Advertisement

Clinical Pharmacokinetics

, Volume 52, Issue 9, pp 727–749 | Cite as

Ginkgo biloba Extracts: A Review of the Pharmacokinetics of the Active Ingredients

  • Christian Ude
  • Manfred Schubert-Zsilavecz
  • Mario Wurglics
Review Article

Abstract

Ginkgo biloba is among the most favourite and best explored herbal drugs. Standardized extracts of Ginkgo biloba represent the only herbal alternative to synthetic antidementia drugs in the therapy of cognitive decline and Alzheimer’s diseases. The clinical efficiency of such standardized Ginkgo biloba extracts (GBE) is still controversial, but authors of numerous international clinical studies recommended the use of GBE in the described therapies.

Extracts of Ginkgo biloba are a mixture of substances with a wide variety of physical and chemical properties and activities. Numerous pharmacological investigations lead to the conclusion that the terpene trilactones (TTL) and the flavonoids of GBE are responsible for the main pharmacological effects of the extract in the therapy of cognitive decline. Therefore, the quality of GBE products must be oriented on a defined quantity of TTL and flavonoids. Furthermore, because of their toxic potential the amount of ginkgolic acid should be less than 5 ppm.

However, data on pharmacokinetics and bioavailability, especially related to the central nervous system (CNS), which is the target tissue, are relatively rare. A few investigations characterize the TTL and flavonoids of Ginkgo biloba pharmacokinetically in plasma and in the brain. Recent investigations show that significant levels of TTL and Ginkgo biloba flavonoids cross the blood–brain barrier and enter the CNS of rats after oral application of GBE. Knowledge about the pharmacokinetic behaviour of these substances is necessary to discuss the pharmacological results on a more realistic basis.

Keywords

Flavonoid Quercetin Kaempferol Isorhamnetin Ginkgo Biloba 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank Dr. Brigitte Held for editorial support and Astrid Kaiser for technical assistance.

References

  1. 1.
    DeFeudis FV. A brief history of EGb 761 and its therapeutic uses. Pharmacopsychiatry. 2003;36(Suppl 1):S2–7.PubMedGoogle Scholar
  2. 2.
    Gong W, Chen C, Dobes C, et al. Phylogeography of a living fossil: pleistocene glaciations forced Ginkgo biloba L. (Ginkgoaceae) into two refuge areas in China with limited subsequent postglacial expansion. Mol Phylogenet Evol. 2008;48(3):1094–105.PubMedCrossRefGoogle Scholar
  3. 3.
    Kressmann S, Biber A, Wonnemann M, et al. Influence of pharmaceutical quality on the bioavailability of active components from Ginkgo biloba preparations. J Pharm Pharmacol. 2002;54(11):1507–14.PubMedCrossRefGoogle Scholar
  4. 4.
    van Beek TA, Montoro P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J Chromatogr A. 2009;1216(11):2002–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhao Y, Wang L, Bao Y, et al. A sensitive method for the detection and quantification of ginkgo flavonols from plasma. Rapid Commun Mass Spectr. 2007;21(6):971–81.CrossRefGoogle Scholar
  6. 6.
    Schwabe U. Arzneiverordnungs-Report 2009: Aktuelle Daten, Kosten, Trends und Kommentare. 1. Aufl. Heidelberg Neckar. Springer, Berlin; 2009.Google Scholar
  7. 7.
    Klein J, Weichel O, Hilgert M, et al. Excitotoxic hippocampal membrane breakdown and its inhibition by bilobalide: role of chloride fluxes. Pharmacopsychiatry. 2003;36(Suppl 1):S78–83.PubMedGoogle Scholar
  8. 8.
    Mdzinarishvili A, Kiewert C, Kumar V, et al. Bilobalide prevents ischemia-induced edema formation in vitro and in vivo. Neuroscience. 2007;144(1):217–22.PubMedCrossRefGoogle Scholar
  9. 9.
    Abdel-Kader R, Hauptmann S, Keil U, et al. Stabilization of mitochondrial function by Ginkgo biloba extract (EGb 761). Pharmacol Res. 2007;56(6):493–502.PubMedCrossRefGoogle Scholar
  10. 10.
    Mancuso M, Coppedè F, Murri L, et al. Mitochondrial cascade hypothesis of Alzheimer’s disease: myth or reality? Antioxid Redox Signal. 2007;9(10):1631–46.PubMedCrossRefGoogle Scholar
  11. 11.
    Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nutr. 2000;71(2):621S–9S.PubMedGoogle Scholar
  12. 12.
    Reddy VP, Zhu X, Perry G, et al. Oxidative stress in diabetes and Alzheimer’s disease. J Alzheimers Dis. 2009;16(4):763–74.PubMedGoogle Scholar
  13. 13.
    Reddy PH. Mitochondrial dysfunction in aging and Alzheimer’s disease: strategies to protect neurons. Antioxid Redox Signal. 2007;9(10):1647–58.PubMedCrossRefGoogle Scholar
  14. 14.
    Institute for Quality and Efficiency in Health Care. http://www.iqwig.de. Accessed 23 Aug 2012.
  15. 15.
    IQWIG. Abschlussbericht: Ginkgohaltige Präparate bei Alzheimer Demenz; 2008.Google Scholar
  16. 16.
