Advertisement

BioDrugs

, Volume 33, Issue 2, pp 137–158 | Cite as

The Relationship between Exosomes and Cancer: Implications for Diagnostics and Therapeutics

  • Wendy W. WestonEmail author
  • Timothy Ganey
  • H. Thomas Temple
Review Article
  • 94 Downloads

Abstract

Exosomes are very small extracellular vesicles secreted by cells to local and distant tissues. These mini signal transporters elicit acute and chronic effects on recipient cells. Studies regarding exosomes and their relationship to disease, as well as healthy functions, are eliciting extraordinary excitement as data pours in from groups around the world. Reporting of exosome biogenesis, selective loading of cargo, directed release, and resulting changes in adjacent and distal cells are providing information that is changing the way we view cancer progression and treatment. As a result, the properties of exosomes are being exploited for diagnostic, prognostic, and therapeutic applications. First, by referring to the signaling molecules carried by exosomes, they are being tested as indicators of the presence of transformed cells in early stages of cancer. Secondly, the cargo of exosomes secreted from tumors have been linked to prognostic factors and metastatic properties. Thirdly, exosome-based therapies are being developed which utilize the inherent properties of these mini-transporters to affect and interfere with cancer. Exosome creation, loading, and release plays an important role in cancer formation, progression and organotropic metastasis. The developed and developing therapies should be considered with understanding of their advantages and pitfalls, as well as the various roles exosomes play in normal and pathogenic processes. The combination of previously discovered attributes of exosomes with new discoveries occurring daily provide valuable and additive relevant factors to be considered as we embark on the continued discovery of exosomes and their relationship to cancer diagnostics and therapeutics.

Notes

Author Contributions

WWW: conception and planning, manuscript writing, and final approval of manuscript. TG: conception and planning, manuscript writing, and final approval of manuscript. HTT: conception and planning, manuscript editing, and final approval of manuscript.

Compliance with Ethical Standards

Funding

No funding was received for the preparation of this review.

Conflict of Interest

Wendy W. Weston, Timothy Ganey, and H. Thomas Temple have no conflicts of interest.

