Clinical Pharmacokinetics

, Volume 52, Issue 1, pp 23–36 | Cite as

Pharmacokinetics of Non-Intravenous Formulations of Fentanyl

  • Jörn LötschEmail author
  • Carmen Walter
  • Michael J. Parnham
  • Bruno G. Oertel
  • Gerd Geisslinger
Review Article


Fentanyl was structurally designed by Paul Janssen in the early 1960s as a potent opioid analgesic (100-fold more potent than morphine). It is a full agonist at μ-opioid receptors and possesses physicochemical properties, in particular a high lipophilicity (octanol:water partition coefficient >700), which allow it to cross quickly between plasma and central nervous target sites (transfer half-life of 4.7–6.6 min). It undergoes first-pass metabolism via cytochrome P450 3A (bioavailability ~30 % after rapid swallowing), which can be circumvented by non-intravenous formulations (bioavailability 50–90 % for oral transmucosal or intranasal formulations). Non-intravenous preparations deliver fentanyl orally-transmucosally, intranasally or transdermally. Passive transdermal patches release fentanyl at a constant zero-order rate for 2–3 days, making them suitable for chronic pain management, as are iontophoretic transdermal systems. Oral transmucosal and intranasal routes provide fast delivery (time to reach maximum fentanyl plasma concentrations 20 min [range 20–180 min] and 12 min [range 12–21 min], respectively) suitable for rapid onset of analgesia in acute pain conditions with time to onset of analgesia of 5 or 2 min, respectively. Intranasal formulations partly bypass the blood–brain barrier and deliver a fraction of the dose directly to relevant brain target sites, providing ultra-fast analgesia for breakthrough pain. Thanks to the development of non-intravenous pharmaceutical formulations, fentanyl has become one of the most successful opioid analgesics, and can be regarded as an example of a successful reformulation strategy of an existing drug based on pharmacokinetic research and pharmaceutical technology. This development broadened the indications for fentanyl beyond the initial restriction to intra- or perioperative clinical uses. The clinical utility of fentanyl could be expanded further by more comprehensive mathematical characterizations of its parametric pharmacokinetic input functions as a basis for the rational selection of fentanyl formulations for individualized pain therapy.


Fentanyl Input Function Breakthrough Pain Oral Transmucosal Fentanyl Citrate Disposition Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



“Landesoffensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz”: “LOEWE-Schwerpunkt: Anwendungsorientierte Arzneimittelforschung” (JL and GG) for supporting the pharmacological research environment for human pharmacokinetics in a comprehensive drug development facility located at the bridge between pharmacological research in academia and in the pharmaceutical industry, hosted in the “Fraunhofer Project Group Translational Medicine and Pharmacology (IME-TMP)” at Frankfurt am Main, Germany. The authors have declared that no competing interests exist. This paper was written using Free Software programs on an office and home PC running Ubuntu GNU/Linux.


  1. 1.
    Twycross R, Wilcock A. Palliative care formulary. 3rd ed. Oxford:; 2007. p. 269.Google Scholar
  2. 2.
    Janssen PA. A review of the chemical features associated with strong morphine-like activity. Br J Anaesth. 1962;34:260–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Stanley TH. The history and development of the fentanyl series. J Pain Symptom Manag. 1992;7(3 Suppl):S3–7.CrossRefGoogle Scholar
  4. 4.
    Guertner T, Doenicke A, Spiess W. Neuroleptanalgesia: experiences with types I, II and their combination [in German]. Anaesthesist. 1964;13:183–9.PubMedGoogle Scholar
  5. 5.
    International narcotics control board: statistical information on narcotic drugs. New York: United Nations Publication; 2006.Google Scholar
  6. 6.
    NHS Information Centre. Prescription cost analysis England 2007. Accessed 3 Oct 2012.
  7. 7.
    Schwabe U, Paffrath D, editors. Arzneiverordnungs-Report 2008: Aktuelle Daten, Kosten, Trends und Kommentare. Berlin: Springer; 2008. p. 232–7.Google Scholar
  8. 8.
    Scott JC, Stanski DR. Decreased fentanyl and alfentanil dose requirements with age: a simultaneous pharmacokinetic and pharmacodynamic evaluation. J Pharmacol Exp Ther. 1987;240(1):159–66.PubMedGoogle Scholar
  9. 9.
    Stanski DR, Ham J, Miller RD, Sheiner LB. Pharmacokinetics and pharmacodynamics of d-tubocurarine during nitrous oxide-narcotic and halothane anesthesia in man. Anesthesiology. 1979;51:235–41.PubMedCrossRefGoogle Scholar
  10. 10.
