Clinical Pharmacokinetics

, Volume 52, Issue 12, pp 1063–1083 | Cite as

Clinical Pharmacokinetics and Pharmacodynamics of Erythropoiesis-Stimulating Agents

  • Sameer Doshi
  • Wojciech Krzyzanski
  • Susan Yue
  • Steven Elliott
  • Andrew Chow
  • Juan José Pérez-Ruixo
Review Article


The cloning of the EPO gene in the early 1980s allowed for the development of recombinant erythropoietins and analogues [erythropoiesis-stimulating agents (ESAs)], offering an alternative to transfusion as a method of raising haemoglobin (Hb) levels, which have been used for more than 20 years to treat anaemia in millions of anaemic patients. There are now a number of ESAs available worldwide for the treatment of anaemia, approved for different routes of administration (intravenous and subcutaneous) and dosing intervals (three times weekly, weekly, biweekly and monthly). In this review, we discuss the pharmacokinetic characteristics, including absorption, distribution and elimination processes, across the different ESAs. Incomplete and slow lymphatic absorption, with limited extravascular distribution, and minor contributions of the target-mediated drug disposition to the overall elimination are the common characteristics across the marketed ESA. Additionally, we assess the similarities and differences of ESAs related to pharmacodynamics in the context of the different biomarkers used to monitor the magnitude and duration of the effect, and introduce the concept of the minimum effective concentration of the ESA. The relationship between the minimum effective concentration and the half-life suggests that the time during which drug concentrations are above the minimum effective concentration is the main determinant of ESA efficacy in increasing Hb levels. The tolerance phenomenon and its physiological mechanism and implications for ESA dosing are discussed. Finally, the areas of future clinical pharmacology research are envisioned.


Chronic Kidney Disease Chronic Kidney Disease Patient Darbepoetin Alfa Minimal Effective Concentration TMDD Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Sameer Doshi, Susan Yue, Andrew Chow and Juan José Pérez-Ruixo are employees of Amgen Inc. and owned stock in Amgen Inc. at the time when the review was written. Wojciech Krzyzanski was a consultant for Amgen Inc. and did not receive any consultation fees for contributing to the current review. Steven Elliott is a patent holder of ESA-related patents and a previous employee and current consultant of Amgen Inc. The authors would like to thank Ewa Wandzioch, PhD, and Benjamin Scott, PhD (Complete Healthcare Communications, Inc.), whose work was funded by Amgen Inc., for editorial assistance.


  1. 1.
    Jacobson LO, Goldwasser E, Fried W, Plzak L. Role of the kidney in erythropoiesis. Nature. 1957;179(4560):633–4.PubMedGoogle Scholar
  2. 2.
    Miyake T, Kung CK, Goldwasser E. Purification of human erythropoietin. J Biol Chem. 1977;252(15):5558–64.PubMedGoogle Scholar
  3. 3.
    Reissmann KR. Studies on the mechanism of erythropoietic stimulation in parabiotic rats during hypoxia. Blood. 1950;5(4):372–80.PubMedGoogle Scholar
  4. 4.
    Fisher JW, Birdwell BJ. The production of an erythropoietic factor by the in situ perfused kidney. Acta Haematol. 1961;26(4):224–32.PubMedGoogle Scholar
  5. 5.
    Kuratowska Z, Lewartowski B, Michalak E. Studies on the production of erythropoietin by isolated perfused organs. Blood. 1961;18:527–34.PubMedGoogle Scholar
  6. 6.
    Lin FK, Suggs S, Lin CH, Browne JK, Smalling R, Egrie JC, et al. Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci USA. 1985;82(22):7580–4.PubMedGoogle Scholar
  7. 7.
    Jacobs K, Shoemaker C, Rudersdorf R, Neill SD, Kaufman RJ, Mufson A, et al. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature. 1985;313(6005):806–10.PubMedGoogle Scholar
  8. 8.
    Halstenson CE, Macres M, Katz SA, Schnieders JR, Watanabe M, Sobota JT, et al. Comparative pharmacokinetics and pharmacodynamics of epoetin alfa and epoetin beta. Clin Pharmacol Ther. 1991;50(6):702–12.PubMedGoogle Scholar
  9. 9.
    Elliott S, Pham E, Macdougall IC. Erythropoietins: a common mechanism of action. Exp Hematol. 2008;36(12):1573–84.PubMedGoogle Scholar
  10. 10.
    Egrie JC, Strickland TW, Lane J, Aoki K, Cohen AM, Smalling R, et al. Characterization and biological effects of recombinant human erythropoietin. Immunobiology. 1986;172(3–5):213–24.PubMedGoogle Scholar
  11. 11.
    Imai N, Kawamura A, Higuchi M, Oh-eda M, Orita T, Kawaguchi T, et al. Physicochemical and biological comparison of recombinant human erythropoietin with human urinary erythropoietin. J Biochem. 1990;107(3):352–9.PubMedGoogle Scholar
  12. 12.
    Rency MA, Scoble HA, Kim Y. Structural characterization of natural human urinary and recombinant DNA-derived erythropoietin: identification of des-arginine 166 erythropoietin. J Biochem. 1987;262:17156–63.Google Scholar
  13. 13.
    Jelkmann W. Use of recombinant human erythropoietin as an antianemic and performance enhancing drug. Curr Pharm Biotechnol. 2000;1(1):11–31.PubMedGoogle Scholar
  14. 14.
    Egrie JC, Browne JK. Development and characterization of novel erythropoiesis stimulating protein (NESP). Nephrol Dial Transplant. 2001;16(Suppl 3):3–13.PubMedGoogle Scholar
  15. 15.
    Macdougall IC, Gray SJ, Elston O, Breen C, Jenkins B, Browne J, et al. Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J Am Soc Nephrol. 1999;10(11):2392–5.PubMedGoogle Scholar
  16. 16.
    Elliott S, Lorenzini T, Asher S, Aoki K, Brankow D, Buck L, et al. Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat Biotechnol. 2003;21(4):414–21.PubMedGoogle Scholar
  17. 17.
    Sinclair AM, Elliott S. Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci. 2005;94(8):1626–35.PubMedGoogle Scholar
  18. 18.
    Egrie JC, Dwyer E, Browne JK, Hitz A, Lykos MA. Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol. 2003;31(4):290–9.PubMedGoogle Scholar
  19. 19.
    Vansteenkiste J, Pirker R, Massuti B, Barata F, Font A, Fiegl M, et al. Double-blind, placebo-controlled, randomized phase III trial of darbepoetin alfa in lung cancer patients receiving chemotherapy. J Natl Cancer Inst. 2002;94(16):1211–20.PubMedGoogle Scholar
  20. 20.
    Nissenson AR, Swan SK, Lindberg JS, Soroka SD, Beatey R, Wang C, et al. Randomized, controlled trial of darbepoetin alfa for the treatment of anemia in hemodialysis patients. Am J Kidney Dis. 2002;40(1):110–8.PubMedGoogle Scholar
  21. 21.
    Macdougall IC. CERA (continuous erythropoietin receptor activator): a new erythropoiesis-stimulating agent for the treatment of anemia. Curr Hematol Rep. 2005;4(6):436–40.PubMedGoogle Scholar
  22. 22.