References

  1. 1.
    Kucharzewska P, Belting M. Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress. J Extracell Vesicles. 2013.  https://doi.org/10.3402/jev.v2i0.20304.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Meckes DG Jr. Exosomal communication goes viral. J Virol. 2015;89(10):5200–3.  https://doi.org/10.1128/JVI.02470-14.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Barteneva NS, Maltsev N, Vorobjev IA. Microvesicles and intercellular communication in the context of parasitism. Front Cell Infect Microbiol. 2013;3:49.  https://doi.org/10.3389/fcimb.2013.00049.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Baranyai T, Herczeg K, Onódi Z, Voszka I, Módos K, Marton N, et al. Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One. 2015;10(12):e0145686.  https://doi.org/10.1371/journal.pone.0145686.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, et al. Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol. 2004;31(1):114–21.  https://doi.org/10.1165/rcmb.2003-0238OC.PubMedGoogle Scholar
  6. 6.
    Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, et al. Malignant effusions and immunogenic tumour-derived exosomes. Lancet. 2002;360(9329):295–305.  https://doi.org/10.1016/S0140-6736(02)09552-1.PubMedGoogle Scholar
  7. 7.
    Keller S, Sanderson MP, Stoeck A, Altevogt P. Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006;107(2):102–8.  https://doi.org/10.1016/j.imlet.2006.09.005.PubMedGoogle Scholar
  8. 8.
    Lawson C, Vicencio JM, Yellon DM, Davidson SM. Microvesicles and exosomes: new players in metabolic and cardiovascular disease. J Endocrinol. 2016;228(2):R57–71.  https://doi.org/10.1530/JOE-15-0201.PubMedGoogle Scholar
  9. 9.
    Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17(6):816–26.  https://doi.org/10.1038/ncb3169.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl). 2013;91(4):431–7.  https://doi.org/10.1007/s00109-013-1020-6.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Hornick NI, Huan J, Doron B, Goloviznina NA, Lapidus J, Chang BH, et al. Serum exosome MicroRNA as a minimally-invasive early biomarker of AML. Sci Rep. 2015;5:11295.  https://doi.org/10.1038/srep11295.PubMedPubMedCentralGoogle Scholar
  12. 12.
    De Toro J, Herschlik L, Waldner C, Mongini C. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol. 2015;6:203.  https://doi.org/10.3389/fimmu.2015.00203.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Trams EG, Lauter CJ, Salem N Jr, Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta. 1981;645(1):63–70.Google Scholar
  14. 14.
    Beach A, Zhang HG, Ratajczak MZ, Kakar SS. Exosomes: an overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res. 2014;7:14.  https://doi.org/10.1186/1757-2215-7-14.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.  https://doi.org/10.1146/annurev-cellbio-101512-122326.PubMedGoogle Scholar
  16. 16.
    Kalra H, Drummen GP, Mathivanan S. Focus on extracellular vesicles: introducing the next small big thing. Int J Mol Sci. 2016;17(2):170.  https://doi.org/10.3390/ijms17020170.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Hanson PI, Shim S, Merrill SA. Cell biology of the ESCRT machinery. Curr Opin Cell Biol. 2009;21(4):568–74.  https://doi.org/10.1016/j.ceb.2009.06.002.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Mayers JR, Audhya A. Vesicle formation within endosomes: an ESCRT marks the spot. Commun Integr Biol. 2012;5(1):50–6.Google Scholar
  19. 19.
    Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319(5867):1244–7.  https://doi.org/10.1126/science.1153124.PubMedGoogle Scholar
  20. 20.
    Stuffers S, Sem Wegner C, Stenmark H, Brech A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic. 2009;10(7):925–37.  https://doi.org/10.1111/j.1600-0854.2009.00920.x.PubMedGoogle Scholar
  21. 21.
    Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14(7):677–85.  https://doi.org/10.1038/ncb2502.PubMedGoogle Scholar
  22. 22.
    Roucourt B, Meeussen S, Bao J, Zimmermann P, David G. Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res. 2015;25(4):412–28.  https://doi.org/10.1038/cr.2015.29.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal MicroRNA: trafficking, sorting, and function. Genom Proteom Bioinf. 2015;13(1):17–24.  https://doi.org/10.1016/j.gpb.2015.02.001.Google Scholar
  24. 24.
    de Gassart A, Geminard C, Hoekstra D, Vidal M. Exosome secretion: the art of reutilizing nonrecycled proteins? Traffic. 2004;5(11):896–903.  https://doi.org/10.1111/j.1600-0854.2004.00223.x.PubMedGoogle Scholar
  25. 25.
    Raiborg C, Stenmark H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature. 2009;458(7237):445–52.  https://doi.org/10.1038/nature07961.PubMedGoogle Scholar
  26. 26.
    Tamai K, Tanaka N, Nakano T, Kakazu E, Kondo Y, Inoue J, et al. Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem Biophys Res Commun. 2010;399(3):384–90.  https://doi.org/10.1016/j.bbrc.2010.07.083.PubMedGoogle Scholar
  27. 27.
    Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126(Pt 24):5553–65.  https://doi.org/10.1242/jcs.128868.PubMedGoogle Scholar
  28. 28.