    Hull CJ, Van Beem HB, McLeod K, Sibbald A, Watson MJ. A pharmacodynamic model for pancuronium. Br J Anaesth. 1978;50(11):1113–23.PubMedCrossRefGoogle Scholar
  11. 11.
    Emmerson PJ, Liu MR, Woods JH, Medzihradsky F. Binding affinity and selectivity of opioids at mu, delta and kappa receptors in monkey brain membranes. J Pharmacol Exp Ther. 1994;271(3):1630–7.PubMedGoogle Scholar
  12. 12.
    Arvidsson U, Riedl M, Chakrabarti S, Lee JH, Nakano AH, Dado RJ, et al. Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal cord. J Neurosci. 1995;15(5 Pt 1):3328–41.PubMedGoogle Scholar
  13. 13.
    Portenoy RK, Hagen NA. Breakthrough pain: definition, prevalence and characteristics. Pain. 1990;41:273–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Meert TF, Lu HR, van Craenndonck H, Janssen PA. Comparison between epidural fentanyl, sufentanil, carfentanil, lofentanil and alfentanil in the rat: analgesia and other in vivo effects. Eur J Anaesthesiol. 1988;5(5):313–21.PubMedGoogle Scholar
  15. 15.
    Uysalel A, Kecik Y, Kirdemir P, Sayin M, Binnet M. Comparison of intraarticular bupivacaine with the addition of morphine or fentanyl for analgesia after arthroscopic surgery. Arthroscopy. 1995;11(6):660–3.PubMedCrossRefGoogle Scholar
  16. 16.
    Roy SD, Flynn GL. Solubility and related physicochemical properties of narcotic analgesics. Pharm Res. 1988;5(9):580–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Scott JC, Cooke JE, Stanski DR. Electroencephalographic quantitation of opioid effect: comparative pharmacodynamics of fentanyl and sufentanil. Anesthesiology. 1991;74(1):34–42.PubMedCrossRefGoogle Scholar
  18. 18.
    Scott JC, Ponganis KV, Stanski DR. EEG quantitation of narcotic effect: the comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology. 1985;62:234–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang Y, Wang D, Johnson AD, Papp AC, Sadée W. Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant A118G. J Biol Chem. 2005;280(38):32618–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Oertel BG, Kettner M, Scholich K, Renné C, Roskam B, Geisslinger G, et al. A common human micro-opioid receptor genetic variant diminishes the receptor signaling efficacy in brain regions processing the sensory information of pain. J Biol Chem. 2009;284(10):6530–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang W, Chang YZ, Kan QC, Zhang LR, Lu H, Chu QJ, et al. Association of human micro-opioid receptor gene polymorphism A118G with fentanyl analgesia consumption in Chinese gynaecological patients. Anaesthesia. 2010;65(2):130–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Wu WD, Wang Y, Fang YM, Zhou HY. Polymorphism of the micro-opioid receptor gene (OPRM1 118A>G) affects fentanyl-induced analgesia during anesthesia and recovery. Mol Diagn Ther. 2009;13(5):331–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Fukuda K, Hayashida M, Ide S, Saita N, Kokita Y, Kasai S, et al. Association between OPRM1 gene polymorphisms and fentanyl sensitivity in patients undergoing painful cosmetic surgery. Pain. 2009;147(1–3):194–201.PubMedCrossRefGoogle Scholar
  24. 24.
    Lötsch J, Prüss H, Veh RW, Doehring A. A KCNJ6 (Kir3.2, GIRK2) gene polymorphism modulates opioid effects on analgesia and addiction but not on pupil size. Pharmacogenet Genomics. 2010;20(5):291–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Mather LE. Clinical pharmacokinetics of fentanyl and its newer derivatives. Clin Pharmacokinet. 1983;8(5):422–46.PubMedCrossRefGoogle Scholar
  26. 26.
    Labroo RB, Paine MF, Thummel KE, Kharasch ED. Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implications for interindividual variability in disposition, efficacy, and drug interactions. Drug Metab Dispos. 1997;25(9):1072–80.PubMedGoogle Scholar
  27. 27.
    Feierman DE, Lasker JM. Metabolism of fentanyl, a synthetic opioid analgesic, by human liver microsomes: role of CYP3A4. Drug Metab Dispos. 1996;24(9):932–9.PubMedGoogle Scholar
  28. 28.
    Jin M, Gock SB, Jannetto PJ, Jentzen JM, Wong SH. Pharmacogenomics as molecular autopsy for forensic toxicology: genotyping cytochrome P450 3A4*1B and 3A5*3 for 25 fentanyl cases. J Anal Toxicol. 2005;29(7):590–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Schneider E, Brune K. Opioid activity and distribution of fentanyl metabolites. Naunyn Schmiedebergs Arch Pharmacol. 1986;334(3):267–74.PubMedCrossRefGoogle Scholar
  30. 30.
    de Wildt SN, Kearns GL, Leeder JS, van den Anker JN. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet. 1999;37(6):485–505.PubMedCrossRefGoogle Scholar
  31. 31.
    Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T. Expression of CYP3A in the human liver: evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247(2):625–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science. 1999;286(5439):487–91.PubMedCrossRefGoogle Scholar
  33. 33.
    Flockhart DA. Drug interactions: cytochrome P450 drug interaction table. Indiana University School of Medicine; 2007. Accessed 20 Jun 2012.
  34. 34.
    Olkkola KT, Palkama VJ, Neuvonen PJ. Ritonavir’s role in reducing fentanyl clearance and prolonging its half-life. Anesthesiology. 1999;91(3):681–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Levin TT, Bakr MH, Nikolova T. Case report: delirium due to a diltiazem-fentanyl CYP3A4 drug interaction. Gen Hosp Psychiatry. 2010;32(6):648.e9–10.CrossRefGoogle Scholar
  36. 36.
    Palkama VJ, Neuvonen PJ, Olkkola KT. 3A4 inhibitor itraconazole has no effect on the pharmacokinetics of i.v. fentanyl. Br J Anaesth. 1998;81(4):598–600.PubMedCrossRefGoogle Scholar
  37. 37.
    Lehmann KA, Hunger L, Brandt K, Daub D. Biotransformation of fentanyl. III: effect of chronic drug exposure on the distribution, metabolism and excretion in the rat [in German]. Der Anaesthesist. 1983;32(4):165–73.PubMedGoogle Scholar
  38. 38.
    Oda Y, Mizutani K, Hase I, Nakamoto T, Hamaoka N, Asada A. Fentanyl inhibits metabolism of midazolam: competitive inhibition of CYP3A4 in vitro. Br J Anaesth. 1999;82(6):900–3.PubMedCrossRefGoogle Scholar
  39. 39.
    Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27(4):383–91.PubMedCrossRefGoogle Scholar
  40. 40.
    Wandel C, Kim R, Wood M, Wood A. Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology. 2002;96(4):913–20.PubMedCrossRefGoogle Scholar
  41. 41.
    de Lange EC, de Bock G, Schinkel AH, de Boer AG, Breimer DD. BBB transport and P-glycoprotein functionality using MDR1A (-/-) and wild-type mice: total brain versus microdialysis concentration profiles of rhodamine-123. Pharm Res. 1998;15(11):1657–65.PubMedCrossRefGoogle Scholar
  42. 42.
    Kesimci E, Engin AB, Kanbak O, Karahalil B. Association between ABCB1 gene polymorphisms and fentanyl’s adverse effects in Turkish patients undergoing spinal anesthesia. Gene. 2012;493(2):273–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Park HJ, Shinn HK, Ryu SH, Lee HS, Park CS, Kang JH. Genetic polymorphisms in the ABCB1 gene and the effects of fentanyl in Koreans. Clin Pharmacol Ther. 2007;81(4):539–46.PubMedCrossRefGoogle Scholar
  44. 44.
    Takashina Y, Naito T, Mino Y, Yagi T, Ohnishi K, Kawakami J. Impact of CYP3A5 and ABCB1 gene polymorphisms on fentanyl pharmacokinetics and clinical responses in cancer patients undergoing conversion to a transdermal system. Drug Metab Pharmacokinet (Epub 2012 Jan 24).Google Scholar
  45. 45.
    Lötsch J, von Hentig N, Freynhagen R, Griessinger N, Zimmermann M, Doehring A, et al. Cross-sectional analysis of the influence of currently known pharmacogenetic modulators on opioid therapy in outpatient pain centers. Pharmacogenet Genomics. 2009;19(6):429–36.PubMedCrossRefGoogle Scholar
  46. 46.
    Dhuria SV, Hanson LR, Frey WH 2nd. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99:1654–73.PubMedGoogle Scholar
  47. 47.
    Darwish M, Xie F. Pharmacokinetics of fentanyl buccal tablet: a pooled analysis and review. Pain Pract. 2012;12(4):307–14.PubMedCrossRefGoogle Scholar
  48. 48.
    Smith H. A comprehensive review of rapid-onset opioids for breakthrough pain. CNS Drugs. 2012;26(6):509–35.PubMedCrossRefGoogle Scholar
  49. 49.
    Caraceni A, Martini C, Zecca E, Portenoy RK, Ashby MA, Hawson G, et al. Breakthrough pain characteristics and syndromes in patients with cancer pain: an international survey. Palliat Med. 2004;18(3):177–83.PubMedCrossRefGoogle Scholar
  50. 50.
