Skip to main content
Log in

Sodium-Glucose Co-Transporter 2 Inhibitors Compared with Sulfonylureas in Patients with Type 2 Diabetes Inadequately Controlled on Metformin: A Meta-Analysis of Randomized Controlled Trials

  • Systematic Review
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Background and Objective

When metformin is insufficient for patients with type 2 diabetes mellitus (T2DM), the optimal adjunctive therapy is unclear. This meta-analysis was to compare the efficacy and safety of sodium-glucose co-transporter 2 (SGLT2) inhibitors with sulfonylureas (SUs) as second-line therapy in patients with T2DM inadequately controlled on metformin.

Methods

We systematically searched PubMed, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov for randomized controlled trials comparing SGLT2 inhibitors with SUs as add-on to metformin. Our primary endpoints were glycemic control, hypoglycemia, and change in weight. We assessed pooled data using a random-effects model.

Results

Five trials involving 4300 participants were included in our meta-analysis. Compared with SUs, SGLT2 inhibitors led to no significant reduction in changes in HbA1c (mean difference [MD] − 0.06; 95% confidence interval [CI] [− 0.12, 0.08]), but less hypoglycemia as add-on to metformin (odds ratio [OR] 0.12; 95% CI [0.07, 0.21]). SGLT2 inhibitors led to a reduction in weight by about 3.5 kg; however, SUs caused a gain in weight by about 1 kg (MD − 4.39; 95% CI [− 4.64, − 4.14]). SGLT2 inhibitors also showed a reduction in blood pressure, but increased the incidence of genital tract infections compared with SUs. Interestingly, subgroup analysis by duration of interventions showed that reduction of HbA1c from baseline was similar between the two groups at 12–52 weeks, but SGLT2 inhibitors led to a greater reduction in HbA1c at 104–208 weeks.

Conclusions

Despite similar glycemic efficacy in a relatively short term, SGLT2 inhibitors are more effective in the longer term than SUs as add-on to metformin. In addition, SGLT2 inhibitors produce less hypoglycemic events and lead to greater reductions in weight and blood pressure compared with SUs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, et al. Management of hyperglycemia in type 2 diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669–701.

    Article  PubMed  Google Scholar 

  2. 8. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2018. Diabetes Care. 2018;41(Suppl 1):S73–85.

  3. Thrasher J. Pharmacologic management of type 2 diabetes mellitus: available therapies. Am J Cardiol. 2017;120(1S):S4–16.

    Article  CAS  PubMed  Google Scholar 

  4. Roglic G, Norris SL. Medicines for treatment intensification in type 2 diabetes and type of insulin in type 1 and type 2 diabetes in low-resource settings: synopsis of the world health organization guidelines on second- and third-line medicines and type of insulin for the control of blood glucose levels in nonpregnant adults with diabetes mellitus. Ann Intern Med. 2018;169(6):394–7.

    Article  PubMed  Google Scholar 

  5. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2012;55(6):1577–96.

    Article  CAS  PubMed  Google Scholar 

  6. Seino S. Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia. 2012;55(8):2096–108.

    Article  CAS  PubMed  Google Scholar 

  7. Belsey J, Krishnarajah G. Glycaemic control and adverse events in patients with type 2 diabetes treated with metformin + sulphonylurea: a meta-analysis. Diabetes Obes Metab. 2008;10(Suppl 1):1–7.

    Article  CAS  PubMed  Google Scholar 

  8. McAdam-Marx C, Bellows BK, Unni S, Mukherjee J, Wygant G, Iloeje U, et al. Determinants of glycaemic control in a practice setting: the role of weight loss and treatment adherence (The DELTA Study). Int J Clin Pract. 2014;68(11):1309–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moghissi E, Ismail-Beigi F, Devine RC. Hypoglycemia: minimizing its impact in type 2 diabetes. Endocr Pr. 2013;19(3):526–35.

    Article  Google Scholar 

  10. Marsenic O. Glucose control by the kidney: an emerging target in diabetes. Am J Kidney Dis. 2009;53(5):875–83.

    Article  CAS  PubMed  Google Scholar 

  11. Veltkamp SA, Kadokura T, Krauwinkel WJJ, Smulders RA. Effect of ipragliflozin (ASP1941), a novel selective sodium-dependent glucose co-transporter 2 inhibitor, on urinary glucose excretion in healthy subjects. Clin Drug Investig. 2011;31(12):839–51.

