The kidney and erythropoiesis. Am J Med. 1968;44:715–33.

    Google Scholar 

  168. Eschbach JW. The anemia of chronic renal failure: pathophysiology and the effects of recombinant erythropoietin. Kidney Int. 1989;35(1):134–48.

    PubMed  CAS  Google Scholar 

  169. McGonigle RJ, Husserl F, Wallin JD, Fisher JW. Hemodialysis and continuous ambulatory peritoneal dialysis effects on erythropoiesis in renal failure. Kidney Int. 1984;25(2):430–6.

    PubMed  CAS  Google Scholar 

  170. Joske RA, McAlister JM, Prankerd TA. Isotope investigations of red cell production and destruction in chronic renal disease. Clin Sci (Lond). 1956;15(4):511–22.

    PubMed  CAS  Google Scholar 

  171. Loge JP, Lange RD, Moore CV. Characterization of the anemia associated with chronic renal insufficiency. Am J Med. 1958;24(1):4–18.

    PubMed  CAS  Google Scholar 

  172. Eschbach JW, Cook JD, Scribner BH, Finch CA. Iron balance in hemodialysis patients. Ann Intern Med. 1977;87(6):710–3.

    PubMed  CAS  Google Scholar 

  173. Jungers PY, Robino C, Choukroun G, Nguyen-Khoa T, Massy ZA, Jungers P. Incidence of anaemia, and use of epoetin therapy in pre-dialysis patients: a prospective study in 403 patients. Nephrol Dial Transplant. 2002;17(9):1621–7.

    PubMed  CAS  Google Scholar 

  174. Nissenson AR, Nimer SD, Wolcott DL. Recombinant human erythropoietin and renal anemia: molecular biology, clinical efficacy, and nervous system effects. Ann Intern Med. 1991;114(5):402–16.

    PubMed  CAS  Google Scholar 

  175. Adamson JW, Eschbach JW. Treatment of the anemia of chronic renal failure with recombinant human erythropoietin. Annu Rev Med. 1990;41:349–60.

    PubMed  CAS  Google Scholar 

  176. Radtke HW, Rege AB, LaMarche MB, Bartos D, Bartos F, Campbell RA, et al. Identification of spermine as an inhibitor of erythropoiesis in patients with chronic renal failure. J Clin Invest. 1981;67(6):1623–9.

    PubMed  CAS  Google Scholar 

  177. Kushner DS, Beckman BS, Fisher JW. Do polyamines play a role in the pathogenesis of the anemia of end-stage renal disease? Kidney Int. 1989;36(2):171–4.

    PubMed  CAS  Google Scholar 

  178. Meytes D, Bogin E, Ma A, Dukes PP, Massry SG. Effect of parathyroid hormone on erythropoiesis. J Clin Invest. 1981;67(5):1263–9.

    PubMed  CAS  Google Scholar 

  179. Kato A, Hishida A, Kumagai H, Furuya R, Nakajima T, Honda N. Erythropoietin production in patients with chronic renal failure. Ren Fail. 1994;16(5):645–51.

    PubMed  CAS  Google Scholar 

  180. Ross RP, McCrea JB, Besarab A. Erythropoietin response to blood loss in hemodialysis patients in blunted but preserved. ASAIO J. 1994;40(3):M880–5.

    PubMed  CAS  Google Scholar 

  181. Nowrousian MR. Pathophysiology of anemia in cancer. In: Nowrousian MR, editor. Human erythropoietin (rhHEPO) in clinical oncology scientific and clinical aspects of anemia in cancer. Wien: Springer; 2008. p. 149–88.

    Google Scholar 

  182. Mitlyng BL, Singh JA, Furne JK, Ruddy J, Levitt MD. Use of breath carbon monoxide measurements to assess erythrocyte survival in subjects with chronic diseases. Am J Hematol. 2006;81(6):432–8.