    Gascon P, Pirker R, Del Mastro L, Durrwell L. Effects of CERA (continuous erythropoietin receptor activator) in patients with advanced non-small-cell lung cancer (NSCLC) receiving chemotherapy: results of a phase II study. Ann Oncol. 2010;21(10):2029–39.PubMedGoogle Scholar
  23. 23.
    Jarsch M, Brandt M, Lanzendorfer M, Haselbeck A. Comparative erythropoietin receptor binding kinetics of C.E.R.A. and epoetin-beta determined by surface plasmon resonance and competition binding assay. Pharmacology. 2008;81(1):63–9.PubMedGoogle Scholar
  24. 24.
    European Medicines Agency. Abseamed: EPAR summary for the public (2012). Accessed 19 Jun 2013.
  25. 25.
    European Medicines Agency. Binocrit: EPAR summary for the public (2012). Accessed 19 Jun 2013.
  26. 26.
    European Medicines Agency. Epoetin Alfa HEXAL: EPAR summary for the public (2012). Accessed 19 Jun 2013.
  27. 27.
    European Medicines Agency. Retacrit: EPAR summary for the public (2011). Accessed 19 Jun 2013.
  28. 28.
    European Medicines Agency. Silapo: EPAR summary for the public (2012). Accessed 19 Jun 2013.
  29. 29.
    European Medicines Agency. Silapo: scientific discussion (2007). Accessed 19 Jun 2013.
  30. 30.
    European Medicines Agency. Retacrit: scientific discussion (2007). Accessed 19 Jun 2013.
  31. 31.
    Erslev AJ. In vitro production of erythropoietin by kidneys perfused with a serum-free solution. Blood. 1974;44(1):77–85.PubMedGoogle Scholar
  32. 32.
    Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995;270(3):1230–7.PubMedGoogle Scholar
  33. 33.
    Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci USA. 1991;88(13):5680–4.PubMedGoogle Scholar
  34. 34.
    Syed RS, Reid SW, Li C, Cheetham JC, Aoki KH, Liu B, et al. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature. 1998;395(6701):511–6.PubMedGoogle Scholar
  35. 35.
    Elliott S, Lorenzini T, Chang D, Barzilay J, Delorme E. Mapping of the active site of recombinant human erythropoietin. Blood. 1997;89(2):493–502.PubMedGoogle Scholar
  36. 36.
    D’Andrea AD, Lodish HF, Wong GG. Expression cloning of the murine erythropoietin receptor. Cell. 1989;57(2):277–85.PubMedGoogle Scholar
  37. 37.
    D’Andrea AD, Zon LI. Erythropoietin receptor: subunit structure and activation. J Clin Invest. 1990;86(3):681–7.PubMedGoogle Scholar
  38. 38.
    Elliott S, Sinclair AM. The effect of erythropoietin on normal and neoplastic cells. Biologics. 2012;6:163–89.PubMedGoogle Scholar
  39. 39.
    Fraser JK, Lin FK, Berridge MV. Expression of high affinity receptors for erythropoietin on human bone marrow cells and on the human erythroleukemic cell line. HEL Exp Hematol. 1988;16(10):836–42.Google Scholar
  40. 40.
    Sawyer ST, Krantz SB, Goldwasser E. Binding and receptor-mediated endocytosis of erythropoietin in Friend virus-infected erythroid cells. J Biol Chem. 1987;262(12):5554–62.PubMedGoogle Scholar
  41. 41.
    Matthews DJ, Topping RS, Cass RT, Giebel LB. A sequential dimerization mechanism for erythropoietin receptor activation. Proc Natl Acad Sci USA. 1996;93(18):9471–6.PubMedGoogle Scholar
  42. 42.
    Philo JS, Aoki KH, Arakawa T, Narhi LO, Wen J. Dimerization of the extracellular domain of the erythropoietin (EPO) receptor by EPO: one high-affinity and one low-affinity interaction. Biochemistry (Mosc). 1996;35(5):1681–91.Google Scholar
  43. 43.
    Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev. 1992;72(2):449–89.PubMedGoogle Scholar
  44. 44.
    Fisher JW. Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood). 2003;228(1):1–14.PubMedGoogle Scholar
  45. 45.
    Fisher JW. Landmark advances in the development of erythropoietin. Exp Biol Med (Maywood). 2010;235(12):1398–411.PubMedGoogle Scholar
  46. 46.
    Sawyer ST, Krantz SB, Sawada K. Receptors for erythropoietin in mouse and human erythroid cells and placenta. Blood. 1989;74(1):103–9.PubMedGoogle Scholar
  47. 47.
    Walrafen P, Verdier F, Kadri Z, Chretien S, Lacombe C, Mayeux P. Both proteasomes and lysosomes degrade the activated erythropoietin receptor. Blood. 2005;105(2):600–8.PubMedGoogle Scholar
  48. 48.
    Gross AW, Lodish HF. Cellular trafficking and degradation of erythropoietin and novel erythropoiesis stimulating protein (NESP). J Biol Chem. 2006;281(4):2024–32.PubMedGoogle Scholar
  49. 49.
    Koury MJ, Bondurant MC. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science. 1990;248(4953):378–81.PubMedGoogle Scholar
  50. 50.
    Rodak B, Fritsma G, Doig K. Hematology: clinical principles and applications. 3rd ed. Philadelphia: Elsevier Health Sciences; 2007.Google Scholar
  51. 51.
    Glaspy J, Crawford J, Vansteenkiste J, Henry D, Rao S, Bowers P, et al. Erythropoiesis-stimulating agents in oncology: a study-level meta-analysis of survival and other safety outcomes. Br J Cancer. 2010;102(2):301–15.PubMedGoogle Scholar
  52. 52.
    Bohlius J, Tonia T, Schwarzer G. Twist and shout: one decade of meta-analyses of erythropoiesis-stimulating agents in cancer patients. Acta Haematol. 2011;125(1–2):55–67.PubMedGoogle Scholar
  53. 53.
    Elliott S, Busse L, Bass MB, Lu H, Sarosi I, Sinclair AM, et al. Anti-EPO receptor antibodies do not predict EPO receptor expression. Blood. 2006;107(5):1892–5.PubMedGoogle Scholar
  54. 54.
    Swift S, Ellison AR, Kassner P, McCaffery I, Rossi J, Sinclair AM, et al. Absence of functional EpoR expression in human tumor cell lines. Blood. 2010;115(21):4254–63.PubMedGoogle Scholar
  55. 55.
    Sinclair AM, Coxon A, McCaffery I, Kaufman S, Paweletz K, Liu L, et al. Functional erythropoietin receptor is undetectable in endothelial, cardiac, neuronal, and renal cells. Blood. 2010;115(21):4264–72.PubMedGoogle Scholar
  56. 56.
    Fisher JW, Koury S, Ducey T, Mendel S. Erythropoietin production by interstitial cells of hypoxic monkey kidneys. Br J Haematol. 1996;95(1):27–32.PubMedGoogle Scholar
  57. 57.
    Koury MJ, Bondurant MC. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cells. J Cell Physiol. 1988;137(1):65–74.PubMedGoogle Scholar
  58. 58.
    Spivak JL. The biology and clinical applications of recombinant erythropoietin. Semin Oncol. 1998;25(3 Suppl 7):7–11.PubMedGoogle Scholar
  59. 59.
    Spivak JL. Changing paradigms in anemia management. Adv Stud Med. 2002;22:610–9.Google Scholar
  60. 60.