    Ihl R, Bachinskaya N, Korczyn AD et al. Efficacy and safety of a once-daily formulation of Ginkgo biloba extract EGb 761 in dementia with neuropsychiatric features: a randomized controlled trial. Int J Geriatr Psychiatry 2010;26(11):1186–94.Google Scholar
  17. 17.
    Napryeyenko O, Sonnik G, Tartakovsky I. Efficacy and tolerability of Ginkgo biloba extract EGb 761 by type of dementia: analyses of a randomised controlled trial. J Neurol Sci. 2009;283(1–2):224–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Le Bars PL, Kieser M, Itil KZ. A 26-week analysis of a double-blind, placebo-controlled trial of the Ginkgo biloba extract EGb 761 in dementia. Dement Geriatr Cogn Disord. 2000;11(4):230–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Dekosky ST, Williamson JD, Fitzpatrick AL, et al. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA. 2008;300(19):2253–62.PubMedCrossRefGoogle Scholar
  20. 20.
    Birks J, Grimley Evans J. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev 2009;(1):CD003120.Google Scholar
  21. 21.
    Kasper S, Schubert H. Ginkgo biloba extract EGb 761® in the treatment of dementia: evidence of efficacy and tolerability. Fortschr Neurol Psychiatr 2009;77(9):494–506.Google Scholar
  22. 22.
    Wurglics M, Schubert-Zsilavecz M. Hypericum perforatum: a ‘modern’ herbal antidepressant: pharmacokinetics of active ingredients. Clin Pharmacokinet. 2006;45(5):449–68.PubMedCrossRefGoogle Scholar
  23. 23.
    Federal Institute for Drugs and Medical Devices of Germany. http://www.bfarm.de. Accessed 3 Jul 2012.
  24. 24.
    Kommission E. Monographie: Trockenextrakt (35-67:1) aus Ginkgo Blättern. Bundesanzeiger 1994;Nr. 133.Google Scholar
  25. 25.
    DeFeudis FV, Drieu K. Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications. Curr Drug Targets. 2000;1(1):25–58.PubMedCrossRefGoogle Scholar
  26. 26.
    Blecharz-Klin K, Piechal A, Joniec I, et al. Pharmacological and biochemical effects of Ginkgo biloba extract on learning, memory consolidation and motor activity in old rats. Acta Neurobiol Exp (Wars). 2009;69(2):217–31.Google Scholar
  27. 27.
    Oken BS, Storzbach DM, Kaye JA. The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch Neurol. 1998;55(11):1409–15.PubMedCrossRefGoogle Scholar
  28. 28.
    Zimmermann M, Colciaghi F, Cattabeni F, et al. Ginkgo biloba extract: from molecular mechanisms to the treatment of Alzhelmer’s disease. Cell Mol Biol (Noisy-le-grand). 2002;48(6):613–23.Google Scholar
  29. 29.
    Singh B, Kaur P, Gopichand, et al. Biology and chemistry of Ginkgo biloba. Fitoterapia. 2008;79(6):401–18.PubMedCrossRefGoogle Scholar
  30. 30.
    Leistner E, Drewke C. Ginkgo biloba and ginkgotoxin. J Nat Prod. 2009;73(1):86–92.Google Scholar
  31. 31.
    Ramassamy C, Longpre F, Christen Y. Ginkgo biloba extract (EGb 761) in Alzheimer’s disease: is there any evidence? Curr Alzheimer Res. 2007;4(3):253–62.PubMedCrossRefGoogle Scholar
  32. 32.
    van Beek TA. Chemical analysis of Ginkgo biloba leaves and extracts. J Chromatogr A. 2002;967(1):21–55.PubMedCrossRefGoogle Scholar
  33. 33.
    Leuner K, Hauptmann S, Abdel-Kader R, et al. Mitochondrial dysfunction: the first domino in brain aging and Alzheimer’s disease? Antioxid Redox Signal. 2007;9(10):1659–75.PubMedCrossRefGoogle Scholar
  34. 34.
    Leuner K, Pantel J, Frey C, et al. Enhanced apoptosis, oxidative stress and mitochondrial dysfunction in lymphocytes as potential biomarkers for Alzheimer’s disease. J Neural Transm Suppl. 2007;72:207–15.PubMedCrossRefGoogle Scholar
  35. 35.
    Eckert A, Keil U, Kressmann S, et al. Effects of EGb 761 Ginkgo biloba extract on mitochondrial function and oxidative stress. Pharmacopsychiatry. 2003;36(Suppl 1):S15–23.PubMedGoogle Scholar
  36. 36.
    Eckert A, Keil U, Scherping I, et al. Stabilization of mitochondrial membrane potential and improvement of neuronal energy metabolism by Ginkgo biloba extract EGb 761. Ann N Y Acad Sci. 2005;1056:474–85.PubMedCrossRefGoogle Scholar
  37. 37.
    Müller WE, Abdel-Kader R, Fehske CJ, et al. Grundlagen der therapeutischen Anwendung von EGb 761®: Wirkung auf die Kraftwerke der Zellen. Pharmazie in unserer Zeit. 2009;38(5):408–16.PubMedCrossRefGoogle Scholar
  38. 38.