    Darwish M, Hamed E, Messina J. Fentanyl buccal tablet for the treatment of breakthrough pain: pharmacokinetics of buccal mucosa delivery and clinical efficacy. Perspect Med Chem. 2010;4:11–21.CrossRefGoogle Scholar
  51. 51.
    Kern S, Boskey J, Darwish M. Pharmacokinetics of fentanyl buccal tablet and oral transmucosal fentanyl citrate [abstract]. Anesthesiology. 2007;107:A1085.Google Scholar
  52. 52.
    Egan TD, Sharma A, Ashburn MA, Kievit J, Pace NL, Streisand JB. Multiple dose pharmacokinetics of oral transmucosal fentanyl citrate in healthy volunteers. Anesthesiology. 2000;92(3):665–73.PubMedCrossRefGoogle Scholar
  53. 53.
    Streisand JB, Varvel JR, Stanski DR, Le Maire L, Ashburn MA, Hague BI, et al. Absorption and bioavailability of oral transmucosal fentanyl citrate. Anesthesiology. 1991;75(2):223–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Wheeler M, Birmingham PK, Dsida RM, Wang Z, Coté CJ, Avram MJ. Uptake pharmacokinetics of the Fentanyl Oralet in children scheduled for central venous access removal: implications for the timing of initiating painful procedures. Paediatr Anaesth. 2002;12(7):594–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Paech MJ, Bloor M, Schug SA. New formulations of fentanyl for acute pain management. Drugs Today (Barc). 2012;48(2):119–32.Google Scholar
  56. 56.
    Rauck R, Reynolds L, Geach J, Bull J, Stearns L, Scherlis M, et al. Efficacy and safety of fentanyl sublingual spray for the treatment of breakthrough cancer pain: a randomized, double-blind, placebo-controlled study. Curr Med Res Opin. 2012;28:859–70.PubMedCrossRefGoogle Scholar
  57. 57.
    Finn AL, Hill WC, Tagarro I, Gever LN. Absorption and tolerability of fentanyl buccal soluble film (FBSF) in patients with cancer in the presence of oral mucositis. J Pain Res. 2011;4:245–51.PubMedCrossRefGoogle Scholar
  58. 58.
    Doty RL. The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann Neurol. 2008;63:7–15.PubMedCrossRefGoogle Scholar
  59. 59.
    Panagiotou I, Mystakidou K. Intranasal fentanyl: from pharmacokinetics and bioavailability to current treatment applications. Expert Rev Anticancer Ther. 2010;10(7):1009–21.PubMedCrossRefGoogle Scholar
  60. 60.
    Bende M, Flisberg K, Larsson I, Ohlin P, Olsson P. A method for determination of blood flow with 133Xe in human nasal mucosa. Acta Otolaryngol. 1983;96(3–4):277–85.PubMedCrossRefGoogle Scholar
  61. 61.
    Dale O, Hjortkjaer R, Kharasch ED. Nasal administration of opioids for pain management in adults. Acta Anaesthesiol Scand. 2002;46:759–70.PubMedCrossRefGoogle Scholar
  62. 62.
    Peng PW, Sandler AN. A review of the use of fentanyl analgesia in the management of acute pain in adults. Anesthesiology. 1999;90(2):576–99.PubMedCrossRefGoogle Scholar
  63. 63.
    Prediger RDS, Aguiar AS, Matheus FC, Walz R, Antoury L, Raisman-Vozari R, et al. Intranasal administration of neurotoxicants in animals: support for the olfactory vector hypothesis of Parkinson’s disease. Neurotox Res. 2012;21(1):90–116.PubMedCrossRefGoogle Scholar
  64. 64.
    Skarke C, Darimont J, Schmidt H, Geisslinger G, Lötsch J. Analgesic effects of morphine and morphine-6-glucuronide in a transcutaneous electrical pain model in healthy volunteers. Clin Pharmacol Ther. 2003;73(1):107–21.PubMedCrossRefGoogle Scholar
  65. 65.
    Lötsch J, Skarke C, Schmidt H, Grösch S, Geisslinger G. The transfer half-life of morphine-6-beta-glucuronide from plasma to effect site assessed by pupil size measurement in healthy volunteers. Anesthesiology. 2001;95(6):1329–38.PubMedCrossRefGoogle Scholar
  66. 66.
    Illum L, Davis SS, Pawula M, Fisher AN, Barrett DA, Farraj NF, et al. Nasal administration of morphine-6-glucuronide in sheep: a pharmacokinetic study. Biopharm Drug Dispos. 1996;17:717–24.PubMedCrossRefGoogle Scholar
  67. 67.
    Moksnes K, Fredheim OM, Klepstad P, Kaasa S, Angelsen A, Nilsen T, et al. Early pharmacokinetics of nasal fentanyl: is there a significant arterio-venous difference? Eur J Clin Pharmacol. 2008;64(5):497–502.PubMedCrossRefGoogle Scholar
  68. 68.