    Hurley JH, Odorizzi G. Get on the exosome bus with ALIX. Nat Cell Biol. 2012;14(7):654–5.  https://doi.org/10.1038/ncb2530.PubMedGoogle Scholar
  29. 29.
    Nabhan JF, Hu R, Oh RS, Cohen SN, Lu Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci USA. 2012;109(11):4146–51.  https://doi.org/10.1073/pnas.1200448109.PubMedGoogle Scholar
  30. 30.
    Stahelin RV, Long F, Diraviyam K, Bruzik KS, Murray D, Cho W. Phosphatidylinositol 3-phosphate induces the membrane penetration of the FYVE domains of Vps27p and Hrs. J Biol Chem. 2002;277(29):26379–88.  https://doi.org/10.1074/jbc.M201106200.PubMedGoogle Scholar
  31. 31.
    Teo H, Gill DJ, Sun J, Perisic O, Veprintsev DB, Vallis Y, et al. ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell. 2006;125(1):99–111.  https://doi.org/10.1016/j.cell.2006.01.047.PubMedGoogle Scholar
  32. 32.
    Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun. 2014;5:3477.  https://doi.org/10.1038/ncomms4477.PubMedGoogle Scholar
  33. 33.
    Perez-Hernandez D, Gutierrez-Vazquez C, Jorge I, Lopez-Martin S, Ursa A, Sanchez-Madrid F, et al. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem. 2013;288(17):11649–61.  https://doi.org/10.1074/jbc.M112.445304.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97(2):329–39.Google Scholar
  35. 35.
    Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985;101(3):942–8.Google Scholar
  36. 36.
    Barr F, Lambright DG. Rab GEFs and GAPs. Curr Opin Cell Biol. 2010;22(4):461–70.  https://doi.org/10.1016/j.ceb.2010.04.007.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10(8):513–25.  https://doi.org/10.1038/nrm2728.PubMedGoogle Scholar
  38. 38.
    Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19–30.  https://doi.org/10.1038/ncb2000.PubMedGoogle Scholar
  39. 39.
    Hoshino D, Kirkbride KC, Costello K, Clark ES, Sinha S, Grega-Larson N, et al. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep. 2013;5(5):1159–68.  https://doi.org/10.1016/j.celrep.2013.10.050.PubMedGoogle Scholar
  40. 40.
    Martin-Cofreces NB, Baixauli F, Sanchez-Madrid F. Immune synapse: conductor of orchestrated organelle movement. Trends Cell Biol. 2014;24(1):61–72.  https://doi.org/10.1016/j.tcb.2013.09.005.PubMedGoogle Scholar
  41. 41.
    Record M, Carayon K, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta. 2014;1841(1):108–20.  https://doi.org/10.1016/j.bbalip.2013.10.004.PubMedGoogle Scholar
  42. 42.
    Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S, Lauterbach MA, et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol. 2010;189(2):223–32.  https://doi.org/10.1083/jcb.200911018.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183(3):1161–72.Google Scholar
  44. 44.
    Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4(5):594–600.Google Scholar
  45. 45.
    van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R, Cerf-Bensussan N, et al. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology. 2001;121(2):337–49.Google Scholar
  46. 46.
    Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001;7(3):297–303.  https://doi.org/10.1038/85438.PubMedGoogle Scholar
  47. 47.
    Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.  https://doi.org/10.1038/nri855.PubMedGoogle Scholar
  48. 48.
    Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current protocols in cell biology. New York: Wiley; 2001.Google Scholar
  49. 49.
    Steinbichler TB, Dudas J, Riechelmann H, Skvortsova II. The role of exosomes in cancer metastasis. Semin Cancer Biol. 2017;44:170–81.  https://doi.org/10.1016/j.semcancer.2017.02.006.PubMedGoogle Scholar
  50. 50.
    Fitzner D, Schnaars M, van Rossum D, Krishnamoorthy G, Dibaj P, Bakhti M, et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci. 2011;124(Pt 3):447–58.  https://doi.org/10.1242/jcs.074088.PubMedGoogle Scholar
  51. 51.
    Fruhbeis C, Frohlich D, Kuo WP, Kramer-Albers EM. Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci. 2013;7:182.  https://doi.org/10.3389/fncel.2013.00182.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD, et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood. 2004;104(10):3257–66.  https://doi.org/10.1182/blood-2004-03-0824.PubMedGoogle Scholar
  53. 53.
    Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 2010;70(4):1668–78.  https://doi.org/10.1158/0008-5472.CAN-09-2470.PubMedGoogle Scholar
  54. 54.
    Saunderson SC, Dunn AC, Crocker PR, McLellan AD. CD169 mediates the capture of exosomes in spleen and lymph node. Blood. 2014;123(2):208–16.  https://doi.org/10.1182/blood-2013-03-489732.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci USA. 2013;110(43):17380–5.  https://doi.org/10.1073/pnas.1304266110.PubMedGoogle Scholar
  56. 56.
    Palma J, Yaddanapudi SC, Pigati L, Havens MA, Jeong S, Weiner GA, et al. MicroRNAs are exported from malignant cells in customized particles. Nucleic Acids Res. 2012;40(18):9125–38.  https://doi.org/10.1093/nar/gks656.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Sreekumar PG, Kannan R, Kitamura M, Spee C, Barron E, Ryan SJ, et al. alphaB crystallin is apically secreted within exosomes by polarized human retinal pigment epithelium and provides neuroprotection to adjacent cells. PLoS One. 2010;5(10):e12578.  https://doi.org/10.1371/journal.pone.0012578.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, Simpson RJ. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol Cell Proteomics. 2013;12(3):587–98.  https://doi.org/10.1074/mcp.M112.021303.PubMedGoogle Scholar
