Clinical Pharmacokinetics

, Volume 51, Issue 10, pp 629–638 | Cite as

Necessity and Risks of Arterial Blood Sampling in Healthy Volunteer Studies

  • Bruno Georg Oertel
  • Johannes Vermehren
  • Michael Zimmermann
  • Thomas Tao Huynh
  • Alexandra Doehring
  • Nerea Ferreiros
  • Stephan Senzel
  • Thomas Schmitz-Rixen
  • Matthias Erbe
  • Gerd Geisslinger
  • Sebastian Harder
  • Martin S. Angst
  • Jörn Lötsch
Current Opinion


Arterial blood sampling is necessary when drugs such as the fast-acting opioid analgesic remifentanil exhibit relevant differences between arterial and venous blood concentrations. Arterial cannulation is generally considered to be clinically safe and has thus become a standard procedure in pharmacokinetic–pharmacodynamic assessments. However, rare cases of arterial occlusions have to be considered in risk–benefit assessments of arterial sampling in pharmacokinetic studies, especially when including healthy volunteers. In an actual case, arterial occlusion requiring surgical repair was caused by a factor V Leiden thrombophilia associated genetic variant F5 1691G>A (rs6025) and aggravated by a hypoplastic radial artery. Neither risk factor had been identified prior to enrolment by routine laboratory tests such as the prothrombin time (international normalized ratio), partial thromboplastin time and the clinical Allen’s test of arterial function. Re-assessment of the necessity of arterial sampling showed that none of the potential alternatives, target concentrations of computerized infusions or venous concentrations during non-steady-state and steady-state conditions could provide the arterial concentrations. Relying on venous concentrations may result in erroneous pharmacodynamic parameters. Accurate pharmacokinetic–pharmacodynamic studies relying on precisely measured blood concentrations require serial sampling techniques during both steady-state and non-steady-state conditions. However, as illustrated by the presented case, incidents involving the generally safe procedure of arterial sampling are possible, although rare. To further minimize the risks, screening of subjects for prothrombotic risks and careful assessment of the suitability of the artery should be considered in pharmacokinetic studies requiring arterial cannulation.



The Dr. Robert Pfleger Foundation, Bamberg, Germany (BGO), is acknowledged for study support. The authors declare no conflicts of interest that are directly relevant to the content of this review. No sources of funding were used to assist in the preparation of this review.

Supplementary material

40262_2012_1_MOESM1_ESM.pdf (192 kb)
Supplementary material 1 (PDF 191 kb)