    Besarab A. Physiological and pharmacodynamic considerations for route of EPO administration. Semin Nephrol. 2000;20(4):364–74.PubMedGoogle Scholar
  61. 61.
    Souillard A, Audran M, Bressolle F, Gareau R, Duvallet A, Chanal JL. Pharmacokinetics and pharmacodynamics of recombinant human erythropoietin in athletes: blood sampling and doping control. Br J Clin Pharmacol. 1996;42(3):355–64.PubMedGoogle Scholar
  62. 62.
    Koopman MG, Koomen GC, Krediet RT, de Moor EA, Hoek FJ, Arisz L. Circadian rhythm of glomerular filtration rate in normal individuals. Clin Sci (Lond). 1989;77(1):105–11.PubMedGoogle Scholar
  63. 63.
    Wide L, Bengtsson C, Birgegard G. Circadian rhythm of erythropoietin in human serum. Br J Haematol. 1989;72(1):85–90.PubMedGoogle Scholar
  64. 64.
    Pasqualetti P, Collacciani A, Casale R. Circadian rhythm of serum erythropoietin in myelodysplastic syndromes. Eur Rev Med Pharmacol Sci. 2000;4(5–6):111–5.PubMedGoogle Scholar
  65. 65.
    Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin: results of a combined phase I and II clinical trial. N Engl J Med. 1987;316(2):73–8.PubMedGoogle Scholar
  66. 66.
    Eschbach JW, Abdulhadi MH, Browne JK, Delano BG, Downing MR, Egrie JC, et al. Recombinant human erythropoietin in anemic patients with end-stage renal disease: results of a phase III multicenter clinical trial. Ann Intern Med. 1989;111(12):992–1000.PubMedGoogle Scholar
  67. 67.
    Erslev AJ. Erythropoietin. N Engl J Med. 1991;324(19):1339–44.PubMedGoogle Scholar
  68. 68.
    Thorling EB, Ersbak J. Erythrocytosis and hypernephroma. Scand J Haematol. 1964;1:38–46.PubMedGoogle Scholar
  69. 69.
    Kazal LA, Erslev AJ. Erythropoietin production in renal tumors. Ann Clin Lab Sci. 1975;5(2):98–109.PubMedGoogle Scholar
  70. 70.
    Ueno M, Seferynska I, Beckman B, Brookins J, Nakashima J, Fisher JW. Enhanced erythropoietin secretion in hepatoblastoma cells in response to hypoxia. Am J Physiol. 1989;257(4 Pt 1):C743–9.PubMedGoogle Scholar
  71. 71.
    Trimble M, Caro J, Talalla A, Brain M. Secondary erythrocytosis due to a cerebellar hemangioblastoma: demonstration of erythropoietin mRNA in the tumor. Blood. 1991;78(3):599–601.PubMedGoogle Scholar
  72. 72.
    Fried W, Ward HP, Hopeman AR. Leiomyoma and erythrocytosis: a tumor producing a factor which increases erythropoietin production. Report of case. Blood. 1968;31(6):813–6.PubMedGoogle Scholar
  73. 73.
    Davies SV, Fegan CD, Kendall R, Beguin Y, Cavill I. Serum erythropoietin during autologous bone marrow transplantation: relationship to measures of erythroid activity. Clin Lab Haematol. 1995;17(2):139–44.PubMedGoogle Scholar
  74. 74.
    Pavlovic-Kentera V, Milenkovic P, Ruvidic R, Jovanovic V, Biljanovic-Paunovic L. Erythropoietin in aplastic anemia. Blut. 1979;39(5):345–50.PubMedGoogle Scholar
  75. 75.
    Hammond D, Shore N, Movassaghi N. Production, utilization and excretion of erythropoietin. I: Chronic anemias. II: Aplastic crisis. 3: Erythropoietic effects of normal plasma. Ann N Y Acad Sci. 1968;149(1):516–27.PubMedGoogle Scholar
  76. 76.
    Alexanian R. Erythropoietin excretion in bone marrow failure and hemolytic anemia. J Lab Clin Med. 1973;82(3):438–45.PubMedGoogle Scholar
  77. 77.
    Embury SH, Garcia JF, Mohandas N, Pennathur-Das R, Clark MR. Effects of oxygen inhalation on endogenous erythropoietin kinetics, erythropoiesis, and properties of blood cells in sickle-cell anemia. N Engl J Med. 1984;311(5):291–5.PubMedGoogle Scholar
  78. 78.
    Lee FS, Percy MJ. The HIF pathway and erythrocytosis. Annu Rev Pathol. 2011;6:165–92.PubMedGoogle Scholar
  79. 79.
    McMahon FG, Vargas R, Ryan M, Jain AK, Abels RI, Perry B, et al. Pharmacokinetics and effects of recombinant human erythropoietin after intravenous and subcutaneous injections in healthy volunteers. Blood. 1990;76(9):1718–22.PubMedGoogle Scholar
  80. 80.
    Boxenbaum H. Pharmacokinetics tricks and traps: flip-flop models. J Pharm Pharm Sci. 1998;1(3):90–1.PubMedGoogle Scholar
  81. 81.
    Yang BB, Kido A. Pharmacokinetics and pharmacodynamics of pegfilgrastim. Clin Pharmacokinet. 2011;50(5):295–306.PubMedGoogle Scholar
  82. 82.
    Wang YM, Krzyzanski W, Doshi S, Xiao JJ, Perez-Ruixo JJ, Chow AT. Pharmacodynamics-mediated drug disposition (PDMDD) and precursor pool lifespan model for single dose of romiplostim in healthy subjects. AAPS J. 2010;12(4):729–40.PubMedGoogle Scholar
  83. 83.
    Porter CJ, Charman SA. Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci. 2000;89(3):297–310.PubMedGoogle Scholar
  84. 84.
    Supersaxo A, Hein WR, Steffen H. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res. 1990;7(2):167–9.PubMedGoogle Scholar
  85. 85.
    Leak LV. The structure of lymphatic capillaries in lymph formation. Fed Proc. 1976;35(8):1863–71.PubMedGoogle Scholar
  86. 86.
    McLennan DN, Porter CJ, Edwards GA, Martin SW, Heatherington AC, Charman SA. Lymphatic absorption is the primary contributor to the systemic availability of epoetin alfa following subcutaneous administration to sheep. J Pharmacol Exp Ther. 2005;313(1):345–51.PubMedGoogle Scholar
  87. 87.
    Olsson-Gisleskog P, Jacqmin P, Perez-Ruixo JJ. Population pharmacokinetics meta-analysis of recombinant human erythropoietin in healthy subjects. Clin Pharmacokinet. 2007;46(2):159–73.PubMedGoogle Scholar
  88. 88.
    Ait-Oudhia S, Vermeulen A, Krzyzanski W. Non-linear mixed effect modeling of the time-variant disposition of erythropoietin in anemic cancer patients. Biopharm Drug Dispos. 2011;32(1):1–15.PubMedGoogle Scholar
  89. 89.
    Krzyzanski W, Jusko WJ, Wacholtz MC, Minton N, Cheung WK. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after multiple subcutaneous doses in healthy subjects. Eur J Pharm Sci. 2005;26(3–4):295–306.PubMedGoogle Scholar
  90. 90.