  59. 59.
    Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68(16):2667–88.  https://doi.org/10.1007/s00018-011-0689-3.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Taylor DD, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods. 2015;87:3–10.  https://doi.org/10.1016/j.ymeth.2015.02.019.PubMedGoogle Scholar
  61. 61.
    Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C, Lotvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013.  https://doi.org/10.3402/jev.v2i0.20360.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Böing AN, van der Pol E, Grootemaat AE, Coumans FAW, Sturk A, Nieuwland R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles. 2014.  https://doi.org/10.3402/jev.v3.23430.Google Scholar
  63. 63.
    Momen-Heravi F, Balaj L, Alian S, Trachtenberg AJ, Hochberg FH, Skog J, et al. Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles. Fronti Physiol. 2012;3:162.  https://doi.org/10.3389/fphys.2012.00162.Google Scholar
  64. 64.
    Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;3:22.  https://doi.org/10.1002/0471143030.cb0322s30.PubMedGoogle Scholar
  65. 65.
    Zarovni N, Corrado A, Guazzi P, Zocco D, Lari E, Radano G, et al. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods. 2015;87:46–58.  https://doi.org/10.1016/j.ymeth.2015.05.028.PubMedGoogle Scholar
  66. 66.
    Gardiner C, Di Vizio D, Sahoo S, Théry C, Witwer KW, Wauben M, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles. 2016;5(1):32945.  https://doi.org/10.3402/jev.v5.32945.PubMedGoogle Scholar
  67. 67.
    Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics. 2017;7(3):789–804.  https://doi.org/10.7150/thno.18133.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Rood IM, Deegens JK, Merchant ML, Tamboer WP, Wilkey DW, Wetzels JF, et al. Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int. 2010;78(8):810–6.  https://doi.org/10.1038/ki.2010.262.PubMedGoogle Scholar
  69. 69.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.  https://doi.org/10.1038/ncb1596.PubMedGoogle Scholar
  70. 70.
    Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta. 2014;1846(1):75–87.  https://doi.org/10.1016/j.bbcan.2014.04.005.PubMedGoogle Scholar
  71. 71.
    Alvarez ML, Khosroheidari M, Kanchi Ravi R, DiStefano JK. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012;82(9):1024–32.  https://doi.org/10.1038/ki.2012.256.PubMedGoogle Scholar
  72. 72.
    Li M, Zeringer E, Barta T, Schageman J, Cheng A, Vlassov AV. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philos Trans R Soc Lond B Biol Sci. 2014;369(1652):20130502.  https://doi.org/10.1098/rstb.2013.0502.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Neurauter A, Kullmann A, Kierulf B, Oksvold MP, Pedersen KW. Magnetic beads for fast and reproducible isolation/characterization of exosomes based on surface protein expression. Institute for Cancer Research, Oslo University Hospital: Life Technologies; 2013. https://assets.thermofisher.com/TFS-Assets/CMD/posters/Exosome-poster-ISEV-2013-Boston.pdf. Accessed 15 Feb 2019.
  74. 74.
    Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods. 2012;56(2):293–304.  https://doi.org/10.1016/j.ymeth.2012.01.002.PubMedGoogle Scholar
  75. 75.
    Koliha N, Wiencek Y, Heider U, Jungst C, Kladt N, Krauthauser S, et al. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles. J Extracell Vesicles. 2016;5:29975.  https://doi.org/10.3402/jev.v5.29975.PubMedGoogle Scholar
  76. 76.
    Chen C, Skog J, Hsu CH, Lessard RT, Balaj L, Wurdinger T, et al. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip. 2010;10(4):505–11.  https://doi.org/10.1039/b916199f.PubMedGoogle Scholar
  77. 77.
    Wu M, Ouyang Y, Wang Z, Zhang R, Huang P-H, Chen C, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci USA. 2017;114(40):10584–9.  https://doi.org/10.1073/pnas.1709210114.PubMedGoogle Scholar
  78. 78.
    Enderle D, Spiel A, Coticchia CM, Berghoff E, Mueller R, Schlumpberger M, Sprenger-Haussels M, Shaffer JM, Lader E, Skog J, Noerholm M. Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column-based method. PLoS One. 2015;10(8):e0136133.  https://doi.org/10.1371/journal.pone.0136133.Google Scholar
  79. 79.
    Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.  https://doi.org/10.1083/jcb.201211138.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Gámez-Valero A, Monguió-Tortajada M, Carreras-Planella L, Franquesa ML, Beyer K, Borràs FE. Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Sci Rep. 2016;6:33641.  https://doi.org/10.1038/srep33641.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015;4:27031.  https://doi.org/10.3402/jev.v4.27031.PubMedGoogle Scholar
  82. 82.