  1. 1.
    Hermann DJ, Egan TD, Muir KT. Influence of arteriovenous sampling on remifentanil pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 1999;65(5):511–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Rentsch KM, Kullak-Ublick GA, Reichel C, Meier PJ, Fattinger K. Arterial and venous pharmacokinetics of intravenous heroin in subjects who are addicted to narcotics. Clin Pharmacol Ther. 2001;70(3):237–46.PubMedCrossRefGoogle Scholar
  3. 3.
    Chiou WL. The phenomenon and rationale of marked dependence of drug concentration on blood sampling site: implications in pharmacokinetics, pharmacodynamics, toxicology and therapeutics (part II). Clin Pharmacokinet. 1989;17(4):275–90.PubMedCrossRefGoogle Scholar
  4. 4.
    Chiou WL. The phenomenon and rationale of marked dependence of drug concentration on blood sampling site: implications in pharmacokinetics, pharmacodynamics, toxicology and therapeutics (part I). Clin Pharmacokinet. 1989;17(3):175–99.PubMedCrossRefGoogle Scholar
  5. 5.
    Gumbleton M, Oie S, Verotta D. Pharmacokinetic–pharmacodynamic (PK–PD) modelling in non-steady-state studies and arterio-venous drug concentration differences. Br J Clin Pharmacol. 1994;38(5):389–400.PubMedCrossRefGoogle Scholar
  6. 6.
    Tuk B, Danhof M, Mandema JW. The impact of arteriovenous concentration differences on pharmacodynamic parameter estimates. J Pharmacokinet Biopharm. 1997;25(1):39–62.PubMedCrossRefGoogle Scholar
  7. 7.
    Slogoff S, Keats AS, Arlund C. On the safety of radial artery cannulation. Anesthesiology. 1983;59(1):42–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Scheer B, Perel A, Pfeiffer UJ. Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care. 2002;6(3):199–204.PubMedCrossRefGoogle Scholar
  9. 9.
    Noh GJ, Kim KM, Jeong YB, Jeong SW, Yoon HS, Jeong SM, et al. Electroencephalographic approximate entropy changes in healthy volunteers during remifentanil infusion. Anesthesiology. 2006;104(5):921–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Egan TD, Kern SE, Muir KT, White J. Remifentanil by bolus injection: a safety, pharmacokinetic, pharmacodynamic, and age effect investigation in human volunteers. Br J Anaesth. 2004;92(3):335–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Egan TD, Lemmens HJ, Fiset P, Hermann DJ, Muir KT, Stanski DR, et al. The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology. 1993;79(5):881–92.PubMedCrossRefGoogle Scholar
  12. 12.
    Egan TD, Minto CF, Hermann DJ, Barr J, Muir KT, Shafer SL. Remifentanil versus alfentanil: comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers [published erratum appears in Anesthesiology. 1996 Sep; 85(3):695]. Anesthesiology. 1996;84(4):821–33.PubMedCrossRefGoogle Scholar
  13. 13.
    Minto CF, Schnider TW, Egan TD, Youngs E, Lemmens HJ, Gambus PL, et al. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I: model development. Anesthesiology. 1997;86(1):10–23.PubMedCrossRefGoogle Scholar
  14. 14.
    Bright E, Baines DB, French BG, Cartmill TB. Upper limb amputation following radial artery cannulation. Anaesth Intensive Care. 1993;21(3):351–3.PubMedGoogle Scholar
  15. 15.
    Lötsch J, Darimont J, Skarke C, Zimmermann M, Hummel T, Geisslinger G. Effects of the opioid remifentanil on olfactory function in healthy volunteers. Life Sci. 2001;69(19):2279–85.PubMedCrossRefGoogle Scholar
  16. 16.
    Conroy JL, Fang C, Gu J, Zeitlin SO, Yang W, Yang J, et al. Opioids activate brain analgesic circuits through cytochrome P450/epoxygenase signaling. Nat Neurosci. 2010;13(3):284–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Feierman DE, Lasker JM. Metabolism of fentanyl, a synthetic opioid analgesic, by human liver microsomes: role of CYP3A4. Drug Metab Dispos. 1996;24(9):932–9.PubMedGoogle Scholar
  18. 18.
    Egan TD. Remifentanil pharmacokinetics and pharmacodynamics: a preliminary appraisal. Clin Pharmacokinet. 1995;29(2):80–94.PubMedCrossRefGoogle Scholar
  19. 19.
    Allen EV. Thromboangiitis obliteransmethods of diagnosis of chronic occlusive arterial lesions distal to the wrist with illustrative cases. Am J Med Sci. 1929;2:1–8.Google Scholar
  20. 20.
    De Stefano V, Rossi E, Paciaroni K, Leone G. Screening for inherited thrombophilia: indications and therapeutic implications. Haematologica. 2002;87(10):1095–108.PubMedGoogle Scholar
  21. 21.
    Kujovich JL, Factor V. Leiden thrombophilia. Genet Med. 2011;13(1):1–16.PubMedCrossRefGoogle Scholar
  22. 22.
    Shafer SL, Varvel JR, Aziz N, Scott JC. Pharmacokinetics of fentanyl administered by computer-controlled infusion pump. Anesthesiology. 1990;73:1091–102.PubMedCrossRefGoogle Scholar
  23. 23.
    Egan TD. The clinical pharmacology of remifentanil: a brief review. J Anesth. 1998;12(4):194–204.Google Scholar
  24. 24.
    Jacobs JR, Nath PA. Compartment model to describe peripheral arterial-venous drug concentration gradients with drug elimination from the venous sampling compartment. J Pharm Sci. 1995;84(3):370–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Lötsch J, Skarke C, Wieting J, Oertel BG, Schmidt H, Brockmoller J, et al. Modulation of the central nervous effects of levomethadone by genetic polymorphisms potentially affecting its metabolism, distribution, and drug action. Clin Pharmacol Ther. 2006;79(1):72–89.PubMedCrossRefGoogle Scholar
  26. 26.
    Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45(1):255–68.PubMedCrossRefGoogle Scholar
  27. 27.
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.PubMedCrossRefGoogle Scholar
  28. 28.
    McBride GB. A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. In: NIWA Client Report: HAM2005-062. Hamilton: NIWA; 2005.Google Scholar
  29. 29.
    Lötsch J, Angst MS. The mu-opioid agonist remifentanil attenuates hyperalgesia evoked by blunt and punctuated stimuli with different potency: a pharmacological evaluation of the freeze lesion in humans. Pain. 2003;102(1–2):151–61.PubMedCrossRefGoogle Scholar