    Ramakrishnan R, Cheung WK, Wacholtz MC, Minton N, Jusko WJ. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after single and multiple doses in healthy volunteers. J Clin Pharmacol. 2004;44(9):991–1002.PubMedGoogle Scholar
  91. 91.
    Jensen JD, Jensen LW, Madsen JK. The pharmacokinetics of recombinant human erythropoietin after subcutaneous injection at different sites. Eur J Clin Pharmacol. 1994;46(4):333–7.PubMedGoogle Scholar
  92. 92.
    Fishbane S, Pannier A, Liogier X, Jordan P, Dougherty FC, Reigner B. Pharmacokinetic and pharmacodynamic properties of methoxy polyethylene glycol-epoetin beta are unaffected by the site of subcutaneous administration. J Clin Pharmacol. 2007;47(11):1390–7.Google Scholar
  93. 93.
    McLennan DN, Porter CJ, Edwards GA, Heatherington AC, Martin SW, Charman SA. The absorption of darbepoetin alfa occurs predominantly via the lymphatics following subcutaneous administration to sheep. Pharm Res. 2006;23(9):2060–6.PubMedGoogle Scholar
  94. 94.
    Glaspy J, Henry D, Patel R, Tchekmedyian S, Applebaum S, Berdeaux D, et al. Effects of chemotherapy on endogenous erythropoietin levels and the pharmacokinetics and erythropoietic response of darbepoetin alfa: a randomised clinical trial of synchronous versus asynchronous dosing of darbepoetin alfa. Eur J Cancer. 2005;41(8):1140–9.PubMedGoogle Scholar
  95. 95.
    Padhi D, Ni L, Cooke B, Marino R, Jang G. An extended terminal half-life for darbepoetin alfa: results from a single-dose pharmacokinetic study in patients with chronic kidney disease not receiving dialysis. Clin Pharmacokinet. 2006;45(5):503–10.PubMedGoogle Scholar
  96. 96.
    Agoram B, Heatherington AC, Gastonguay MR. Development and evaluation of a population pharmacokinetic-pharmacodynamic model of darbepoetin alfa in patients with nonmyeloid malignancies undergoing multicycle chemotherapy. AAPS J. 2006;8(3):E552–63.PubMedGoogle Scholar
  97. 97.
    Agoram B, Sutjandra L, Sullivan JT. Population pharmacokinetics of darbepoetin alfa in healthy subjects. Br J Clin Pharmacol. 2007;63(1):41–52.PubMedGoogle Scholar
  98. 98.
    Doshi S, Chow A, Perez Ruixo JJ. Exposure-response modeling of darbepoetin alfa in anemic patients with chronic kidney disease not receiving dialysis. J Clin Pharmacol. 2010;50(9 Suppl):75S–90S.Google Scholar
  99. 99.
    Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev. 2003;55(10):1261–77.PubMedGoogle Scholar
  100. 100.
    European Medicines Agency. Mircera: EPAR—product information (2012). Accessed 19 Jun 2012.
  101. 101.
    Fishbane S, Pannier A, Liogier X, Jordan P, Dougherty FC, Reigner B. Pharmacokinetic and pharmacodynamic properties of methoxy polyethylene glycol-epoetin beta are unaffected by the site of subcutaneous administration. J Clin Pharmacol. 2007;47(11):1390–7.PubMedGoogle Scholar
  102. 102.
    Sutjandra L, Rodriguez RD, Doshi S, Ma M, Peterson MC, Jang GR, et al. Population pharmacokinetic meta-analysis of denosumab in healthy subjects and postmenopausal women with osteopenia or osteoporosis. Clin Pharmacokinet. 2011;50(12):793–807.PubMedGoogle Scholar
  103. 103.
    Kakkar T, Sung C, Gibiansky L, Vu T, Narayanan A, Lin SL, et al. Population PK and IgE pharmacodynamic analysis of a fully human monoclonal antibody against IL4 receptor. Pharm Res. 2011;28(10):2530–42.PubMedGoogle Scholar
  104. 104.
    Salmonson T, Danielson BG, Wikstrom B. The pharmacokinetics of recombinant human erythropoietin after intravenous and subcutaneous administration to healthy subjects. Br J Clin Pharmacol. 1990;29(6):709–13.PubMedGoogle Scholar
  105. 105.
    Jensen JD, Madsen JK, Jensen LW, Pedersen EB. Reduced production, absorption, and elimination of erythropoietin in uremia compared with healthy volunteers. J Am Soc Nephrol. 1994;5(2):177–85.PubMedGoogle Scholar
  106. 106.
    Deicher R, Horl WH. Differentiating factors between erythropoiesis-stimulating agents: a guide to selection for anaemia of chronic kidney disease. Drugs. 2004;64(5):499–509.PubMedGoogle Scholar
  107. 107.
    Cheung WK, Goon BL, Guilfoyle MC, Wacholtz MC. Pharmacokinetics and pharmacodynamics of recombinant human erythropoietin after single and multiple subcutaneous doses to healthy subjects. Clin Pharmacol Ther. 1998;64(4):412–23.PubMedGoogle Scholar
  108. 108.
    Cheung W, Minton N, Gunawardena K. Pharmacokinetics and pharmacodynamics of epoetin alfa once weekly and three times weekly. Eur J Clin Pharmacol. 2001;57(5):411–8.PubMedGoogle Scholar
  109. 109.
    Bommer J, Barth HP, Zeier M, Mandelbaum A, Bommer G, Ritz E, et al. Efficacy comparison of intravenous and subcutaneous recombinant human erythropoietin administration in hemodialysis patients. Contrib Nephrol. 1991;88:136–43.PubMedGoogle Scholar
  110. 110.
    Kaufman JS, Reda DJ, Fye CL, Goldfarb DS, Henderson WG, Kleinman JG, et al. Subcutaneous compared with intravenous epoetin in patients receiving hemodialysis. Department of Veterans Affairs Cooperative Study Group on Erythropoietin in Hemodialysis Patients. N Engl J Med. 1998;339(9):578–83.PubMedGoogle Scholar
  111. 111.
    Kampf D, Kahl A, Passlick J, et al. Single-dose kinetics of recombinant human erythropoietin after intravenous, subcutaneous and intraperitoneal administration: preliminary results. Contrib Nephrol. 1989;76:106–11.PubMedGoogle Scholar
  112. 112.
    Perez-Ruixo JJ, Cucala-Ramos M, Garcia-Gonzalo E, Del Val Romero B, Valveny N. Between-subjects hemoglobin variability is not associated with the erythropoiesis-stimulating agent used to treat anemia in dialysis: a meta-analysis. Br J Clin Pharmacol. 2012 (In press).Google Scholar
  113. 113.
    Macdougall IC, Roberts DE, Coles GA, Williams JD. Clinical pharmacokinetics of epoetin (recombinant human erythropoietin). Clin Pharmacokinet. 1991;20(2):99–113.PubMedGoogle Scholar
  114. 114.
    Flaharty KK, Caro J, Erslev A, Whalen JJ, Morris EM, Bjornsson TD, et al. Pharmacokinetics and erythropoietic response to human recombinant erythropoietin in healthy men. Clin Pharmacol Ther. 1990;47(5):557–64.PubMedGoogle Scholar
  115. 115.