    Belayev L, Khoutorova L, Atkins K, et al. LAU-0901, a novel platelet-activating factor antagonist, is highly neuroprotective in cerebral ischemia. Exp Neurol. 2008;214(2):253–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Chatterjee SS, Kondratskaya EL, Krishtal OA. Structure-activity studies with Ginkgo biloba extract constituents as receptor-gated chloride channel blockers and modulators. Pharmacopsychiatry. 2003;36(Suppl 1):S68–77.PubMedGoogle Scholar
  40. 40.
    Nakanishi K. Terpene trilactones from Ginkgo biloba: from ancient times to the 21st century. Bioorg Med Chem. 2005;13(17):4987–5000.PubMedCrossRefGoogle Scholar
  41. 41.
    Bate C, Kempster S, Williams A. Platelet-activating factor antagonists protect amyloid-beta damaged neurons from microglia-mediated death. Neuropharmacology. 2006;51(2):173–81.PubMedCrossRefGoogle Scholar
  42. 42.
    Stromgaard K, Nakanishi K. Chemistry and biology of terpene trilactones from Ginkgo biloba. Angew Chem Int Ed Engl. 2004;43(13):1640–58.PubMedCrossRefGoogle Scholar
  43. 43.
    Smith JV, Luo Y. Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biotechnol. 2004;64(4):465–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Smith PF, Maclennan K, Darlington CL. The neuroprotective properties of the Ginkgo biloba leaf: a review of the possible relationship to platelet-activating factor (PAF). J Ethnopharmacol. 1996;50(3):131–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Braquet P. Proofs of involvement of PAF-acether in various immune disorders using BN 52021 (ginkgolide B): a powerful PAF-acether antagonist isolated from Ginkgo biloba L. Adv Prostaglandin Thromboxane Leukot Res. 1986;16:179–98.PubMedGoogle Scholar
  46. 46.
    Mukherjee PK, DeCoster MA, Campbell FZ, et al. Glutamate receptor signaling interplay modulates stress-sensitive mitogen-activated protein kinases and neuronal cell death. J Biol Chem. 1999;274(10):6493–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Chen C, Bazan NG. Lipid signaling: sleep, synaptic plasticity, and neuroprotection. Prostaglandins Other Lipid Mediat. 2005;77(1–4):65–76.PubMedCrossRefGoogle Scholar
  48. 48.
    Kondratskaya EL, Fisyunov AI, Chatterjee SS, et al. Ginkgolide B preferentially blocks chloride channels formed by heteromeric glycine receptors in hippocampal pyramidal neurons of rat. Brain Res Bull. 2004;63(4):309–14.PubMedCrossRefGoogle Scholar
  49. 49.
    Kondratskaya EL, Betz H, Krishtal OA, et al. The beta subunit increases the ginkgolide B sensitivity of inhibitory glycine receptors. Neuropharmacology. 2005;49(6):945–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Rimbach G, Wolffram S, Watanabe C, et al. Effect of Ginkgo biloba (EGb 761) on differential gene expression. Pharmacopsychiatry. 2003;36(Suppl 1):S95–9.PubMedGoogle Scholar
  51. 51.
    Yao Z, Drieu K, Papadopoulos V. The Ginkgo biloba extract EGb 761 rescues the PC12 neuronal cells from beta-amyloid-induced cell death by inhibiting the formation of beta-amyloid-derived diffusible neurotoxic ligands. Brain Res. 2001;889(1–2):181–90.PubMedCrossRefGoogle Scholar
  52. 52.
    Bate C, Tayebi M, Williams A. Ginkgolides protect against amyloid-beta1-42-mediated synapse damage in vitro. Mol Neurodegener. 2008;3:1.PubMedCrossRefGoogle Scholar
  53. 53.
    Augustin S, Rimbach G, Augustin K, et al. Effect of a short- and long-term treatment with Ginkgo biloba extract on amyloid precursor protein levels in a transgenic mouse model relevant to Alzheimer’s disease. Arch Biochem Biophys. 2009;481(2):177–82.PubMedCrossRefGoogle Scholar
  54. 54.
    Longpré F, Garneau P, Christen Y, et al. Protection by EGb 761 against beta-amyloid-induced neurotoxicity: involvement of NF-kappaB, SIRT1, and MAPKs pathways and inhibition of amyloid fibril formation. Free Radic Biol Med. 2006;41(12):1781–94.PubMedCrossRefGoogle Scholar
  55. 55.
    Hauptmann S, Scherping I, Dröse S, et al. Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging. 2008;30(10):1574–86.PubMedCrossRefGoogle Scholar
  56. 56.
    Amri H, Drieu K, Papadopoulos V. Transcriptional suppression of the adrenal cortical peripheral-type benzodiazepine receptor gene and inhibition of steroid synthesis by ginkgolide B. Biochem Pharmacol. 2003;65(5):717–29.PubMedCrossRefGoogle Scholar
  57. 57.
    Amri H, Li W, Drieu K, et al. Identification of the adrenocorticotropin and ginkgolide B-regulated 90-kilodalton protein (p90) in adrenocortical cells as a serotransferrin precursor protein homolog (adrenotransferrin). Endocrinology. 2004;145(4):1802–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Janssens D, Michiels C, Delaive E, et al. Protection of hypoxia-induced ATP decrease in endothelial cells by Ginkgo biloba extract and bilobalide. Biochem Pharmacol. 1995;50(7):991–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Janssens D, Remacle J, Drieu K, et al. Protection of mitochondrial respiration activity by bilobalide. Biochem Pharmacol. 1999;58(1):109–19.PubMedCrossRefGoogle Scholar
  60. 60.