  30. 30.
    Segers K, Dahlback B, Nicolaes GA. Coagulation factor V and thrombophilia: background and mechanisms. Thromb Haemost. 2007;98(3):530–42.PubMedGoogle Scholar
  31. 31.
    Dentali F, Ageno W, Bozzato S, Malato A, Gianni M, Squizzato A, et al. Role of factor V Leiden or G20210A prothrombin mutation in patients with symptomatic pulmonary embolism and deep vein thrombosis: a meta-analysis of the literature. J Thromb Haemost. 2012;10(4):732–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Bjorgell O, Nilsson PE, Nilsson JA, Svensson PJ. Location and extent of deep vein thrombosis in patients with and without FV:R 506Q mutation. Thromb Haemost. 2000;83(5):648–51.PubMedGoogle Scholar
  33. 33.
    Coppola A, Tufano A, Cerbone AM, Di Minno G. Inherited thrombophilia: implications for prevention and treatment of venous thromboembolism. Semin Thromb Hemost. 2009;35(7):683–94.PubMedCrossRefGoogle Scholar
  34. 34.
    Barone JE, Madlinger RV. Should an Allen test be performed before radial artery cannulation? J Trauma. 2006;61(2):468–70.PubMedCrossRefGoogle Scholar
  35. 35.
    Tuncali BE, Kuvaki B, Tuncali B, Capar E. A comparison of the efficacy of heparinized and nonheparinized solutions for maintenance of perioperative radial arterial catheter patency and subsequent occlusion. Anesth Analg. 2005;100(4):1117–21.PubMedCrossRefGoogle Scholar
  36. 36.
    Bedford RF, Wollman H. Complications of percutaneous radial-artery cannulation: an objective prospective study in man. Anesthesiology. 1973;38(3):228–36.PubMedCrossRefGoogle Scholar
  37. 37.
    Bedford RF. Radial arterial function following percutaneous cannulation with 18- and 20-gauge catheters. Anesthesiology. 1977;47(1):37–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Bedford RF, Major MC. Percutaneous radial-artery cannulation: increased safety using teflon catheters. Anesthesiology. 1975;42(2):219–22.PubMedCrossRefGoogle Scholar
  39. 39.
    Evans PJ, Kerr JH. Arterial occlusion after cannulation. Br Med J. 1975;3(5977):197–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Downs JB, Rackstein AD, Klein EF Jr, Hawkins IF Jr. Hazards of radial-artery catheterization. Anesthesiology. 1973;38(3):283–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Davis FM, Stewart JM. Radial artery cannulation: a prospective study in patients undergoing cardiothoracic surgery. Br J Anaesth. 1980;52(1):41–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Mortensen JD. Clinical sequelae from arterial needle puncture, cannulation, and incision. Circulation. 1967;35(6):1118–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Kim JM, Arakawa K, Bliss J. Arterial cannulation: factors in the development of occlusion. Anesth Analg. 1975;54(6):836–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Jones RM, Hill AB, Nahrwold ML, Bolles RE. The effect of method of radial artery cannulation on postcannulation blood flow and thrombus formation. Anesthesiology. 1981;55(1):76–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Mandel MA, Dauchot PJ. Radial artery cannulation in 1,000 patients: precautions and complications. J Hand Surg Am. 1977;2(6):482–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Cannon BW, Meshier WT. Extremity amputation following radial artery cannulation in a patient with hyperlipoproteinemia type V. Anesthesiology. 1982;56(3):222–3.PubMedCrossRefGoogle Scholar
  47. 47.
    Baker RJ, Chunprapaph B, Nyhus LM. Severe ischemia of the hand following radial artery catheterization. Surgery. 1976;80(4):449–57.PubMedGoogle Scholar
  48. 48.
    Samaan HA. The hazards of radial artery pressure monitoring. J Cardiovasc Surg (Torino). 1971;12(4):342–7.Google Scholar
  49. 49.
    Katz AM, Birnbaum M, Moylan J, Pellett J. Gangrene of the hand and forearm: a complication of radial artery cannulation. Crit Care Med. 1974;2(5):270–2.PubMedCrossRefGoogle Scholar
  50. 50.
    Mangar D, Laborde RS, Vu DN. Delayed ischaemia of the hand necessitating amputation after radial artery cannulation. Can J Anaesth. 1993;40(3):247–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Tsao JW, Neymark E, Gooding GA. Radial artery mycotic pseudoaneurysm: an unusual complication of catheterization. J Clin Ultrasound. 2000;28(8):414–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Edwards DP, Clarke MD, Barker P. Acute presentation of bilateral radial artery pseudoaneurysms following arterial cannulation. Eur J Vasc Endovasc Surg. 1999;17(5):456–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Lee MK, Lee IO, Kong MH, Han SK, Lim SH. Surgical treatment of digital ischemia occurred after radial artery catheterization. J Korean Med Sci. 2001;16(3):375–7.PubMedGoogle Scholar
  54. 54.
    Falor WH, Hansel JR, Williams GB. Gangrene of the hand: a complication of radial artery cannulation. J Trauma. 1976;16(9):713–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Mayer T, Matlak ME, Thompson JA. Necrosis of the forearm following radial artery catheterization in a patient with Reye’s syndrome. Pediatrics. 1980;65(1):141–3.PubMedGoogle Scholar
  56. 56.
    Bedford RF. Long-term radial artery cannulation: effects on subsequent vessel function. Crit Care Med. 1978;6(1):64–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Seligsohn U, Lubetsky A. Genetic susceptibility to venous thrombosis. N Engl J Med. 2001;344(16):1222–31.PubMedCrossRefGoogle Scholar
  58. 58.
    HapMap CEU population. Accessed 19 Feb 2012.
  59. 59.
    Open Source Code. STANPUMP. Accessed 23 Mar 2012.
  60. 60.
    Pertseva M. The evolution of hormonal signalling systems. Comp Biochem Physiol A Comp Physiol. 1991;100(4):775–87.PubMedCrossRefGoogle Scholar
  61. 61.
    Hozyasz KK, Mostowska A, Szaflarska-Poplawska A, Lianeri M, Jagodzinski PP. Polymorphic variants of genes involved in homocysteine metabolism in celiac disease. Mol Biol Rep. 2012;39(3):3123–30.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2012