    Kompella A. Pharmacokinetics of peptide and protein drugs. In: Lee V, editor. Peptide and protein drug delivery. New York: Marcel Dekker; 1991. p. 391–84.Google Scholar
  116. 116.
    Braeckman R. Pharmacokinetics and pharmacodynamics of protein therapeutics. In: Reid E, editor. Peptides and protein drug analysis. New York: Marcel Dekker; 2000. p. 633–69.Google Scholar
  117. 117.
    Kinoshita H, Ohishi N, Kato M, Tokura S, Okazaki A. Pharmacokinetics and distribution of recombinant erythropoietin in rats. Arzneimittelforschung. 1992;42(2):174–8.PubMedGoogle Scholar
  118. 118.
    Spivak JL, Hogans BB. The in vivo metabolism of recombinant human erythropoietin in the rat. Blood. 1989;73(1):90–9.PubMedGoogle Scholar
  119. 119.
    Uji Y, Hirashima K, Hirasawa Y, Tohira Y, Mizuno K. Recombinant erythropoietin phase I clinical study—single intravenous administration. Med Consult N Rem. 1989;26:1–28.Google Scholar
  120. 120.
    Uji Y, Hirashima K, Hirasawa Y, Tohira Y, Mizuno K. Recombinant erythropoietin phase I clinical study—multiple intravenous administration. Med Consult N Rem. 1989;26:29–44.Google Scholar
  121. 121.
    Woo S, Jusko WJ. Interspecies comparisons of pharmacokinetics and pharmacodynamics of recombinant human erythropoietin. Drug Metab Dispos. 2007;35(9):1672–8.PubMedGoogle Scholar
  122. 122.
    Allon M, Kleinman K, Walczyk M, Kaupke C, Messer-Mann L, Olson K, et al. Pharmacokinetics and pharmacodynamics of darbepoetin alfa and epoetin in patients undergoing dialysis. Clin Pharmacol Ther. 2002;72(5):546–55.PubMedGoogle Scholar
  123. 123.
    Heatherington AC, Schuller J, Mercer AJ. Pharmacokinetics of novel erythropoiesis stimulating protein (NESP) in cancer patients: preliminary report. Br J Cancer. 2001;84(Suppl 1):11–6.PubMedGoogle Scholar
  124. 124.
    Yoon WH, Park SJ, Kim IC, Lee MG. Pharmacokinetics of recombinant human erythropoietin in rabbits and 3/4 nephrectomized rats. Res Commun Mol Pathol Pharmacol. 1997;96(2):227–40.PubMedGoogle Scholar
  125. 125.
    Jang G. Darbepoetin alfa (Aranesp) pharmacokinetics is comparable in chronic kidney disease (CKD) patients receiving and not receiving dialysis, in pediatric patients and in healthy adults. American Society of Nephrology 38th Annual Renal Week Meeting; 8–13 November 2005; Philadelphia.Google Scholar
  126. 126.
    Nielsen OJ, Egfjord M, Hirth P. The metabolism of recombinant erythropoietin in the isolated perfused rat liver. Liver. 1990;10(6):343–9.PubMedGoogle Scholar
  127. 127.
    Widness JA, Veng-Pedersen P, Schmidt RL, Lowe LS, Kisthard JA, Peters C. In vivo 125I-erythropoietin pharmacokinetics are unchanged after anesthesia, nephrectomy and hepatectomy in sheep. J Pharmacol Exp Ther. 1996;279(3):1205–10.PubMedGoogle Scholar
  128. 128.
    Jensen JD, Jensen LW, Madsen JK, Poulsen L. The metabolism of erythropoietin in liver cirrhosis patients compared with healthy volunteers. Eur J Haematol. 1995;54(2):111–6.PubMedGoogle Scholar
  129. 129.
    Chapel S, Veng-Pedersen P, Hohl RJ, Schmidt RL, McGuire EM, Widness JA. Changes in erythropoietin pharmacokinetics following busulfan-induced bone marrow ablation in sheep: evidence for bone marrow as a major erythropoietin elimination pathway. J Pharmacol Exp Ther. 2001;298(2):820–4.PubMedGoogle Scholar
  130. 130.
    Widness JA, Schmidt RL, Hohl RJ, Goldman FD, Al-Huniti NH, Freise KJ, et al. Change in erythropoietin pharmacokinetics following hematopoietic transplantation. Clin Pharmacol Ther. 2007;81(6):873–9.PubMedGoogle Scholar
  131. 131.
    Heatherington AC, Dittrich C, Sullivan JT, Rossi G, Schueller J. Pharmacokinetics of darbepoetin alfa after intravenous or subcutaneous administration in patients with non-myeloid malignancies undergoing chemotherapy. Clin Pharmacokinet. 2006;45(2):199–211.PubMedGoogle Scholar
  132. 132.
    Agoram B, Aoki K, Doshi S, Gegg C, Jang G, Molineux G, et al. Investigation of the effects of altered receptor binding activity on the clearance of erythropoiesis-stimulating proteins: nonerythropoietin receptor-mediated pathways may play a major role. J Pharm Sci. 2009;98(6):2198–211.PubMedGoogle Scholar
  133. 133.
    Elliott S, Egrie J, Browne J, Lorenzini T, Busse L, Rogers N, et al. Control of rHuEPO biological activity: the role of carbohydrate. Exp Hematol. 2004;32(12):1146–55.PubMedGoogle Scholar
  134. 134.
    Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2(3):214–21.PubMedGoogle Scholar
  135. 135.
    Molineux G. Pegylation: engineering improved biopharmaceuticals for oncology. Pharmacotherapy. 2003;23(8 Pt 2):3S–8S.PubMedGoogle Scholar
  136. 136.
    Jolling K, Ruixo JJ, Hemeryck A, Piotrovskij V, Greway T. Population pharmacokinetic analysis of pegylated human erythropoietin in rats. J Pharm Sci. 2004;93(12):3027–38.PubMedGoogle Scholar
  137. 137.
    Jolling K, Perez Ruixo JJ, Hemeryck A, Vermeulen A, Greway T. Mixed-effects modelling of the interspecies pharmacokinetic scaling of pegylated human erythropoietin. Eur J Pharm Sci. 2005;24(5):465–75.PubMedGoogle Scholar
  138. 138.
    Veng-Pedersen P, Widness JA, Pereira LM, Peters C, Schmidt RL, Lowe LS. Kinetic evaluation of nonlinear drug elimination by a disposition decomposition analysis: application to the analysis of the nonlinear elimination kinetics of erythropoietin in adult humans. J Pharm Sci. 1995;84(6):760–7.PubMedGoogle Scholar
  139. 139.
    Kato M, Kamiyama H, Okazaki A, Kumaki K, Kato Y, Sugiyama Y. Mechanism for the nonlinear pharmacokinetics of erythropoietin in rats. J Pharmacol Exp Ther. 1997;283(2):520–7.PubMedGoogle Scholar
  140. 140.
    Ramakrishnan R, Cheung WK, Farrell F, Joffee L, Jusko WJ. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after intravenous and subcutaneous dose administration in cynomolgus monkeys. J Pharmacol Exp Ther. 2003;306(1):324–31.PubMedGoogle Scholar
  141. 141.