    Muller L, Hong CS, Stolz DB, Watkins SC, Whiteside TL. Isolation of biologically-active exosomes from human plasma. J Immunol Methods. 2014;411:55–65.  https://doi.org/10.1016/j.jim.2014.06.007.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Nordin JZ, Lee Y, Vader P, Mager I, Johansson HJ, Heusermann W, et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine. 2015;11(4):879–83.  https://doi.org/10.1016/j.nano.2015.01.003.
  84. 84.
    Hagel LÖM, Andersson T. Apparent pore size distributions of chromatography media. J Chrom A. 1996;743:33–42.Google Scholar
  85. 85.
    Williams AHL. Column handbook for size exclusion chromatography. Philadelphia: Academic Press; 1999.Google Scholar
  86. 86.
    O’Brien JR. Cell membrane damage, platelet stickiness and some effects of aspirin. Br J Haematol. 1969;17(6):610–1.PubMedGoogle Scholar
  87. 87.
    Ogawa Y, Kanai-Azuma M, Akimoto Y, Kawakami H, Yanoshita R. Exosome-like vesicles with dipeptidyl peptidase IV in human saliva. Biol Pharm Bull. 2008;31(6):1059–62.Google Scholar
  88. 88.
    Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA, Epple M, et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces. 2011;87(1):146–50.  https://doi.org/10.1016/j.colsurfb.2011.05.013.PubMedGoogle Scholar
  89. 89.
    Taylor DD, Chou IN, Black PH. Isolation of plasma membrane fragments from cultured murine melanoma cells. Biochem Biophys Res Commun. 1983;113(2):470–6.Google Scholar
  90. 90.
    Taylor DD, Zacharias W, Gercel-Taylor C. Exosome isolation for proteomic analyses and RNA profiling. Methods Mol Biol. 2011;728:235–46.  https://doi.org/10.1007/978-1-61779-068-3_15.PubMedGoogle Scholar
  91. 91.
    Pietrowska M, Funk S, Gawin M, Marczak Ł, Abramowicz A, Widłak P, et al. Isolation of exosomes for the purpose of protein cargo analysis with the use of mass spectrometry. In: Kaufmann M, Klinger C, Savelsbergh A, editors. Functional genomics: methods and protocols. New York: Springer; 2017. p. 291–307.Google Scholar
  92. 92.
    Worst TS, von Hardenberg J, Gross JC, Erben P, Schnölzer M, Hausser I, et al. Database-augmented mass spectrometry analysis of exosomes identifies claudin 3 as a putative prostate cancer biomarker. Mol Cell Proteomics. 2017;16(6):998–1008.  https://doi.org/10.1074/mcp.M117.068577.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Haraszti RA, Didiot M-C, Sapp E, Leszyk J, Shaffer SA, Rockwell HE, et al. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles. 2016;5:32570.  https://doi.org/10.3402/jev.v5.32570.PubMedGoogle Scholar
  94. 94.
    Yang J, Hagen J, Guntur KV, Allette K, Schuyler S, Ranjan J, et al. A next generation sequencing based approach to identify extracellular vesicle mediated mRNA transfers between cells. BMC Genomics. 2017;18(1):987.  https://doi.org/10.1186/s12864-017-4359-1.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Ogawa Y, Tsujimoto M, Yanoshita R. Next-generation sequencing of protein-coding and long non-protein-coding RNAs in two types of exosomes derived from human whole saliva. Biol Pharm Bull. 2016;39(9):1496–507.  https://doi.org/10.1248/bpb.b16-00297.PubMedGoogle Scholar
  96. 96.
    Jenjaroenpun P, Kremenska Y, Nair VM, Kremenskoy M, Joseph B, Kurochkin IV. Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing. PeerJ. 2013;1:e201.  https://doi.org/10.7717/peerj.201.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Vong S, Kalluri R. The role of stromal myofibroblast and extracellular matrix in tumor angiogenesis. Genes Cancer. 2011;2(12):1139–45.  https://doi.org/10.1177/1947601911423940.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Webber JP, Spary LK, Sanders AJ, Chowdhury R, Jiang WG, Steadman R, et al. Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene. 2015;34(3):290–302.  https://doi.org/10.1038/onc.2013.560.PubMedGoogle Scholar
  99. 99.
    Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.  https://doi.org/10.1016/j.cell.2005.02.034.PubMedGoogle Scholar
  100. 100.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Curry WT, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6.  https://doi.org/10.1038/ncb1800.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Brentnall TA, Lai LA, Coleman J, Bronner MP, Pan S, Chen R. Arousal of cancer-associated stroma: overexpression of palladin activates fibroblasts to promote tumor invasion. PLoS One. 2012;7(1):e30219.  https://doi.org/10.1371/journal.pone.0030219.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 2010;70(23):9621–30.  https://doi.org/10.1158/0008-5472.CAN-10-1722.PubMedGoogle Scholar
  103. 103.
    Luga V, Wrana JL. Tumor-stroma interaction: revealing fibroblast-secreted exosomes as potent regulators of Wnt-planar cell polarity signaling in cancer metastasis. Cancer Res. 2013;73(23):6843–7.  https://doi.org/10.1158/0008-5472.CAN-13-1791.PubMedGoogle Scholar
  104. 104.
    Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics. 2010;9(6):1085–99.  https://doi.org/10.1074/mcp.M900381-MCP200.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Min L, Shen J, Tu C, Hornicek F, Duan Z. The roles and implications of exosomes in sarcoma. Cancer Metastasis Rev. 2016;35(3):377–90.  https://doi.org/10.1007/s10555-016-9630-4.PubMedPubMedCentralGoogle Scholar