    PubMed  Google Scholar 

  183. Miller CB, Jones RJ, Piantadosi S, Abeloff MD, Spivak JL. Decreased erythropoietin response in patients with the anemia of cancer. N Engl J Med. 1990;322(24):1689–92.

    PubMed  CAS  Google Scholar 

  184. Bron D, Meuleman N, Mascaux C. Biological basis of anemia. Semin Oncol. 2001;28(2 Suppl 8):1–6.

    PubMed  CAS  Google Scholar 

  185. Endo Y, Nagai H, Watanabe Y, Ochi K, Takagi T. Heat-induced aggregation of recombinant erythropoietin in the intact and deglycosylated states as monitored by gel permeation chromatography combined with a low-angle laser light scattering technique. J Biochem. 1992;112(5):700–6.

    PubMed  CAS  Google Scholar 

  186. Pedain C, Herrero J, Kunzel W. Serum erythropoietin levels in ovarian cancer patients receiving chemotherapy. Eur J Obstet Gynecol Reprod Biol. 2001;98(2):224–30.

    PubMed  CAS  Google Scholar 

  187. Russmann S, Grattagliano I, Portincasa P, Palmieri VO, Palasciano G. Ribavirin-induced anemia: mechanisms, risk factors and related targets for future research. Curr Med Chem. 2006;13(27):3351–7.

    PubMed  CAS  Google Scholar 

  188. McKenzie S. Textbook of hematology. 2nd ed. Baltimore: Williams & Wilkins; 1996.

    Google Scholar 

  189. Cazzola M, Ponchio L, Pedrotti C, Farina G, Cerani P, Lucotti C, et al. Prediction of response to recombinant human erythropoietin (rHuEpo) in anemia of malignancy. Haematologica. 1996;81(5):434–41.

    PubMed  CAS  Google Scholar 

  190. Brugnara C. Reticulocyte cellular indices: a new approach in the diagnosis of anemias and monitoring of erythropoietic function. Crit Rev Clin Lab Sci. 2000;37(2):93–130.

    PubMed  CAS  Google Scholar 

  191. Stead RB, Lambert J, Wessels D, Iwashita JS, Leuther KK, Woodburn KW, et al. Evaluation of the safety and pharmacodynamics of Hematide, a novel erythropoietic agent, in a phase 1, double-blind, placebo-controlled, dose-escalation study in healthy volunteers. Blood. 2006;108(6):1830–4.

    PubMed  CAS  Google Scholar 

  192. Perez-Ruixo JJ, Krzyzanski W, Hing J. Pharmacodynamic analysis of recombinant human erythropoietin effect on reticulocyte production rate and age distribution in healthy subjects. Clin Pharmacokinet. 2008;47(6):399–415.

    PubMed  CAS  Google Scholar 

  193. Perez-Ruixo JJ, Krzyzanski W, Bouman-Thio E, Miller B, Jang H, Bai SA, et al. Pharmacokinetics and pharmacodynamics of the erythropoietin Mimetibody construct CNTO 528 in healthy subjects. Clin Pharmacokinet. 2009;48(9):601–13.

    PubMed  CAS  Google Scholar 

  194. Woo S, Krzyzanski W, Duliege AM, Stead RB, Jusko WJ. Population pharmacokinetics and pharmacodynamics of peptidic erythropoiesis receptor agonist (ERA) in healthy volunteers. J Clin Pharmacol. 2008;48(1):43–52.

    PubMed  CAS  Google Scholar 

  195. Amgen Inc. Epogen® (epoetin alfa): product information (2011). http://www.epogen.com/patient/pi.html. Accessed 19 Jun 2013.

  196. Brockmoller J, Kochling J, Weber W, Looby M, Roots I, Neumayer HH. The pharmacokinetics and pharmacodynamics of recombinant human erythropoietin in haemodialysis patients. Br J Clin Pharmacol. 1992;34(6):499–508.