    Tchantchou F, Xu Y, Wu Y, et al. EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimer’s disease. FASEB J. 2007;21(10):2400–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Tchantchou F, Lacor PN, Cao Z, et al. Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. J Alzheimers Dis. 2009;18(4):787–98.PubMedGoogle Scholar
  62. 62.
    Chandrasekaran K, Mehrabian Z, Spinnewyn B, et al. Bilobalide, a component of the Ginkgo biloba extract (EGb 761), protects against neuronal death in global brain ischemia and in glutamate-induced excitotoxicity. Cell Mol Biol (Noisy-le-grand). 2002;48(6):663–9.Google Scholar
  63. 63.
    Chandrasekaran K, Mehrabian Z, Spinnewyn B, et al. Neuroprotective effects of bilobalide, a component of Ginkgo biloba extract (EGb 761) in global brain ischemia and in excitotoxicity-induced neuronal death. Pharmacopsychiatry. 2003;36(Suppl 1):S89–94.PubMedGoogle Scholar
  64. 64.
    Klein J, Chatterjee SS, Loffelholz K. Phospholipid breakdown and choline release under hypoxic conditions: inhibition by bilobalide, a constituent of Ginkgo biloba. Brain Res. 1997;755(2):347–50.PubMedCrossRefGoogle Scholar
  65. 65.
    Weichel O, Hilgert M, Chatterjee SS, et al. Bilobalide, a constituent of Ginkgo biloba, inhibits NMDA-induced phospholipase A2 activation and phospholipid breakdown in rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol. 1999;360(6):609–15.PubMedCrossRefGoogle Scholar
  66. 66.
    Kiewert C, Kumar V, Hildmann O, et al. Role of GABAergic antagonism in the neuroprotective effects of bilobalide. Brain Res. 2007;1128(1):70–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Kiewert C, Kumar V, Hildmann O, et al. Role of glycine receptors and glycine release for the neuroprotective activity of bilobalide. Brain Res. 2008;1201:143–50.PubMedCrossRefGoogle Scholar
  68. 68.
    DeFeudis FV. Bilobalide and neuroprotection. Pharmacol Res. 2002;46(6):565–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Ahlemeyer B, Krieglstein J. Neuroprotective effects of Ginkgo biloba extract. Cell Mol Life Sci. 2003;60(9):1779–92.PubMedCrossRefGoogle Scholar
  70. 70.
    Kim B, Kim K, Lim KS, et al. Influence of Ginkgo biloba extract on the pharmacodynamic effects and pharmacokinetic properties of ticlopidine: an open-label, randomized, two-period, two-treatment, two-sequence, single-dose crossover study in healthy Korean male volunteers. Clin Ther. 2010;32(2):380–90.PubMedCrossRefGoogle Scholar
  71. 71.
    Koch E. Inhibition of platelet activating factor (PAF)-induced aggregation of human thrombocytes by ginkgolides: considerations on possible bleeding complications after oral intake of Ginkgo biloba extracts. Phytomedicine. 2005;12(1–2):10–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Kloft C, Kellermann A. Blutungsneigung durch Ginkgo-biloba-Extrakt? Kontroverse Diskussion. Pharmazie in unserer Zeit. 2009;38(5):440–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Izzo AA, Ernst E. Interactions between herbal medicines and prescribed drugs: an updated systematic review. Drugs. 2009;69(13):1777–98.PubMedCrossRefGoogle Scholar
  74. 74.
    Deng Y, Bi H, Zhao L, et al. Induction of cytochrome P450s by terpene trilactones and flavonoids of the Ginkgo biloba extract EGb 761 in rats. Xenobiotica. 2008;38(5):465–81.PubMedCrossRefGoogle Scholar
  75. 75.
    Deng Y, Bi H, Zhao L, et al. Induction of cytochrome P450 3A by the Ginkgo biloba extract and bilobalides in human and rat primary hepatocytes. Drug Metab Lett. 2008;2(1):60–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Umegaki K, Taki Y, Endoh K, et al. Bilobalide in Ginkgo biloba extract is a major substance inducing hepatic CYPs. J Pharm Pharmacol. 2007;59(6):871–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Shinozuka K, Umegaki K, Kubota Y, et al. Feeding of Ginkgo biloba extract (GBE) enhances gene expression of hepatic cytochrome P-450 and attenuates the hypotensive effect of nicardipine in rats. Life Sci. 2002;70(23):2783–92.PubMedCrossRefGoogle Scholar
  78. 78.
    Robertson SM, Davey RT, Voell J, et al. Effect of Ginkgo biloba extract on lopinavir, midazolam and fexofenadine pharmacokinetics in healthy subjects. Curr Med Res Opin. 2008;24(2):591–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Gurley BJ, Gardner SF, Hubbard MA, et al. Cytochrome P450 phenotypic ratios for predicting herb–drug interactions in humans. Clin Pharmacol Ther. 2002;72(3):276–87.PubMedCrossRefGoogle Scholar
  80. 80.