  106. 106.
    You Y, Shan Y, Chen J, Yue H, You B, Shi S, et al. Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis. Cancer Sci. 2015;106(12):1669–77.  https://doi.org/10.1111/cas.12818.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci USA. 2001;98(6):3352–7.  https://doi.org/10.1073/pnas.061615598.PubMedGoogle Scholar
  108. 108.
    Nieswandt B, Hafner M, Echtenacher B, Mannel DN. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res. 1999;59(6):1295–300.PubMedGoogle Scholar
  109. 109.
    Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576–90.  https://doi.org/10.1016/j.ccr.2011.09.009.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Karpatkin S, Pearlstein E, Ambrogio C, Coller BS. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest. 1988;81(4):1012–9.  https://doi.org/10.1172/JCI113411.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Sierko E, Wojtukiewicz MZ. Inhibition of platelet function: does it offer a chance of better cancer progression control? Semin Thromb Hemost. 2007;33(7):712–21.  https://doi.org/10.1055/s-2007-991540.PubMedGoogle Scholar
  112. 112.
    Dean WL, Lee MJ, Cummins TD, Schultz DJ, Powell DW. Proteomic and functional characterisation of platelet microparticle size classes. Thromb Haemost. 2009;102(4):711–8.  https://doi.org/10.1160/TH09-04-243.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Dovizio M, Alberti S, Sacco A, Guillem-Llobat P, Schiavone S, Maier TJ, et al. Novel insights into the regulation of cyclooxygenase-2 expression by platelet-cancer cell cross-talk. Biochem Soc Trans. 2015;43(4):707–14.  https://doi.org/10.1042/BST20140322.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Gay LJ, Felding-Habermann B. Platelets alter tumor cell attributes to propel metastasis: programming in transit. Cancer Cell. 2011;20(5):553–4.  https://doi.org/10.1016/j.ccr.2011.11.001.PubMedGoogle Scholar
  115. 115.
    Matsumoto Y, Kano M, Akutsu Y, Hanari N, Hoshino I, Murakami K, et al. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma. Oncol Rep. 2016;36(5):2535–43.  https://doi.org/10.3892/or.2016.5066.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105(30):10513–8.  https://doi.org/10.1073/pnas.0804549105.PubMedGoogle Scholar
  117. 117.
    Silva J, Garcia V, Rodriguez M, Compte M, Cisneros E, Veguillas P, et al. Analysis of exosome release and its prognostic value in human colorectal cancer. Genes Chromosomes Cancer. 2012;51(4):409–18.Google Scholar
  118. 118.
    Logozzi M, De Milito A, Lugini L, Borghi M, Calabro L, Spada M, et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One. 2009;4(4):e5219.  https://doi.org/10.1371/journal.pone.0005219.PubMedPubMedCentralGoogle Scholar
  119. 119.
    King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12:421.  https://doi.org/10.1186/1471-2407-12-421.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Ban JJ, Lee M, Im W, Kim M. Low pH increases the yield of exosome isolation. Biochem Biophys Res Commun. 2015;461(1):76–9.  https://doi.org/10.1016/j.bbrc.2015.03.172.PubMedGoogle Scholar
  121. 121.
    Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284(49):34211–22.  https://doi.org/10.1074/jbc.M109.041152.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Gutierrez-Vazquez C, Villarroya-Beltri C, Mittelbrunn M, Sanchez-Madrid F. Transfer of extracellular vesicles during immune cell-cell interactions. Immunol Rev. 2013;251(1):125–42.  https://doi.org/10.1111/imr.12013.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.  https://doi.org/10.1016/j.cell.2010.03.014.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Kang Y. Dissecting tumor-stromal interactions in breast cancer bone metastasis. Endocrinol Metab (Seoul). 2016;31(2):206–12.  https://doi.org/10.3803/EnM.2016.31.2.206.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Subramanian A, Gupta V, Sarkar S, Maity G, Banerjee S, Ghosh A, et al. Exosomes in carcinogenesis: molecular palkis carry signals for the regulation of cancer progression and metastasis. J Cell Commun Signal. 2016;10(3):241–9.  https://doi.org/10.1007/s12079-016-0338-6.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Ojalvo LS, Whittaker CA, Condeelis JS, Pollard JW. Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J Immunol. 2010;184(2):702–12.  https://doi.org/10.4049/jimmunol.0902360.PubMedGoogle Scholar
  127. 127.
    Chow A, Zhou W, Liu L, Fong MY, Champer J, Van Haute D, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-kappaB. Sci Rep. 2014;4:5750.  https://doi.org/10.1038/srep05750.PubMedPubMedCentralGoogle Scholar
  128. 128.
    de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. 2012.  https://doi.org/10.3402/jev.v1i0.18396.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Fais S, Venturi G, Gatenby B. Microenvironmental acidosis in carcinogenesis and metastases: new strategies in prevention and therapy. Cancer Metastasis Rev. 2014;33(4):1095–108.  https://doi.org/10.1007/s10555-014-9531-3.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Spugnini E, Fais S. Proton pump inhibition and cancer therapeutics: a specific tumor targeting or it is a phenomenon secondary to a systemic buffering? Semin Cancer Biol. 2017;43:111–8.  https://doi.org/10.1016/j.semcancer.2017.01.003.PubMedGoogle Scholar