    Veng-Pedersen P, Chapel S, Al-Huniti NH, Schmidt RL, Sedars EM, Hohl RJ, et al. Pharmacokinetic tracer kinetics analysis of changes in erythropoietin receptor population in phlebotomy-induced anemia and bone marrow ablation. Biopharm Drug Dispos. 2004;25(4):149–56.PubMedGoogle Scholar
  142. 142.
    Veng-Pedersen P, Widness JA, Pereira LM, Schmidt RL, Lowe LS. A comparison of nonlinear pharmacokinetics of erythropoietin in sheep and humans. Biopharm Drug Dispos. 1999;20(4):217–23.PubMedGoogle Scholar
  143. 143.
    Widness JA, Veng-Pedersen P, Peters C, Pereira LM, Schmidt RL, Lowe LS. Erythropoietin pharmacokinetics in premature infants: developmental, nonlinearity, and treatment effects. J Appl Physiol. 1996;80(1):140–8.PubMedGoogle Scholar
  144. 144.
    Doshi S, Perez-Ruixo JJ, Jang GR, Chow AT. Pharmacokinetics of erythropoiesis-stimulating agents. In: Molineaux G, Foote MA, Elliott S, editors. Erythropoietins and erythropoiesis: molecular, cellular, preclinical, and clinical biology. 2nd ed. Basel: Birkhauser Verlag AG; 2009. p. 195–224.Google Scholar
  145. 145.
    Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28(6):507–32.PubMedGoogle Scholar
  146. 146.
    Mager DE, Krzyzanski W. Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res. 2005;22(10):1589–96.PubMedGoogle Scholar
  147. 147.
    Woo S, Krzyzanski W, Jusko WJ. Target-mediated pharmacokinetic and pharmacodynamic model of recombinant human erythropoietin (rHuEPO). J Pharmacokinet Pharmacodyn. 2007;34(6):849–68.PubMedGoogle Scholar
  148. 148.
    Wagner JG. Biopharmaceutics and relevant pharmacokinetics. Hamilton: Drug Intelligence Publications; 1971.Google Scholar
  149. 149.
    Yan X, Krzyzanski W. Dose correction for the Michaelis–Menten approximation of the target-mediated drug disposition model. J Pharmacokinet Pharmacodyn. 2012;39(2):141–6.PubMedGoogle Scholar
  150. 150.
    Nielsen OJ. Pharmacokinetics of recombinant human erythropoietin in chronic haemodialysis patients. Pharmacol Toxicol. 1990;66(2):83–6.PubMedGoogle Scholar
  151. 151.
    Lim VS, DeGowin RL, Zavala D, Kirchner PT, Abels R, Perry P, et al. Recombinant human erythropoietin treatment in pre-dialysis patients: a double-blind placebo-controlled trial. Ann Intern Med. 1989;110(2):108–14.PubMedGoogle Scholar
  152. 152.
    Neumayer HH, Brockmoller J, Fritschka E, Roots I, Scigalla P, Wattenberg M. Pharmacokinetics of recombinant human erythropoietin after SC administration and in long-term IV treatment in patients on maintenance hemodialysis. Contrib Nephrol. 1989;76:131–41 (discussion 41–2).Google Scholar
  153. 153.
    Yan X, Lowe PJ, Fink M, Berghout A, Balser S, Krzyzanski W. Population pharmacokinetic and pharmacodynamic model-based comparability assessment of a recombinant human epoetin alfa and the biosimilar HX575. J Clin Pharmacol. 2012;52(11):1624–44.PubMedGoogle Scholar
  154. 154.
    Vos FE, Schollum JB, Coulter CV, Doyle TC, Duffull SB, Walker RJ. Red blood cell survival in long-term dialysis patients. Am J Kidney Dis. 2011;58(4):591–8.PubMedGoogle Scholar
  155. 155.
    Hartley C, Elliott S, Begley CG, McElroy P, Sutherland W, Khaja R, et al. Kinetics of haematopoietic recovery after dose-intensive chemo/radiotherapy in mice: optimized erythroid support with darbepoetin alpha. Br J Haematol. 2003;122(4):623–36.PubMedGoogle Scholar
  156. 156.
    Littlewood TJ, Bajetta E, Nortier JW, Vercammen E, Rapoport B, Epoetin Alfa Study Group. Effects of epoetin alfa on hematologic parameters and quality of life in cancer patients receiving nonplatinum chemotherapy: results of a randomized, double-blind, placebo-controlled trial. J Clin Oncol. 2001;19(11):2865–74.PubMedGoogle Scholar
  157. 157.
    Sawada K, Krantz SB, Kans JS, Dessypris EN, Sawyer S, Glick AD, et al. Purification of human erythroid colony-forming units and demonstration of specific binding of erythropoietin. J Clin Invest. 1987;80(2):357–66.PubMedGoogle Scholar
  158. 158.
    Tepperman AD, Curtis JE, McCulloch EA. Erythropietic colonies in cultures of human marrow. Blood. 1974;44(5):659–69.PubMedGoogle Scholar
  159. 159.
    Elliott S, Busse L, McCaffery I, Rossi J, Sinclair A, Spahr C, et al. Identification of a sensitive anti-erythropoietin receptor monoclonal antibody allows detection of low levels of EpoR in cells. J Immunol Methods. 2010;352(1–2):126–39.PubMedGoogle Scholar
  160. 160.
    McArthur GA, Longmore GD, Klingler K, Johnson GR. Lineage-restricted recruitment of immature hematopoietic progenitor cells in response to EPO after normal hematopoietic cell transfection with EPOR. Exp Hematol. 1995;23(7):645–54.PubMedGoogle Scholar
  161. 161.
    Song SH, Groom AC. Sequestration and possible maturation of reticulocytes in the normal spleen. Can J Physiol Pharmacol. 1972;50(5):400–6.PubMedGoogle Scholar
  162. 162.
    Broudy VC, Lin N, Brice M, Nakamoto B, Papayannopoulou T. Erythropoietin receptor characteristics on primary human erythroid cells. Blood. 1991;77(12):2583–90.PubMedGoogle Scholar
  163. 163.
    Berlin NI, Berk PD. The biological life of red cell. In: Surgenor DM, editor. The red blood cell biology. New York: Academic Press; 1975. p. 975–1020.Google Scholar
  164. 164.
    Glader B. Destruction of erythrocytes. In: Greer JP, Rodgers GM, Foerster J, Paraskevas F, Lekens JN, Glader B, editors. Wintrobe’s clinical hematology, vol. 1. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 249–65.Google Scholar
  165. 165.
    Alfrey CP, Rice L, Udden MM, Driscoll TB. Neocytolysis: physiological down-regulator of red-cell mass. Lancet. 1997;349(9062):1389–90.PubMedGoogle Scholar
  166. 166.
    Willekens FL, Roerdinkholder-Stoelwinder B, Groenen-Dopp YA, Bos HJ, Bosman GJ, van den Bos AG, et al. Hemoglobin loss from erythrocytes in vivo results from spleen-facilitated vesiculation. Blood. 2003;101(2):747–51.PubMedGoogle Scholar
  167. 167.
    Adamson JW. The kidney and erythropoiesis. Am J Med. 1968;44:715–33.Google Scholar
  168. 168.
    Eschbach JW. The anemia of chronic renal failure: pathophysiology and the effects of recombinant erythropoietin. Kidney Int. 1989;35(1):134–48.PubMedGoogle Scholar
  169. 169.