    Article  CAS  PubMed  Google Scholar 

  12. Nauck MA, Del PS, Duran-Garcia S, Rohwedder K, Langkilde AM, Sugg J, et al. Durability of glycaemic efficacy over 2 years with dapagliflozin versus glipizide as add-on therapies in patients whose type 2 diabetes mellitus is inadequately controlled with metformin. Diabetes Obes Metab. 2014;16(11):1111–20.

    Article  CAS  PubMed  Google Scholar 

  13. Nauck MA. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Dev Ther. 2014;8:1335–80.

    Article  CAS  Google Scholar 

  14. Bolinder J, Ljunggren O, Kullberg J, Johansson L, Wilding J, Langkilde AM, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012;97(3):1020–31.

    Article  CAS  PubMed  Google Scholar 

  15. Fitchett D, Butler J, van de Borne P, Zinman B, Lachin JM, Wanner C, et al. Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME(R) trial. Eur Hear J. 2018;39(5):363–70.

    Article  CAS  Google Scholar 

  16. Monami M, Nardini C, Mannucci E. Efficacy and safety of sodium glucose co-transport-2 inhibitors in type 2 diabetes: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16(5):457–66.

    Article  CAS  PubMed  Google Scholar 

  17. Leiter LA, Yoon KH, Arias P, Langslet G, Xie J, Balis DA, et al. Canagliflozin provides durable glycemic improvements and body weight reduction over 104 weeks versus glimepiride in patients with type 2 diabetes on metformin: a randomized, double-blind, phase 3 study. Diabetes Care. 2015;38(3):355–64.

    Article  CAS  PubMed  Google Scholar 

  18. Del PS, Nauck M, Duran-Garcia S, Maffei L, Rohwedder K, Theuerkauf A, et al. Long-term glycaemic response and tolerability of dapagliflozin versus a sulphonylurea as add-on therapy to metformin in patients with type 2 diabetes: 4-year data. Diabetes Obes Metab. 2015;17(6):581–90.

    Article  CAS  Google Scholar 

  19. Hollander P, Liu J, Hill J, Johnson J, Jiang ZW, Golm G, et al. Ertugliflozin compared with glimepiride in patients with type 2 diabetes mellitus inadequately controlled on metformin: the VERTIS SU randomized study. Diabetes Ther. 2018;9(1):193–207.

    Article  CAS  PubMed  Google Scholar 

  20. Ridderstrale M, Andersen KR, Zeller C, Kim G, Woerle HJ, Broedl UC. Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol. 2014;2(9):691–700.

    Article  CAS  PubMed  Google Scholar 

  21. Wan SWJ, Kori N, Rajoo S, Othman H, Mohd NN, Wahab NA, et al. Switching from sulphonylurea to a sodium-glucose cotransporter2 inhibitor in the fasting month of Ramadan is associated with a reduction in hypoglycaemia. Diabetes Obes Metab. 2016;18(6):628–32.

    Article  CAS  Google Scholar 

  22. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9 (W64).

    Article  PubMed  Google Scholar 

  23. Higgins JPT, Green S editors. Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. https://www.handbook.cochrane.org

  24. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

    Article  PubMed  Google Scholar 

  26. Cefalu WT, Leiter LA, Yoon KH, Arias P, Niskanen L, Xie J, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet. 2013;382(9896):941–50.

    Article  CAS  PubMed  Google Scholar 

  27. Nauck MA, Del PS, Meier JJ, Duran-Garcia S, Rohwedder K, Elze M, et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care. 2011;34(9):2015–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Singh AK, Singh R. Sodium-glucose co-transporter-2 inhibitors as add-on therapy to insulin: rationale and evidences. Expert Rev Clin Pharmacol. 2016;9(3):409–18.

    Article  CAS  PubMed  Google Scholar 

  29. Kern M, Kloting N, Mark M, Mayoux E, Klein T, Bluher M. The SGLT2 inhibitor empagliflozin improves insulin sensitivity in db/db mice both as monotherapy and in combination with linagliptin. Metabolism. 2016;65(2):114–23.