    Chatterjee SS, Doelman CJ, Noldner M, et al. Influence of the Ginkgo extract EGb 761 on rat liver cytochrome P450 and steroid metabolism and excretion in rats and man. J Pharm Pharmacol. 2005;57(5):641–50.PubMedCrossRefGoogle Scholar
  81. 81.
    Hertog MG, Feskens EJ, Kromhout D. Antioxidant flavonols and coronary heart disease risk. Lancet. 1997;349(9053):699.PubMedCrossRefGoogle Scholar
  82. 82.
    Yochum L, Kushi LH, Meyer K, et al. Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women. Am J Epidemiol. 1999;149(10):943–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Markesbery WR, Lovell M. Damage to lipids, proteins, DNA, and RNA in mild cognitive impairment. Arch Neurol. 2007;64(7):954–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Ahlemeyer B, Krieglstein J. Pharmacological studies supporting the therapeutic use of Ginkgo biloba extract for Alzheimer’s disease. Pharmacopsychiatry. 2003;36(Suppl 1):S8–14.PubMedGoogle Scholar
  85. 85.
    Smith JV, Luo Y. Elevation of oxidative free radicals in Alzheimer’s disease models can be attenuated by Ginkgo biloba extract EGb 761. J Alzheimers Dis. 2003;5(4):287–300.PubMedGoogle Scholar
  86. 86.
    Kaschel R. Ginkgo biloba: specificity of neuropsychological improvement—a selective review in search of differential effects. Hum Psychopharmacol. 2009;24(5):345–70.PubMedCrossRefGoogle Scholar
  87. 87.
    Rubio-Perez JM, Morillas-Ruiz JM. A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal. 2012;2012:756357.PubMedCrossRefGoogle Scholar
  88. 88.
    Zheng LT, Ock J, Kwon B, et al. Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity. Int Immunopharmacol. 2008;8(3):484–94.PubMedCrossRefGoogle Scholar
  89. 89.
    Kim J, Kina T, Iwanaga Y, et al. Tea polyphenol inhibits allostimulation in mixed lymphocyte culture. Cell Transpl. 2007;16(1):75–83.Google Scholar
  90. 90.
    Kang TH, Lee JH, Song CK, et al. Epigallocatechin-3-gallate enhances CD8+ T cell-mediated antitumor immunity induced by DNA vaccination. Cancer Res. 2007;67(2):802–11.PubMedCrossRefGoogle Scholar
  91. 91.
    Min K, Yoon W, Kim SK, et al. Immunosuppressive effect of silibinin in experimental autoimmune encephalomyelitis. Arch Pharm Res. 2007;30(10):1265–72.PubMedCrossRefGoogle Scholar
  92. 92.
    Fehske CJ, Leuner K, Muller WE. Ginkgo biloba extract (EGb761) influences monoaminergic neurotransmission via inhibition of NE uptake, but not MAO activity after chronic treatment. Pharmacol Res. 2009;60(1):68–73.PubMedCrossRefGoogle Scholar
  93. 93.
    Yoshitake T, Yoshitake S, Kehr J. The Ginkgo biloba extract EGb 761® and its main constituent flavonoids and ginkgolides increase extracellular dopamine levels in the rat prefrontal cortex. Brit J Pharmacol. 2010;159(3):659–68.CrossRefGoogle Scholar
  94. 94.
    Moeller CK, Kurt S, Scheich H, et al. Improvement of auditory discrimination learning by Ginkgo biloba extract EGb 761. Neurosci Lett. 2009;463(3):219–22.PubMedCrossRefGoogle Scholar
  95. 95.
    Liu ZH, Zeng S. Cytotoxicity of ginkgolic acid in HepG2 cells and primary rat hepatocytes. Toxicol Lett. 2009;187(3):131–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Ahlemeyer B, Selke D, Schaper C, et al. Ginkgolic acids induce neuronal death and activate protein phosphatase type-2C. Eur J Pharmacol. 2001;430(1):1–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Hausen BM. The sensitizing capacity of ginkgolic acids in guinea pigs. Am J Contact Dermat. 1998;9(3):146–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Baron-Ruppert G, Luepke NP. Evidence for toxic effects of alkylphenols from Ginkgo biloba in the hen’s egg test (HET). Phytomedicine. 2001;8(2):133–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Hecker H, Johannisson R, Koch E, et al. In vitro evaluation of the cytotoxic potential of alkylphenols from Ginkgo biloba L. Toxicology. 2002;177(2–3):167–77.PubMedCrossRefGoogle Scholar
  100. 100.
    Moreau JP, Eck CR, McCabe J, et al. Absorption, distribution and elimination of a labelled extract of Ginkgo biloba leaves in the rat. Presse Med. 1986;15(31):1458–61.PubMedGoogle Scholar
  101. 101.
    Kleijnen J, Knipschild P. Ginkgo biloba. Lancet. 1992;340(8828):1136–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Fourtillan JB, Brisson AM, Girault J, et al. Pharmacokinetic properties of bilobalide and ginkgolides A and B in healthy subjects after intravenous and oral administration of Ginkgo biloba extract (EGb 761). Therapie. 1995;50(2):137–44.PubMedGoogle Scholar
  103. 103.