    McGonigle RJ, Husserl F, Wallin JD, Fisher JW. Hemodialysis and continuous ambulatory peritoneal dialysis effects on erythropoiesis in renal failure. Kidney Int. 1984;25(2):430–6.PubMedGoogle Scholar
  170. 170.
    Joske RA, McAlister JM, Prankerd TA. Isotope investigations of red cell production and destruction in chronic renal disease. Clin Sci (Lond). 1956;15(4):511–22.PubMedGoogle Scholar
  171. 171.
    Loge JP, Lange RD, Moore CV. Characterization of the anemia associated with chronic renal insufficiency. Am J Med. 1958;24(1):4–18.PubMedGoogle Scholar
  172. 172.
    Eschbach JW, Cook JD, Scribner BH, Finch CA. Iron balance in hemodialysis patients. Ann Intern Med. 1977;87(6):710–3.PubMedGoogle Scholar
  173. 173.
    Jungers PY, Robino C, Choukroun G, Nguyen-Khoa T, Massy ZA, Jungers P. Incidence of anaemia, and use of epoetin therapy in pre-dialysis patients: a prospective study in 403 patients. Nephrol Dial Transplant. 2002;17(9):1621–7.PubMedGoogle Scholar
  174. 174.
    Nissenson AR, Nimer SD, Wolcott DL. Recombinant human erythropoietin and renal anemia: molecular biology, clinical efficacy, and nervous system effects. Ann Intern Med. 1991;114(5):402–16.PubMedGoogle Scholar
  175. 175.
    Adamson JW, Eschbach JW. Treatment of the anemia of chronic renal failure with recombinant human erythropoietin. Annu Rev Med. 1990;41:349–60.PubMedGoogle Scholar
  176. 176.
    Radtke HW, Rege AB, LaMarche MB, Bartos D, Bartos F, Campbell RA, et al. Identification of spermine as an inhibitor of erythropoiesis in patients with chronic renal failure. J Clin Invest. 1981;67(6):1623–9.PubMedGoogle Scholar
  177. 177.
    Kushner DS, Beckman BS, Fisher JW. Do polyamines play a role in the pathogenesis of the anemia of end-stage renal disease? Kidney Int. 1989;36(2):171–4.PubMedGoogle Scholar
  178. 178.
    Meytes D, Bogin E, Ma A, Dukes PP, Massry SG. Effect of parathyroid hormone on erythropoiesis. J Clin Invest. 1981;67(5):1263–9.PubMedGoogle Scholar
  179. 179.
    Kato A, Hishida A, Kumagai H, Furuya R, Nakajima T, Honda N. Erythropoietin production in patients with chronic renal failure. Ren Fail. 1994;16(5):645–51.PubMedGoogle Scholar
  180. 180.
    Ross RP, McCrea JB, Besarab A. Erythropoietin response to blood loss in hemodialysis patients in blunted but preserved. ASAIO J. 1994;40(3):M880–5.PubMedGoogle Scholar
  181. 181.
    Nowrousian MR. Pathophysiology of anemia in cancer. In: Nowrousian MR, editor. Human erythropoietin (rhHEPO) in clinical oncology scientific and clinical aspects of anemia in cancer. Wien: Springer; 2008. p. 149–88.Google Scholar
  182. 182.
    Mitlyng BL, Singh JA, Furne JK, Ruddy J, Levitt MD. Use of breath carbon monoxide measurements to assess erythrocyte survival in subjects with chronic diseases. Am J Hematol. 2006;81(6):432–8.PubMedGoogle Scholar
  183. 183.
    Miller CB, Jones RJ, Piantadosi S, Abeloff MD, Spivak JL. Decreased erythropoietin response in patients with the anemia of cancer. N Engl J Med. 1990;322(24):1689–92.PubMedGoogle Scholar
  184. 184.
    Bron D, Meuleman N, Mascaux C. Biological basis of anemia. Semin Oncol. 2001;28(2 Suppl 8):1–6.PubMedGoogle Scholar
  185. 185.
    Endo Y, Nagai H, Watanabe Y, Ochi K, Takagi T. Heat-induced aggregation of recombinant erythropoietin in the intact and deglycosylated states as monitored by gel permeation chromatography combined with a low-angle laser light scattering technique. J Biochem. 1992;112(5):700–6.PubMedGoogle Scholar
  186. 186.
    Pedain C, Herrero J, Kunzel W. Serum erythropoietin levels in ovarian cancer patients receiving chemotherapy. Eur J Obstet Gynecol Reprod Biol. 2001;98(2):224–30.PubMedGoogle Scholar
  187. 187.
    Russmann S, Grattagliano I, Portincasa P, Palmieri VO, Palasciano G. Ribavirin-induced anemia: mechanisms, risk factors and related targets for future research. Curr Med Chem. 2006;13(27):3351–7.PubMedGoogle Scholar
  188. 188.
    McKenzie S. Textbook of hematology. 2nd ed. Baltimore: Williams & Wilkins; 1996.Google Scholar
  189. 189.
    Cazzola M, Ponchio L, Pedrotti C, Farina G, Cerani P, Lucotti C, et al. Prediction of response to recombinant human erythropoietin (rHuEpo) in anemia of malignancy. Haematologica. 1996;81(5):434–41.PubMedGoogle Scholar
  190. 190.
    Brugnara C. Reticulocyte cellular indices: a new approach in the diagnosis of anemias and monitoring of erythropoietic function. Crit Rev Clin Lab Sci. 2000;37(2):93–130.PubMedGoogle Scholar
  191. 191.
    Stead RB, Lambert J, Wessels D, Iwashita JS, Leuther KK, Woodburn KW, et al. Evaluation of the safety and pharmacodynamics of Hematide, a novel erythropoietic agent, in a phase 1, double-blind, placebo-controlled, dose-escalation study in healthy volunteers. Blood. 2006;108(6):1830–4.PubMedGoogle Scholar
  192. 192.
    Perez-Ruixo JJ, Krzyzanski W, Hing J. Pharmacodynamic analysis of recombinant human erythropoietin effect on reticulocyte production rate and age distribution in healthy subjects. Clin Pharmacokinet. 2008;47(6):399–415.PubMedGoogle Scholar
  193. 193.
    Perez-Ruixo JJ, Krzyzanski W, Bouman-Thio E, Miller B, Jang H, Bai SA, et al. Pharmacokinetics and pharmacodynamics of the erythropoietin Mimetibody construct CNTO 528 in healthy subjects. Clin Pharmacokinet. 2009;48(9):601–13.PubMedGoogle Scholar
  194. 194.
    Woo S, Krzyzanski W, Duliege AM, Stead RB, Jusko WJ. Population pharmacokinetics and pharmacodynamics of peptidic erythropoiesis receptor agonist (ERA) in healthy volunteers. J Clin Pharmacol. 2008;48(1):43–52.PubMedGoogle Scholar
  195. 195.
    Amgen Inc. Epogen® (epoetin alfa): product information (2011). Accessed 19 Jun 2013.
  196. 196.
    Brockmoller J, Kochling J, Weber W, Looby M, Roots I, Neumayer HH. The pharmacokinetics and pharmacodynamics of recombinant human erythropoietin in haemodialysis patients. Br J Clin Pharmacol. 1992;34(6):499–508.PubMedGoogle Scholar
  197. 197.