    Article  CAS  PubMed  Google Scholar 

  30. Barnett AH. Impact of sodium glucose cotransporter 2 inhibitors on weight in patients with type 2 diabetes mellitus. Postgr Med. 2013;125(5):92–100.

    Article  Google Scholar 

  31. Kurinami N, Sugiyama S, Nishimura H, Morita A, Yoshida A, Hieshima K, et al. Clinical factors associated with initial decrease in body-fat percentage induced by add-on sodium-glucose co-transporter 2 inhibitors in patient with type 2 diabetes mellitus. Clin Drug Investig. 2018;38(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  32. Orme M, Fenici P, Lomon ID, Wygant G, Townsend R, Roudaut M. A systematic review and mixed-treatment comparison of dapagliflozin with existing anti-diabetes treatments for those with type 2 diabetes mellitus inadequately controlled by sulfonylurea monotherapy. Diabetol Metab Syndr. 2014;6:73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ferrannini E, Berk A, Hantel S, Pinnetti S, Hach T, Woerle HJ, et al. Long-term safety and efficacy of empagliflozin, sitagliptin, and metformin: an active-controlled, parallel-group, randomized, 78-week open-label extension study in patients with type 2 diabetes. Diabetes Care. 2013;36(12):4015–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rosenstock J, Aggarwal N, Polidori D, Zhao Y, Arbit D, Usiskin K, et al. Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care. 2012;35(6):1232–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Basile JN. The potential of sodium glucose cotransporter 2 (SGLT2) inhibitors to reduce cardiovascular risk in patients with type 2 diabetes (T2DM). J Diabetes Complicat. 2013;27(3):280–6.

    Article  PubMed  Google Scholar 

  36. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet (London, England). 2019;393(10166):31–9.

    Article  CAS  Google Scholar 

  37. Kaneko M, Narukawa M. Effects of sodium-glucose cotransporter 2 inhibitors on amputation, bone fracture, and cardiovascular outcomes in patients with type 2 diabetes mellitus using an alternative measure to the hazard ratio. Clin Drug Investig. 2019;39(2):179–86.

    Article  CAS  PubMed  Google Scholar 

  38. Li D, Wang T, Shen S, Fang Z, Dong Y, Tang H. Urinary tract and genital infections in patients with type 2 diabetes treated with sodium-glucose co-transporter 2 inhibitors: a meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2017;19(3):348–55.

    Article  CAS  PubMed  Google Scholar 

  39. Zaccardi F, Webb DR, Htike ZZ, Youssef D, Khunti K, Davies MJ. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab. 2016;18(8):783–94.

    Article  CAS  PubMed  Google Scholar 

  40. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.

    Article  CAS  PubMed  Google Scholar 

  41. Chew EY, Ambrosius WT, Davis MD, Danis RP, Gangaputra S, Greven CM, et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363(3):233–44.

    Article  CAS  PubMed  Google Scholar 

  42. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    Article  CAS  PubMed  Google Scholar 

  43. Turnbull FM, Abraira C, Anderson RJ, Byington RP, Chalmers JP, Duckworth WC, et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia. 2009;52(11):2288–98.

    Article  CAS  PubMed  Google Scholar 

  44. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355(23):2427–43.

    Article  CAS  PubMed  Google Scholar 

  45. Monami M, Liistro F, Scatena A, Nreu B, Mannucci E. Short and medium-term efficacy of sodium glucose co-transporter-2 (SGLT-2) inhibitors: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2018;20(5):1213–22.

    Article  CAS  PubMed  Google Scholar 

  46. 8. Pharmacologic approaches to glycemic treatment. Diabetes Care. 2017;40(Suppl 1):S64–74.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze Chen.

Ethics declarations

Funding

This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

Ze Chen and Gerui Li declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3858 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Li, G. Sodium-Glucose Co-Transporter 2 Inhibitors Compared with Sulfonylureas in Patients with Type 2 Diabetes Inadequately Controlled on Metformin: A Meta-Analysis of Randomized Controlled Trials. Clin Drug Investig 39, 521–531 (2019). https://doi.org/10.1007/s40261-019-00781-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-019-00781-w

Navigation