    Mauri P, de Palma A, Pozzi F, et al. LC-MS characterization of terpene lactones in plasma of experimental animals treated with Ginkgo biloba extracts correlation with pharmacological activity. J Pharm Biomed Anal. 2006;40(3):763–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Xie J, Ding C, Ge Q, et al. Simultaneous determination of ginkgolides A, B, C and bilobalide in plasma by LC–MS/MS and its application to the pharmacokinetic study of Ginkgo biloba extract in rats. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;864(1–2):87–94.PubMedGoogle Scholar
  105. 105.
    Rossi R, Basilico F, Rossoni G, et al. Liquid chromatography/atmospheric pressure chemical ionization ion trap mass spectrometry of bilobalide in plasma and brain of rats after oral administration of its phospholipidic complex. J Pharm Biomed Anal. 2009;50(2):224–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Biber A, Koch E. Bioavailability of ginkgolides and bilobalide from extracts of Ginkgo biloba using GC/MS. Planta Med. 1999;65(2):192–3.PubMedCrossRefGoogle Scholar
  107. 107.
    Ding S. Fingerprint profil of Ginkgo biloba nutritional supplements by LC/ESI–MS/MS. Phytochemistry. 2008;69:1555–64.PubMedCrossRefGoogle Scholar
  108. 108.
    Sora DI, Stefanescu V, David V, et al. Validation of an LC-MS/MS assay of terpene trilactones in Ginkgo biloba extracts and pharmaceutical formulations through standard addition method. J Pharm Biomed Anal. 2009;50(3):459–68.PubMedCrossRefGoogle Scholar
  109. 109.
    Ude C, Paulke A, Nöldner M et al. Plasma and brain levels of terpene trilactones in rats after an oral single dose of standardized Ginkgo biloba extract EGb 761®. Planta Medica 2011;77(3):259–64.Google Scholar
  110. 110.
    Rangel-Ordóñez L, Nöldner M, Schubert-Zsilavecz M et al. Plasma levels and distribution of flavonoids in rat brain after single and repeated doses of standardized Ginkgo biloba extract EGb 761®. Planta Medica 2010;76(15):1683–90.Google Scholar
  111. 111.
    Paulke A, Schubert-Zsilavecz M, Wurglics M. Determination of St. John’s wort flavonoid-metabolites in rat brain through high performance liquid chromatography coupled with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;832(1):109–13.PubMedCrossRefGoogle Scholar
  112. 112.
    Biber A. Pharmacokinetics of Ginkgo biloba extracts. Pharmacopsychiatry. 2003;36(Suppl 1):S32–7.PubMedGoogle Scholar
  113. 113.
    Manach C, Morand C, Crespy V, et al. Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties. FEBS Lett. 1998;426(3):331–6.PubMedCrossRefGoogle Scholar
  114. 114.
    Cermak R, Landgraf S, Wolffram S. The bioavailability of quercetin in pigs depends on the glycoside moiety and on dietary factors. J Nutr. 2003;133(9):2802–7.PubMedGoogle Scholar
  115. 115.
    Hollman PC, van Trijp JM, Buysman MN, et al. Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett. 1997;418(1–2):152–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Erlund I, Kosonen T, Alfthan G, et al. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur J Clin Pharmacol. 2000;56(8):545–53.PubMedCrossRefGoogle Scholar
  117. 117.
    Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr. 2005;81(1 Suppl):243S–55S.PubMedGoogle Scholar
  118. 118.
    Paulke A, Noldner M, Schubert-Zsilavecz M, et al. St. John’s wort flavonoids and their metabolites show antidepressant activity and accumulate in brain after multiple oral doses. Pharmazie. 2008;63(4):296–302.PubMedGoogle Scholar
  119. 119.
    Wang FM, Yao TW, Zeng S. Determination of quercetin and kaempferol in human urine after orally administrated tablet of Ginkgo biloba extract by HPLC. J Pharm Biomed Anal. 2003;33(2):317–21.PubMedCrossRefGoogle Scholar
  120. 120.
    Watson DG, Pitt AR. Analysis of flavonoids in tablets and urine by gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. Rapid Commun Mass Spectr. 1998;12(4):153–6.CrossRefGoogle Scholar
  121. 121.
    Ding S, Dudley E, Chen L, et al. Determination of active components of Ginkgo biloba in human urine by capillary high-performance liquid chromatography/mass spectrometry with on-line column-switching purification. Rapid Commun Mass Spectr. 2006;20(24):3619–24.CrossRefGoogle Scholar
  122. 122.
    Ude C. Pharmakokinetische Charakterisierung der Terpenlaktone aus Ginkgo biloba im ZNS am Tiermodell [Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften]. Frankfurt am Main: Goethe Universität Frankfurt am Main; 2010.Google Scholar
  123. 123.
    Wang DL, Liang Y, Chen WD, et al. Identification of ginkgolide B metabolites in urine and rat liver cytochrome P450 enzymes responsible for their formation in vitro. Acta Pharmacol Sin. 2008;29(3):376–84.PubMedCrossRefGoogle Scholar
  124. 124.
    Suehiro M, Simpson NR, Underwood MD, et al. In vivo biodistribution of ginkgolide B, a constituent of Ginkgo biloba, visualized by MicroPET. Planta Medica. 2005;71(7):622–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Lv H, Wang G, Wu X, et al. Transport characteristics of ginkgolide B by Caco-2 cells and examination of ginkgolide B oral absorption potential using rat in situ intestinal loop method. Int J Pharm. 2008;351(1–2):31–5.PubMedCrossRefGoogle Scholar
  126. 126.