    PubMed  CAS  Google Scholar 

  197. Canon JL, Vansteenkiste J, Bodoky G, Mateos MV, Bastit L, Ferreira I, et al. Randomized, double-blind, active-controlled trial of every-3-week darbepoetin alfa for the treatment of chemotherapy-induced anemia. J Natl Cancer Inst. 2006;98(4):273–84.

    PubMed  CAS  Google Scholar 

  198. Uehlinger DE, Gotch FA, Sheiner LB. A pharmacodynamic model of erythropoietin therapy for uremic anemia. Clin Pharmacol Ther. 1992;51(1):76–89.

    PubMed  CAS  Google Scholar 

  199. Lui SF, Chung WW, Leung CB, Chan K, Lai KN. Pharmacokinetics and pharmacodynamics of subcutaneous and intraperitoneal administration of recombinant human erythropoietin in patients on continuous ambulatory peritoneal dialysis. Clin Nephrol. 1990;33(1):47–51.

    PubMed  CAS  Google Scholar 

  200. Budha NR, Kovar A, Meibohm B. Comparative performance of cell life span and cell transit models for describing erythropoietic drug effects. AAPS J. 2011;13(4):650–61.

    PubMed  CAS  Google Scholar 

  201. Chanu P, Gieschke R, Charoin JE, Pannier A, Reigner B. Population pharmacokinetic/pharmacodynamic model for C.E.R.A. in both ESA-naive and ESA-treated chronic kidney disease patients with renal anemia. J Clin Pharmacol. 2010;50(5):507–20.

    PubMed  CAS  Google Scholar 

  202. Holford N. Pharmacokinetic/pharmacodynamic models for red cell responses to hematopoietic stimulation with and without chemotherapy. American Society of Clinical Pharmacology and Therapeutics Annual Meeting; 2–5 March 2005; Orlando.

  203. Heatherington AC, Henry D, Patel R, Tchekmedyian S, Berg R, Austin M, et al. The impact of timing of chemotherapy relative to darbepoetin alfa (DA) on DA pharmacokinetics (PK) and hematologic effects [abstract]. Clin Pharmacol Ther. 2004;75:P60.

    Google Scholar 

  204. Sasu BJ, Hartley C, Schultz H, McElroy P, Khaja R, Elliott S, et al. Comparison of epoetin alfa and darbepoetin alfa biological activity under different administration schedules in normal mice. Acta Haematol. 2005;113(3):163–74.

    PubMed  CAS  Google Scholar 

  205. Macdougall IC, Walker R, Provenzano R, de Alvaro F, Locay HR, Nader PC, Locatelli F, Dougherty FC, Beyer U; ARCTOS Study Investigators. C.E.R.A. corrects anemia in patients with chronic kidney disease not on dialysis: results of a randomized clinical trial. Clin J Am Soc Nephrol. 2008;3(2):337–47.

    Google Scholar 

  206. Mager DE, Wyska E, Jusko WJ. Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos. 2003;31(5):510–8.

    PubMed  CAS  Google Scholar 

  207. Macdougall IC. Optimizing the use of erythropoietic agents—pharmacokinetic and pharmacodynamic considerations. Nephrol Dial Transplant. 2002;17(Suppl 5):66–70.

    PubMed  CAS  Google Scholar 

  208. Black JW, Leff P. Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci. 1983;220(1219):141–62.

    PubMed  CAS  Google Scholar 

  209. Van der Graaf PH, Danhof M. Analysis of drug-receptor interactions in vivo: a new approach in pharmacokinetic-pharmacodynamic modelling. Int J Clin Pharmacol Ther. 1997;35(10):442–6.

    PubMed  Google Scholar 

  210. Nalbant D, Saleh M, Goldman FD, Widness JA, Veng-Pedersen P. Evidence of receptor-mediated elimination of erythropoietin by analysis of erythropoietin receptor mRNA expression in bone marrow and erythropoietin clearance during anemia. J Pharmacol Exp Ther. 2010;333(2):528–32.