    Canon JL, Vansteenkiste J, Bodoky G, Mateos MV, Bastit L, Ferreira I, et al. Randomized, double-blind, active-controlled trial of every-3-week darbepoetin alfa for the treatment of chemotherapy-induced anemia. J Natl Cancer Inst. 2006;98(4):273–84.PubMedGoogle Scholar
  198. 198.
    Uehlinger DE, Gotch FA, Sheiner LB. A pharmacodynamic model of erythropoietin therapy for uremic anemia. Clin Pharmacol Ther. 1992;51(1):76–89.PubMedGoogle Scholar
  199. 199.
    Lui SF, Chung WW, Leung CB, Chan K, Lai KN. Pharmacokinetics and pharmacodynamics of subcutaneous and intraperitoneal administration of recombinant human erythropoietin in patients on continuous ambulatory peritoneal dialysis. Clin Nephrol. 1990;33(1):47–51.PubMedGoogle Scholar
  200. 200.
    Budha NR, Kovar A, Meibohm B. Comparative performance of cell life span and cell transit models for describing erythropoietic drug effects. AAPS J. 2011;13(4):650–61.PubMedGoogle Scholar
  201. 201.
    Chanu P, Gieschke R, Charoin JE, Pannier A, Reigner B. Population pharmacokinetic/pharmacodynamic model for C.E.R.A. in both ESA-naive and ESA-treated chronic kidney disease patients with renal anemia. J Clin Pharmacol. 2010;50(5):507–20.PubMedGoogle Scholar
  202. 202.
    Holford N. Pharmacokinetic/pharmacodynamic models for red cell responses to hematopoietic stimulation with and without chemotherapy. American Society of Clinical Pharmacology and Therapeutics Annual Meeting; 2–5 March 2005; Orlando.Google Scholar
  203. 203.
    Heatherington AC, Henry D, Patel R, Tchekmedyian S, Berg R, Austin M, et al. The impact of timing of chemotherapy relative to darbepoetin alfa (DA) on DA pharmacokinetics (PK) and hematologic effects [abstract]. Clin Pharmacol Ther. 2004;75:P60.Google Scholar
  204. 204.
    Sasu BJ, Hartley C, Schultz H, McElroy P, Khaja R, Elliott S, et al. Comparison of epoetin alfa and darbepoetin alfa biological activity under different administration schedules in normal mice. Acta Haematol. 2005;113(3):163–74.PubMedGoogle Scholar
  205. 205.
    Macdougall IC, Walker R, Provenzano R, de Alvaro F, Locay HR, Nader PC, Locatelli F, Dougherty FC, Beyer U; ARCTOS Study Investigators. C.E.R.A. corrects anemia in patients with chronic kidney disease not on dialysis: results of a randomized clinical trial. Clin J Am Soc Nephrol. 2008;3(2):337–47.Google Scholar
  206. 206.
    Mager DE, Wyska E, Jusko WJ. Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos. 2003;31(5):510–8.PubMedGoogle Scholar
  207. 207.
    Macdougall IC. Optimizing the use of erythropoietic agents—pharmacokinetic and pharmacodynamic considerations. Nephrol Dial Transplant. 2002;17(Suppl 5):66–70.PubMedGoogle Scholar
  208. 208.
    Black JW, Leff P. Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci. 1983;220(1219):141–62.PubMedGoogle Scholar
  209. 209.
    Van der Graaf PH, Danhof M. Analysis of drug-receptor interactions in vivo: a new approach in pharmacokinetic-pharmacodynamic modelling. Int J Clin Pharmacol Ther. 1997;35(10):442–6.PubMedGoogle Scholar
  210. 210.
    Nalbant D, Saleh M, Goldman FD, Widness JA, Veng-Pedersen P. Evidence of receptor-mediated elimination of erythropoietin by analysis of erythropoietin receptor mRNA expression in bone marrow and erythropoietin clearance during anemia. J Pharmacol Exp Ther. 2010;333(2):528–32.PubMedGoogle Scholar
  211. 211.
    Broudy VC, Nakamoto B, Lin N, Papayannopoulou T. Dynamics of erythropoietin receptor expression on erythropoietin-responsive murine cell lines. Blood. 1990;75(8):1622–6.PubMedGoogle Scholar
  212. 212.
    Macdougall IC, Matcham J, Gray SJ, Group NS. Correction of anaemia with darbepoetin alfa in patients with chronic kidney disease receiving dialysis. Nephrol Dial Transplant. 2003;18(3):576–81.PubMedGoogle Scholar
  213. 213.
    Besarab A, Flaharty KK, Erslev AJ, McCrea JB, Vlasses PH, Medina F, et al. Clinical pharmacology and economics of recombinant human erythropoietin in end-stage renal disease: the case for subcutaneous administration. J Am Soc Nephrol. 1992;2(9):1405–16.PubMedGoogle Scholar
  214. 214.
    Kiss Z, Elliott S, Jedynasty K, Tesar V, Szegedi J. Discovery and basic pharmacology of erythropoiesis-stimulating agents (ESAs), including the hyperglycosylated ESA, darbepoetin alfa: an update of the rationale and clinical impact. Eur J Clin Pharmacol. 2010;66(4):331–40.PubMedGoogle Scholar
  215. 215.
    Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5(5):343–54.PubMedGoogle Scholar
  216. 216.
    Kelley LL, Koury MJ, Bondurant MC, Koury ST, Sawyer ST, Wickrema A. Survival or death of individual proerythroblasts results from differing erythropoietin sensitivities: a mechanism for controlled rates of erythrocyte production. Blood. 1993;82(8):2340–52.PubMedGoogle Scholar
  217. 217.
    Piron M, Loo M, Gothot A, Tassin F, Fillet G, Beguin Y. Cessation of intensive treatment with recombinant human erythropoietin is followed by secondary anemia. Blood. 2001;97(2):442–8.PubMedGoogle Scholar
  218. 218.
    Macdougall IC, Robson R, Opatrna S, Liogier X, Pannier A, Jordan P, et al. Pharmacokinetics and pharmacodynamics of intravenous and subcutaneous continuous erythropoietin receptor activator (C.E.R.A.) in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2006;1(6):1211–5.PubMedGoogle Scholar
  219. 219.
    Ateshkadi A, Johnson CA, Oxton LL, Hammond TG, Bohenek WS, Zimmerman SW. Pharmacokinetics of intraperitoneal, intravenous, and subcutaneous recombinant human erythropoietin in patients on continuous ambulatory peritoneal dialysis. Am J Kidney Dis. 1993;21(6):635–42.PubMedGoogle Scholar
  220. 220.
    European Medicines Agency. Aranesp: product information (2012). Accessed 19 Jun 2013.
  221. 221.
    Roche. Mircera solution for injection in pre-filled syringe: summary of product characteristics (2013). Accessed 19 Jun 2013.

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Sameer Doshi
    • 1
  • Wojciech Krzyzanski
    • 2
  • Susan Yue
    • 1
  • Steven Elliott
    • 1
  • Andrew Chow
    • 1
  • Juan José Pérez-Ruixo
    • 1
    • 3
  1. 1.Amgen Inc.Thousand OaksUSA
  2. 2.State University of New York at BuffaloBuffaloUSA
  3. 3.Quantitative Pharmacology, Department of Pharmacokinetics and Drug MetabolismAmgen Inc.ValenciaSpain

Personalised recommendations