Authors and Affiliations

  • Bruno Georg Oertel
    • 1
  • Johannes Vermehren
    • 1
  • Michael Zimmermann
    • 2
  • Thomas Tao Huynh
    • 1
  • Alexandra Doehring
    • 1
  • Nerea Ferreiros
    • 1
  • Stephan Senzel
    • 3
  • Thomas Schmitz-Rixen
    • 4
  • Matthias Erbe
    • 5
  • Gerd Geisslinger
    • 1
  • Sebastian Harder
    • 1
  • Martin S. Angst
    • 6
  • Jörn Lötsch
    • 1
  1. 1.pharmazentrum frankfurt/ZAFES, Institute of Clinical PharmacologyJ. W. Goethe-University HospitalFrankfurtGermany
  2. 2.Department of Anesthesia, Intensive Care and Pain TherapyJ. W. Goethe-University HospitalFrankfurtGermany
  3. 3.Department of LawJ. W. Goethe-University HospitalFrankfurtGermany
  4. 4.Department of Vascular and Endovascular SurgeryJ. W. Goethe-University HospitalFrankfurtGermany
  5. 5.Praxis für Angiologie und HämostaseologieFrankfurtGermany
  6. 6.Department of AnesthesiaStanford University School of MedicineStanfordUSA

Personalised recommendations