    Graff CL, Pollack GM. Nasal drug administration: potential for targeted central nervous system delivery. J Pharm Sci. 2005;94:1187–95.PubMedCrossRefGoogle Scholar
  69. 69.
    Kress HG, Orońska A, Kaczmarek Z, Kaasa S, Colberg T, Nolte T. Efficacy and tolerability of intranasal fentanyl spray 50 to 200 microg for breakthrough pain in patients with cancer: a phase III, multinational, randomized, double-blind, placebo-controlled, crossover trial with a 10-month, open-label extension treatment. Clin Ther. 2009;31(6):1177–91.PubMedCrossRefGoogle Scholar
  70. 70.
    Waters CM, Krejcie TC, Avram MJ. Facilitated uptake of fentanyl, but not alfentanil, by human pulmonary endothelial cells. Anesthesiology. 2000;93(3):825–31.PubMedCrossRefGoogle Scholar
  71. 71.
    Fisher A, Watling M, Smith A, Knight A. Pharmacokinetics and relative bioavailability of fentanyl pectin nasal spray 100–800 μg in healthy volunteers. Int J Clin Pharmacol Ther. 2010;48(12):860–7.PubMedGoogle Scholar
  72. 72.
    Djupesland PG, Skretting A, Winderen M, Holand T. Breath actuated device improves delivery to target sites beyond the nasal valve. Laryngoscope. 2006;116(3):466–72.PubMedCrossRefGoogle Scholar
  73. 73.
    Prodduturi S, Sadrieh N, Wokovich AM, Doub WH, Westenberger BJ, Buhse L. Transdermal delivery of fentanyl from matrix and reservoir systems: effect of heat and compromised skin. J Pharm Sci. 2010;99(5):2357–66.PubMedGoogle Scholar
  74. 74.
    Forsgren J, Jämstorp E, Bredenberg S, Engqvist H, Strømme M. A ceramic drug delivery vehicle for oral administration of highly potent opioids. J Pharm Sci. 2010;99(1):219–26.PubMedCrossRefGoogle Scholar
  75. 75.
    Marier JF, Lor M, Potvin D, Dimarco M, Morelli G, Saedder EA. Pharmacokinetics, tolerability, and performance of a novel matrix transdermal delivery system of fentanyl relative to the commercially available reservoir formulation in healthy subjects. J Clin Pharmacol. 2006;46(6):642–53.PubMedCrossRefGoogle Scholar
  76. 76.
    Walter C, Felden L, Lötsch J. Bioequivalence criteria for transdermal fentanyl generics: do these need a relook? Clin Pharmacokinet. 2009;48(10):625–33.PubMedCrossRefGoogle Scholar
  77. 77.
    Koehntop DE, Rodman JH. Fentanyl pharmacokinetics in patients undergoing renal transplantation. Pharmacotherapy. 1997;17:746–52.PubMedGoogle Scholar
  78. 78.
    Haberer JP, Schoeffler P, Couderc E, Duvaldestin P. Fentanyl pharmacokinetics in anaesthetized patients with cirrhosis. Br J Anaesth. 1982;54:1267–70.PubMedCrossRefGoogle Scholar
  79. 79.
    Newshan G. Heat-related toxicity with the fentanyl transdermal patch. J Pain Symptom Manag. 1998;16(5):277–8.CrossRefGoogle Scholar
  80. 80.
    Andresen T, Upton RN, Foster DJR, Christrup LL, Arendt-Nielsen L, Drewes AM. Pharmacokinetic/pharmacodynamic relationships of transdermal buprenorphine and fentanyl in experimental human pain models. Basic Clin Pharmacol Toxicol. 2011;108(4):274–84.PubMedCrossRefGoogle Scholar
  81. 81.
    Unadkat JD, Bartha F, Sheiner LB. Simultaneous modeling of pharmacokinetics and pharmacodynamics with nonparametric kinetic and dynamic models. Clin Pharmacol Ther. 1986;40(1):86–93.PubMedCrossRefGoogle Scholar
  82. 82.
    Loo JC, Riegelman S. New method for calculating the intrinsic absorption rate of drugs. J Pharm Sci. 1968;57(6):918–28.PubMedCrossRefGoogle Scholar
  83. 83.
    Varvel JR, Shafer SL, Hwang SS, Coen PA, Stanski DR. Absorption characteristics of transdermally administered fentanyl. Anesthesiology. 1989;70(6):928–34.PubMedCrossRefGoogle Scholar
  84. 84.
    Bentley JB, Borel JD, Nenad RE Jr, Gillespie TJ. Age and fentanyl pharmacokinetics. Anesth Analg. 1982;61(12):968–71.PubMedCrossRefGoogle Scholar
  85. 85.