    Mauri P, Minoggio M, Iemoli L, et al. Liquid chromatography/atmospheric pressure chemical ionization ion trap mass spectrometry of terpene lactones in plasma of animals. J Pharm Biomed Anal. 2003;32(4–5):633–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Woelkart K, Feizlmayr E, Dittrich P, et al. Pharmacokinetics of bilobalide, ginkgolide A and B after administration of three different Ginkgo biloba L. preparations in humans. Phytother Res PTR. 2010;24(3):445–50.CrossRefGoogle Scholar
  128. 128.
    Butterweck V, Liefländer-Wulf U, Winterhoff H, et al. Plasma levels of hypericin in presence of procyanidin B2 and hyperoside: a pharmacokinetic study in rats. Planta Medica. 2003;69(3):189–92.PubMedCrossRefGoogle Scholar
  129. 129.
    Lang D, Ude C, Wurglics M, et al. Brain permeability of bilobalide as probed by microdialysis before and after middle cerebral artery occlusion in mice. J Pharm Pharm Sci. 2010;13(4):607–14.PubMedGoogle Scholar
  130. 130.
    Chen WD, Liang Y, Xie L, et al. Pharmacokintics of the ginkgo B following intravenous administration of ginkgo B emulsion in rats. Biol Pharm Bull. 2007;30(1):1–5.PubMedCrossRefGoogle Scholar
  131. 131.
    Madgula VLM, Avula B, Yu Y, et al. Intestinal and blood–brain barrier permeability of ginkgolides and bilobalide: in vitro and in vivo approaches. Planta Medica. 2010;76:599–606.PubMedCrossRefGoogle Scholar
  132. 132.
    Hollman PC, Bijsman MN, van Gameren Y, et al. The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic Res. 1999;31(6):569–73.PubMedCrossRefGoogle Scholar
  133. 133.
    Hollman PC, de Vries JH, van Leeuwen SD, et al. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr. 1995;62(6):1276–82.PubMedGoogle Scholar
  134. 134.
    DuPont MS, Day AJ, Bennett RN, et al. Absorption of kaempferol from endive, a source of kaempferol-3-glucuronide, in humans. Eur J Clin Nutr. 2004;58(6):947–54.PubMedCrossRefGoogle Scholar
  135. 135.
    Wolffram S, Blöck M, Ader P. Quercetin-3-glucoside is transported by the glucose carrier SGLT1 across the brush border membrane of rat small intestine. J Nutr. 2002;132(4):630–5.PubMedGoogle Scholar
  136. 136.
    Graefe EU, Wittig J, Mueller S, et al. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J Clin Pharmacol. 2001;41(5):492–9.PubMedCrossRefGoogle Scholar
  137. 137.
    Day AJ, Mellon F, Barron D, et al. Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free Radic Res. 2001;35(6):941–52.PubMedCrossRefGoogle Scholar
  138. 138.
    Watson DG, Oliveira EJ. Solid-phase extraction and gas chromatography–mass spectrometry determination of kaempferol and quercetin in human urine after consumption of Ginkgo biloba tablets. J Chromatogr B Biomed Sci Appl. 1999;723(1–2):203–10.PubMedCrossRefGoogle Scholar
  139. 139.
    Pietta PG, Gardana C, Mauri PL, et al. Identification of flavonoid metabolites after oral administration to rats of a Ginkgo biloba extract. J Chromatogr B Biomed Appl. 1995;673(1):75–80.PubMedCrossRefGoogle Scholar
  140. 140.
    Rechner AR, Smith MA, Kuhnle G, et al. Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radic Biol Med. 2004;36(2):212–25.PubMedCrossRefGoogle Scholar
  141. 141.
    Pietta PG, Gardana C, Mauri PL. Identification of Ginkgo biloba flavonol metabolites after oral administration to humans. J Chromatogr B Biomed Sci Appl. 1997;693(1):249–55.PubMedCrossRefGoogle Scholar
  142. 142.
    Zhao Y, Sun Y, Li C. Simultaneous determination of ginkgo flavonoids and terpenoids in plasma: ammonium formate in LC mobile phase enhancing electrospray ionization efficiency and capacity. J Am Soc Mass Spectr. 2008;19(3):445–9.CrossRefGoogle Scholar
  143. 143.
    Nieder M. Pharmakokinetik der Ginkgo Flavonole im Plasma. Müncher Medizinische Wochenschrift. 1991;133:61–2.Google Scholar
  144. 144.
    Wójcicki J, Gawrońska-Szklarz B, Bieganowski W, et al. Comparative pharmacokinetics and bioavailability of flavonoid glycosides of Ginkgo biloba after a single oral administration of three formulations to healthy volunteers. Mater Med Pol. 1995;27(4):141–6.PubMedGoogle Scholar
  145. 145.
    Drago F, Floriddia ML, Cro M, et al. Pharmacokinetics and bioavailability of a Ginkgo biloba extract. J Ocul Pharmacol Ther. 2002;18(2):197–202.PubMedCrossRefGoogle Scholar
  146. 146.