  131. 131.
    Logozzi M, Angelini DF, Iessi E, Mizzoni D, Di Raimo R, Federici C, et al. Increased PSA expression on prostate cancer exosomes in in vitro condition and in cancer patients. Cancer Lett. 2017;403:318–29.  https://doi.org/10.1016/j.canlet.2017.06.036.PubMedGoogle Scholar
  132. 132.
    Logozzi M, Mizzoni D, Angelini DF, Di Raimo R, Falchi M, Battistini L, et al. Microenvironmental pH and exosome levels interplay in human cancer cell lines of different histotypes. Cancers (Basel). 2018.  https://doi.org/10.3390/cancers10100370.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Hedlund M, Nagaeva O, Kargl D, Baranov V, Mincheva-Nilsson L. Thermal- and oxidative stress causes enhanced release of NKG2D ligand-bearing immunosuppressive exosomes in leukemia/lymphoma T and B cells. PLoS One. 2011;6(2):e16899.  https://doi.org/10.1371/journal.pone.0016899.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Salomon C, Ryan J, Sobrevia L, Kobayashi M, Ashman K, Mitchell M, et al. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One. 2013;8(7):e68451.  https://doi.org/10.1371/journal.pone.0068451.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringner M, et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci U S A. 2013;110(18):7312–7.  https://doi.org/10.1073/pnas.1220998110.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Berchem G, Noman MZ, Bosseler M, Paggetti J, Baconnais S, Le Cam E, et al. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-beta and miR23a transfer. Oncoimmunology. 2016;5(4):e1062968.  https://doi.org/10.1080/2162402X.2015.1062968.PubMedGoogle Scholar
  137. 137.
    Chen L, Wang Y, Pan Y, Zhang L, Shen C, Qin G, et al. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun. 2013;431(3):566–71.  https://doi.org/10.1016/j.bbrc.2013.01.015.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10(3):301–12.  https://doi.org/10.1016/j.scr.2013.01.002.PubMedGoogle Scholar
  139. 139.
    Sinha A, Alfaro J, Kislinger T. Characterization of protein content present in exosomes isolated from conditioned media and urine. Curr Protoc Protein Sci. 2017;87(1):24–9.  https://doi.org/10.1002/cpps.23.PubMedGoogle Scholar
  140. 140.
    ExoCarta: exosome protein, RNA and lipid database [database on the Internet]. http://www.exocarta.org/. Accessed 19 Dec 2018.
  141. 141.
    Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, Mobius W, Hoernschemeyer J, et al. Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem. 2003;278(13):10963–72.  https://doi.org/10.1074/jbc.M207550200.PubMedGoogle Scholar
  142. 142.
    Øverbye A, Skotland T, Koehler CJ, Thiede B, Seierstad T, Berge V, et al. Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget. 2015;6(30):30357–76.Google Scholar
  143. 143.
    Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523(7559):177–82.  https://doi.org/10.1038/nature14581.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Hu J, Sheng Y, Kwak KJ, Shi J, Yu B, Lee LJ. A signal-amplifiable biochip quantifies extracellular vesicle-associated RNAs for early cancer detection. Nat Commun. 2017;8(1):1683.  https://doi.org/10.1038/s41467-017-01942-1.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Yang KS, Im H, Hong S, Pergolini I, Del Castillo AF, Wang R, et al. Multiparametric plasma EV profiling facilitates diagnosis of pancreatic malignancy. Sci Transl Med. 2017.  https://doi.org/10.1126/scitranslmed.aal3226.Google Scholar
  146. 146.
    Lai X, Wang M, McElyea SD, Sherman S, House M, Korc M. A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett. 2017;393:86–93.  https://doi.org/10.1016/j.canlet.2017.02.019.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Chaudhary SC, Khalid S, Smethurst V, Monier D, Mobley J, Huet A, et al. Proteomic profiling of extracellular vesicles released from vascular smooth muscle cells during initiation of phosphate-induced mineralization. Connect Tissue Res. 2018;59(sup1):55–61.  https://doi.org/10.1080/03008207.2018.1444759.PubMedGoogle Scholar
  148. 148.
    Poliakov A, Spilman M, Dokland T, Amling CL, Mobley JA. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate. 2009;69(2):159–67.  https://doi.org/10.1002/pros.20860.PubMedGoogle Scholar
  149. 149.
    Hong CS, Muller L, Boyiadzis M, Whiteside TL. Isolation and characterization of CD34+ blast-derived exosomes in acute myeloid leukemia. PLoS One. 2014;9(8):e103310.  https://doi.org/10.1371/journal.pone.0103310.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Al-Nedawi K, Meehan B, Rak J. Microvesicles: messengers and mediators of tumor progression. Cell Cycle. 2009;8(13):2014–8.  https://doi.org/10.4161/cc.8.13.8988.PubMedGoogle Scholar
  151. 151.
    Liu Q, Yu Z, Yuan S, Xie W, Li C, Hu Z, et al. Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget. 2017;8(8):13048–58.  https://doi.org/10.18632/oncotarget.14369.PubMedGoogle Scholar
  152. 152.