    Janssen Pharmaceuticals, Inc. Duragesic: Full prescribing information. Titusville: Janssen Pharmaceuticals, Inc.; 2011.Google Scholar
  86. 86.
    Carter KA. Heat-associated increase in transdermal fentanyl absorption. Am J Health Syst Pharm. 2003;60(2):191–2.PubMedGoogle Scholar
  87. 87.
    Solassol I, Bressolle F, Caumette L, Garcia F, Poujol S, Culine S, et al. Inter- and intraindividual variabilities in pharmacokinetics of fentanyl after repeated 72-hour transdermal applications in cancer pain patients. Ther Drug Monit. 2005;27(4):491–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Solassol I, Caumette L, Bressolle F, Garcia F, Thézenas S, Astre C, et al. Inter- and intra-individual variability in transdermal fentanyl absorption in cancer pain patients. Oncol Rep. 2005;14(4):1029–36.PubMedGoogle Scholar
  89. 89.
    Schröder B, Nickel U, Meyer E, Lee G. Transdermal delivery using a novel electrochemical device, part 2: in vivo study in humans. J Pharm Sci. 2012;101(6):2262–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Schröder B, Nickel U, Meyer E, Lee G. Transdermal delivery using a novel electrochemical device, part 1: device design and in vitro release/permeation of fentanyl. J Pharm Sci. 2012;101(1):245–55.PubMedCrossRefGoogle Scholar
  91. 91.
    Ashburn MA, Streisand J, Zhang J, Love G, Rowin M, Niu S, et al. The iontophoresis of fentanyl citrate in humans. Anesthesiology. 1995;82(5):1146–53.PubMedCrossRefGoogle Scholar
  92. 92.
    Panchal SJ, Damaraju CV, Nelson WW, Hewitt DJ, Schein JR. System-related events and analgesic gaps during postoperative pain management with the fentanyl iontophoretic transdermal system and morphine intravenous patient-controlled analgesia. Anesth Analg. 2007;105(5):1437–41.PubMedCrossRefGoogle Scholar
  93. 93.
    Viscusi ER, Siccardi M, Damaraju CV, Hewitt DJ, Kershaw P. The safety and efficacy of fentanyl iontophoretic transdermal system compared with morphine intravenous patient-controlled analgesia for postoperative pain management: an analysis of pooled data from three randomized, active-controlled clinical studies. Anesth Analg. 2007;105(5):1428–36.PubMedCrossRefGoogle Scholar
  94. 94.
    Nugroho AK, Della-Pasqua O, Danhof M, Bouwstra JA. Compartmental modeling of transdermal iontophoretic transport II: in vivo model derivation and application. Pharm Res. 2005;22(3):335–46.PubMedCrossRefGoogle Scholar
  95. 95.
    Sathyan G, Jaskowiak J, Evashenk M, Gupta S. Characterisation of the pharmacokinetics of the fentanyl HCl patient-controlled transdermal system (PCTS): effect of current magnitude and multiple-day dosing and comparison with IV fentanyl administration. Clin Pharmacokinet. 2005;44(Suppl 1):7–15.PubMedGoogle Scholar
  96. 96.
    Hermann DJ, Egan TD, Muir KT. Influence of arteriovenous sampling on remifentanil pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 1999;65(5):511–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Yassen A, Olofsen E, Romberg R, Sarton E, Teppema L, Danhof M, et al. Mechanism-based PK/PD modeling of the respiratory depressant effect of buprenorphine and fentanyl in healthy volunteers. Clin Pharmacol Ther. 2006/12/23 ed. 2007;81(1):50–8.Google Scholar
  98. 98.
    Taeger K, Weninger E, Schmelzer F, Adt M, Franke N, Peter K. Pulmonary kinetics of fentanyl and alfentanil in surgical patients. Br J Anaesth. 1988;61(4):425–34.PubMedCrossRefGoogle Scholar
  99. 99.
    Bentley JB, Conahan TJ, Cork RC. Fentanyl sequestration in lungs during cardiopulmonary bypass. Clin Pharmacol Ther. 1983;34(5):703–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Upton RN, Grant C, Martinez AM, Ludbrook GL. Recirculatory model of fentanyl disposition with the brain as the target organ. Br J Anaesth. 2004;93(5):687–97.PubMedCrossRefGoogle Scholar
  101. 101.
    Holford NH, Sheiner LB. Kinetics of pharmacologic response. Pharmacol Ther. 1982;16(2):143–66.PubMedCrossRefGoogle Scholar
  102. 102.
    Hill HF, Chapman CR, Saeger LS, Bjurstrom R, Walter MH, Schoene RB, et al. Steady-state infusions of opioids in human. II. Concentration-effect relationships and therapeutic margins. Pain. 1990;43:69–79.PubMedCrossRefGoogle Scholar
  103. 103.