    Kaschel R. Ginkgo-Extrakt bei Personen mit nachlassender mentaler Leistungsfähigkeit. Studienergebnisse differenziert betrachten. Pharmazie in unserer Zeit. 2009;38(5):432–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Greenblatt DJ, von Moltke LL, Luo Y, et al. Ginkgo biloba does not alter clearance of flurbiprofen, a cytochrome P450–2C9 substrate. J Clin Pharmacol. 2006;46(2):214–21.PubMedCrossRefGoogle Scholar
  148. 148.
    Jiang X, Williams KM, Liauw WS, et al. Effect of ginkgo and ginger on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br J Clin Pharmacol. 2005;59(4):425–32.PubMedCrossRefGoogle Scholar
  149. 149.
    Uchida S, Yamada H, Li XD, et al. Effects of Ginkgo biloba extract on pharmacokinetics and pharmacodynamics of tolbutamide and midazolam in healthy volunteers. J Clin Pharmacol. 2006;46(11):1290–8.PubMedCrossRefGoogle Scholar
  150. 150.
    Markowitz JS, Donovan JL, Lindsay DeVane C, et al. Multiple-dose administration of Ginkgo biloba did not affect cytochrome P-450 2D6 or 3A4 activity in normal volunteers. J Clin Psychopharmacol. 2003;23(6):576–81.PubMedCrossRefGoogle Scholar
  151. 151.
    Wang FM, Yao TW, Zeng S. Disposition of quercetin and kaempferol in human following an oral administration of Ginkgo biloba extract tablets. Eur J Drug Metab Pharmacokinet. 2003;28(3):173–7.PubMedCrossRefGoogle Scholar
  152. 152.
    Tang J, Sun J, Zhang Y, et al. Herb–drug interactions: effect of Ginkgo biloba extract on the pharmacokinetics of theophylline in rats. Food Chem Toxicol. 2007;45(12):2441–5.PubMedCrossRefGoogle Scholar
  153. 153.
    Kubota Y, Kobayashi K, Tanaka N, et al. Pretreatment with Ginkgo biloba extract weakens the hypnosis action of phenobarbital and its plasma concentration in rats. J Pharm Pharmacol. 2004;56(3):401–5.PubMedCrossRefGoogle Scholar
  154. 154.
    Lau AJ, Chang TK. Inhibition of human CYP2B6-catalyzed bupropion hydroxylation by Ginkgo biloba extract: effect of terpene trilactones and flavonols. Drug Metab Dispos 2009;37(9):1931–7.Google Scholar
  155. 155.
    Yin OQP, Tomlinson B, Waye MMY, et al. Pharmacogenetics and herb–drug interactions: experience with Ginkgo biloba and omeprazole. Pharmacogenetics. 2004;14(12):841–50.PubMedCrossRefGoogle Scholar
  156. 156.
    Yoshioka M, Ohnishi N, Koishi T, et al. Studies on interactions between functional foods or dietary supplements and medicines. IV. Effects of Ginkgo biloba leaf extract on the pharmacokinetics and pharmacodynamics of nifedipine in healthy volunteers. Biol Pharm Bull. 2004;27(12):2006–9.PubMedCrossRefGoogle Scholar
  157. 157.
    Yoshioka M, Ohnishi N, Sone N, et al. Studies on interactions between functional foods or dietary supplements and medicines. III. Effects of Ginkgo biloba leaf extract on the pharmacokinetics of nifedipine in rats. Biol Pharm Bull. 2004;27(12):2042–5.PubMedCrossRefGoogle Scholar
  158. 158.
    Mauri P, Simonetti P, Gardana C, et al. Liquid chromatography/atmospheric pressure chemical ionization mass spectrometry of terpene lactones in plasma of volunteers dosed with Ginkgo biloba L. extracts. Rapid Commun Mass Spectr. 2001;15(12):929–34.CrossRefGoogle Scholar
  159. 159.
    Hua L, Guangji W, Hao L, et al. Sensitive and selective liquid chromatography–electrospray ionization mass spectrometry analysis of ginkgolide B in dog plasma. J Pharm Biomed Anal. 2006;40(1):88–94.PubMedCrossRefGoogle Scholar
  160. 160.
    Schötz K. Quantification of allergenic urushiols in extracts of Ginkgo biloba leaves, in simple one-step extracts and refined manufactured material (EGb 761). Phytochem Anal PCA. 2004;15(1):1–8.CrossRefGoogle Scholar
  161. 161.
    Paulke A. Untersuchungen zur ZNS-Bioverfügbarkeit wirksamkeitsbestimmender Inhaltsstoffe von Johanniskraut [Dissertation]. Frankfurt am Main: Goethe Universität Frankfurt am Main; 2007.Google Scholar
  162. 162.
    Ude C, Paulke A, Schubert-Zsilavecz M, et al. Chemie, Pharmakokinetik und Metabolismus von Ginkgo-Extrakt. Eines der bestuntersuchten Phytopharmaka. Pharmazie in unserer Zeit. 2009;38(5):418–23.PubMedCrossRefGoogle Scholar
  163. 163.
    O’Leary KA, Day AJ, Needs PW, et al. Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human beta-glucuronidase, sulfotransferase, catechol-O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism. Biochem Pharmacol. 2003;65(3):479–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Christian Ude
    • 1
  • Manfred Schubert-Zsilavecz
    • 1
  • Mario Wurglics
    • 1
  1. 1.Institute of Pharmaceutical Chemistry/ZAFES, Goethe UniversityFrankfurt am MainGermany

Personalised recommendations