    PubMed  CAS  Google Scholar 

  211. Broudy VC, Nakamoto B, Lin N, Papayannopoulou T. Dynamics of erythropoietin receptor expression on erythropoietin-responsive murine cell lines. Blood. 1990;75(8):1622–6.

    PubMed  CAS  Google Scholar 

  212. Macdougall IC, Matcham J, Gray SJ, Group NS. Correction of anaemia with darbepoetin alfa in patients with chronic kidney disease receiving dialysis. Nephrol Dial Transplant. 2003;18(3):576–81.

    PubMed  CAS  Google Scholar 

  213. Besarab A, Flaharty KK, Erslev AJ, McCrea JB, Vlasses PH, Medina F, et al. Clinical pharmacology and economics of recombinant human erythropoietin in end-stage renal disease: the case for subcutaneous administration. J Am Soc Nephrol. 1992;2(9):1405–16.

    PubMed  CAS  Google Scholar 

  214. Kiss Z, Elliott S, Jedynasty K, Tesar V, Szegedi J. Discovery and basic pharmacology of erythropoiesis-stimulating agents (ESAs), including the hyperglycosylated ESA, darbepoetin alfa: an update of the rationale and clinical impact. Eur J Clin Pharmacol. 2010;66(4):331–40.

    PubMed  CAS  Google Scholar 

  215. Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5(5):343–54.

    PubMed  CAS  Google Scholar 

  216. Kelley LL, Koury MJ, Bondurant MC, Koury ST, Sawyer ST, Wickrema A. Survival or death of individual proerythroblasts results from differing erythropoietin sensitivities: a mechanism for controlled rates of erythrocyte production. Blood. 1993;82(8):2340–52.

    PubMed  CAS  Google Scholar 

  217. Piron M, Loo M, Gothot A, Tassin F, Fillet G, Beguin Y. Cessation of intensive treatment with recombinant human erythropoietin is followed by secondary anemia. Blood. 2001;97(2):442–8.

    PubMed  CAS  Google Scholar 

  218. Macdougall IC, Robson R, Opatrna S, Liogier X, Pannier A, Jordan P, et al. Pharmacokinetics and pharmacodynamics of intravenous and subcutaneous continuous erythropoietin receptor activator (C.E.R.A.) in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2006;1(6):1211–5.

    PubMed  CAS  Google Scholar 

  219. Ateshkadi A, Johnson CA, Oxton LL, Hammond TG, Bohenek WS, Zimmerman SW. Pharmacokinetics of intraperitoneal, intravenous, and subcutaneous recombinant human erythropoietin in patients on continuous ambulatory peritoneal dialysis. Am J Kidney Dis. 1993;21(6):635–42.

    PubMed  CAS  Google Scholar 

  220. European Medicines Agency. Aranesp: product information (2012). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000332/WC500026149.pdf. Accessed 19 Jun 2013.

  221. Roche. Mircera solution for injection in pre-filled syringe: summary of product characteristics (2013). http://www.medicines.org.uk/emc/medicine/19960/SPC/. Accessed 19 Jun 2013.

Download references

Acknowledgments

Sameer Doshi, Susan Yue, Andrew Chow and Juan José Pérez-Ruixo are employees of Amgen Inc. and owned stock in Amgen Inc. at the time when the review was written. Wojciech Krzyzanski was a consultant for Amgen Inc. and did not receive any consultation fees for contributing to the current review. Steven Elliott is a patent holder of ESA-related patents and a previous employee and current consultant of Amgen Inc. The authors would like to thank Ewa Wandzioch, PhD, and Benjamin Scott, PhD (Complete Healthcare Communications, Inc.), whose work was funded by Amgen Inc., for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan José Pérez-Ruixo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doshi, S., Krzyzanski, W., Yue, S. et al. Clinical Pharmacokinetics and Pharmacodynamics of Erythropoiesis-Stimulating Agents. Clin Pharmacokinet 52, 1063–1083 (2013). https://doi.org/10.1007/s40262-013-0098-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-013-0098-x

Keywords

Navigation