    GmbH Janssen-Cilag. Durogesic SMAT: Fachinformation (Stand: 2011). Neuss: Janssen-Cilag GmbH; 2011.Google Scholar
  104. 104.
    Mildh LH, Scheinin H, Kirvela OA. The concentration-effect relationship of the respiratory depressant effects of alfentanil and fentanyl. Anesth Analg. 2001;93(4):939–46.PubMedCrossRefGoogle Scholar
  105. 105.
    Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther. 1979;25:358–71.PubMedGoogle Scholar
  106. 106.
    Shafer SL, Varvel JR. Pharmacokinetics, pharmacodynamics, and rational opioid selection. Anesthesiology. 1991;74:53–63.PubMedCrossRefGoogle Scholar
  107. 107.
    Wang J, Weiss M, D’Argenio DZ. A note on population analysis of dissolution-absorption models using the inverse Gaussian function. J Clin Pharmacol. 2008;48(6):719–25.PubMedCrossRefGoogle Scholar
  108. 108.
    Lötsch J, Weiss M, Ahne G, Kobal G, Geisslinger G. Pharmacokinetic modeling of M6G formation after oral administration of morphine in healthy volunteers. Anesthesiology. 1999;90(4):1026–38.PubMedCrossRefGoogle Scholar
  109. 109.
    Zaveri N, Polgar WE, Olsen CM, Kelson AB, Grundt P, Lewis JW, et al. Characterization of opiates, neuroleptics, and synthetic analogs at ORL1 and opioid receptors. Eur J Pharmacol. 2001;428(1):29–36.PubMedCrossRefGoogle Scholar
  110. 110.
    Gharagozlou P, Demirci H, David Clark J, Lameh J. Activity of opioid ligands in cells expressing cloned mu opioid receptors. BMC Pharmacol. 2003 Jan 4;3:1.Google Scholar
  111. 111.
    Gharagozlou P, Demirci H, Clark JD, Lameh J. Activation profiles of opioid ligands in HEK cells expressing delta opioid receptors. BMC Neurosci. 2002;18(3):19.CrossRefGoogle Scholar
  112. 112.
    Gharagozlou P, Hashemi E, DeLorey TM, Clark JD, Lameh J. Pharmacological profiles of opioid ligands at kappa opioid receptors. BMC Pharmacol. 2006;6:3.PubMedCrossRefGoogle Scholar
  113. 113.
    Thurlkill RL, Cross DA, Scholtz JM, Pace CN. pKa of fentanyl varies with temperature: implications for acid-base management during extremes of body temperature. J Cardiothorac Vasc Anesth. 2005;19(6):759–62.PubMedCrossRefGoogle Scholar
  114. 114.
    Bower S. Plasma protein binding of fentanyl. J Pharm Pharmacol. 1981;33(8):507–14.PubMedCrossRefGoogle Scholar
  115. 115.
    Mystakidou K, Katsouda E, Parpa E, Vlahos L, Tsiatas ML. Oral transmucosal fentanyl citrate: overview of pharmacological and clinical characteristics. Drug Deliv. 2006;13:269–76.PubMedCrossRefGoogle Scholar
  116. 116.
    Darwish M, Tempero K, Kirby M, Thompson J. Relative bioavailability of the fentanyl effervescent buccal tablet (FEBT) 1,080 pg versus oral transmucosal fentanyl citrate 1,600 pg and dose proportionality of FEBT 270 to 1,300 microg: a single-dose, randomized, open-label, three-period study in healthy adult volunteers. Clin Ther. 2006;28(5):715–24.PubMedCrossRefGoogle Scholar
  117. 117.
    Lichtor JL, Sevarino FB, Joshi GP, Busch MA, Nordbrock E, Ginsberg B. The relative potency of oral transmucosal fentanyl citrate compared with intravenous morphine in the treatment of moderate to severe postoperative pain. Anesth Analg. 1999;89:732–8.PubMedGoogle Scholar
  118. 118.
    Lennernäs B, Hedner T, Holmberg M, Bredenberg S, Nyström C, Lennernäs H. Pharmacokinetics and tolerability of different doses of fentanyl following sublingual administration of a rapidly dissolving tablet to cancer patients: a new approach to treatment of incident pain. Br J Clin Pharmacol. 2005;59:249–53.PubMedCrossRefGoogle Scholar
  119. 119.
    Chwieduk CM, McKeage K. Fentanyl sublingual: in breakthrough pain in opioid-tolerant adults with cancer. Drugs. 2010;70:2281–8.PubMedCrossRefGoogle Scholar
  120. 120.
    Darwish M, Kirby M, Robertson P, Hellriegel E, Jiang JG. Comparison of equivalent doses of fentanyl buccal tablets and arteriovenous differences in fentanyl pharmacokinetics. Clin Pharmacokinet. 2006;45(8):843–50.PubMedCrossRefGoogle Scholar
  121. 121.
    Portenoy RK, Messina J, Xie F, Peppin J. Fentanyl buccal tablet (FBT) for relief of breakthrough pain in opioid-treated patients with chronic low back pain: a randomized, placebo-controlled study. Curr Med Res Opin. 2007;23:223–33.PubMedCrossRefGoogle Scholar
  122. 122.
    Rauck R, North J, Gever LN, Tagarro I, Finn ALC-2875549. Fentanyl buccal soluble film (FBSF) for breakthrough pain in patients with cancer: a randomized, double-blind, placebo-controlled study. Ann Oncol. 2010;21:1308–14.PubMedCrossRefGoogle Scholar
  123. 123.
    Vasisht N, Gever LN, Tagarro I, Finn AL. Single-dose pharmacokinetics of fentanyl buccal soluble film. Pain Med. 2010;11(7):1017–23.PubMedCrossRefGoogle Scholar
  124. 124.
    Foster D, Upton R, Christrup L, Popper L. Pharmacokinetics and pharmacodynamics of intranasal versus intravenous fentanyl in patients with pain after oral surgery. Ann Pharmacother. 2008;42:1380–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Curtiss CP. Fentanyl pectin nasal spray reduces breakthrough cancer pain intensity compared with placebo in people taking at least 60 mg daily oral morphine or equivalent. Evid Based Nurs. 2011;14:90–1.PubMedCrossRefGoogle Scholar
  126. 126.
    Watts P, Smith A. PecSys: in situ gelling system for optimised nasal drug delivery. Expert Opin Drug Deliv. 2009;6:543–52.PubMedCrossRefGoogle Scholar
  127. 127.
    Sandler A. Transdermal fentanyl: acute analgesic clinical studies. J Pain Symptom Manag. 1992;7:S27–35.CrossRefGoogle Scholar
  128. 128.
    Gourlay GK, Kowalski SR, Plummer JL, Cherry DA, Szekely SM, Mather LE, et al. The efficacy of transdermal fentanyl in the treatment of postoperative pain: a double-blind comparison of fentanyl and placebo systems. Pain. 1990;40:21–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Sevarino FB, Paige D, Sinatra RS, Silverman DG. Postoperative analgesia with parenteral opioids: does continuous delivery utilizing a transdermal opioid preparation affect analgesic efficacy or patient safety? J Clin Anesth. 1997;9(3):173–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Ashburn MA, Ogden LL, Zhang J, Love G, Basta SV. The pharmacokinetics of transdermal fentanyl delivered with and without controlled heat. J Pain. 2003;4(6):291–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Cephalon, Inc. Actiq: full prescribing information. Frazer: Cephalon Inc.; 2011.Google Scholar
  132. 132.
    ProStrakan Ltd. Abstral: summary of product characteristics. Galashiels: ProStrakan Ltd; 2010.Google Scholar
  133. 133.
    Insys Therapeutics, Inc. Subsys: full prescribing information. Phoenix: Insys Therapeutics, Inc.; 2012.Google Scholar
  134. 134.
    Cephalon Europe. Effentora: fachinformation. Maisons-Alfort: Cephalon Europe; 2011.Google Scholar
  135. 135.
    Meda Pharmaceuticals, Inc. Onsolis: full prescribing information. Somerset: Meda Pharmaceuticals, Inc.; 2011.Google Scholar
  136. 136.
    Nycomed Danmark ApS. Instanyl: fachinformation. Roskile: Nycomed Danmark ApS; 2011.Google Scholar
  137. 137.
    Archimedes Pharma Germany GmbH. PecFent: fachinformation. Mannheim: Archimedes Pharma Germany GmbH; 2010.Google Scholar
  138. 138.
    Archimedes Pharma US, Inc. Lazanda: full prescribing information. Reading: Archimedes Pharma Ltd; 2012.Google Scholar
  139. 139.
    Mibe GmbH Arzneimittel. Fentadolon: Fachinformation. Brehna: Mibe GmbH Arzneimittel; 2010.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2012

Authors and Affiliations

  • Jörn Lötsch
    • 1
    Email author
  • Carmen Walter
    • 1
  • Michael J. Parnham
    • 2
  • Bruno G. Oertel
    • 2
  • Gerd Geisslinger
    • 1
  1. 1.pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, J. W. Goethe-University HospitalFrankfurtGermany
  2. 2.Fraunhofer IME Project Group Translational Medicine and Pharmacology (IME-TMP)FrankfurtGermany

Personalised recommendations