    Wang M, Ji S, Shao G, Zhang J, Zhao K, Wang Z, et al. Effect of exosome biomarkers for diagnosis and prognosis of breast cancer patients. Clin Transl Oncol. 2018;20(7):906–11.  https://doi.org/10.1007/s12094-017-1805-0.PubMedGoogle Scholar
  153. 153.
    Sun Y, Zheng W, Guo Z, Ju Q, Zhu L, Gao J, et al. A novel TP53 pathway influences the HGS-mediated exosome formation in colorectal cancer. Sci Rep. 2016;6:28083.  https://doi.org/10.1038/srep28083.PubMedPubMedCentralGoogle Scholar
  154. 154.
    McCready J, Sims JD, Chan D, Jay DG. Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer. 2010;10:294.  https://doi.org/10.1186/1471-2407-10-294.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–35.  https://doi.org/10.1038/nature15756.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Lea J, Sharma R, Yang F, Zhu H, Ward ES, Schroit AJ. Detection of phosphatidylserine-positive exosomes as a diagnostic marker for ovarian malignancies: a proof of concept study. Oncotarget. 2017;8(9):14395–407.  https://doi.org/10.18632/oncotarget.14795.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Yang J, Liu W, Lu X, Fu Y, Li L, Luo Y. High expression of small GTPase Rab3D promotes cancer progression and metastasis. Oncotarget. 2015;6(13):11125–38.  https://doi.org/10.18632/oncotarget.3575.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Hong CS, Muller L, Whiteside TL, Boyiadzis M. Plasma exosomes as markers of therapeutic response in patients with acute myeloid leukemia. Front Immunol. 2014;5:160.  https://doi.org/10.3389/fimmu.2014.00160.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Ko H, Jeon H, Lee D, Choi HK, Kang KS, Choi KC. Sanguiin H6 suppresses TGF-beta induction of the epithelial-mesenchymal transition and inhibits migration and invasion in A549 lung cancer. Bioorg Med Chem Lett. 2015;25(23):5508–13.  https://doi.org/10.1016/j.bmcl.2015.10.067.PubMedGoogle Scholar
  160. 160.
    Wang T, Ning K, Lu TX, Sun X, Jin L, Qi X, et al. Increasing circulating exosomes-carrying TRPC5 predicts chemoresistance in metastatic breast cancer patients. Cancer Sci. 2017;108(3):448–54.  https://doi.org/10.1111/cas.13150.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Guescini M, Guidolin D, Vallorani L, Casadei L, Gioacchini AM, Tibollo P, et al. C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction. Exp Cell Res. 2010;316(12):1977–84.  https://doi.org/10.1016/j.yexcr.2010.04.006.PubMedGoogle Scholar
  162. 162.
    Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011;2:180.  https://doi.org/10.1038/ncomms1180.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289(7):3869–75.  https://doi.org/10.1074/jbc.C113.532267.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006;20(5):847–56.  https://doi.org/10.1038/sj.leu.2404132.PubMedGoogle Scholar
  165. 165.
    Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 2007;110(7):2440–8.  https://doi.org/10.1182/blood-2007-03-078709.PubMedGoogle Scholar
  166. 166.
    Kislauskis EH, Zhu X, Singer RH. Sequences responsible for intracellular localization of beta-actin messenger RNA also affect cell phenotype. J Cell Biol. 1994;127(2):441–51.Google Scholar
  167. 167.
    Batagov AO, Kuznetsov VA, Kurochkin IV. Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles. BMC Genomics. 2011;12(Suppl 3):S18.  https://doi.org/10.1186/1471-2164-12-S3-S18.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Batagov AO, Kurochkin IV. Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3’-untranslated regions. Biol Direct. 2013;8:12.  https://doi.org/10.1186/1745-6150-8-12.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Andreassi C, Riccio A. To localize or not to localize: mRNA fate is in 3’UTR ends. Trends Cell Biol. 2009;19(9):465–74.  https://doi.org/10.1016/j.tcb.2009.06.001.PubMedGoogle Scholar
  170. 170.
    Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25(4):501–15.  https://doi.org/10.1016/j.ccr.2014.03.007.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Melo SA, Sugimoto H, O’Connell JT, Kato N, Villanueva A, Vidal A, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26(5):707–21.  https://doi.org/10.1016/j.ccell.2014.09.005.PubMedPubMedCentralGoogle Scholar
  172. 172.
    Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science. 2007;315(5815):1137–40.  https://doi.org/10.1126/science.1138050.PubMedPubMedCentralGoogle Scholar
  173. 173.
    Velazquez-Torres G, Shoshan E, Ivan C, Huang L, Fuentes-Mattei E, Paret H, et al. A-to-I miR-378a-3p editing can prevent melanoma progression via regulation of PARVA expression. Nat Commun. 2018;9(1):461.  https://doi.org/10.1038/s41467-018-02851-7.PubMedPubMedCentralGoogle Scholar
  174. 174.
    Paul D, Sinha AN, Ray A, Lal M, Nayak S, Sharma A, et al. A-to-I editing in human miRNAs is enriched in seed sequence, influenced by sequence contexts and significantly hypoedited in glioblastoma multiforme. Sci Rep. 2017;7(1):2466.  https://doi.org/10.1038/s41598-017-02397-6.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Wang Y, Xu X, Yu S, Jeong KJ, Zhou Z, Han L, et al. Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers. Genome Res. 2017;27(7):1112–25.  https://doi.org/10.1101/gr.219741.116.PubMedPubMedCentralGoogle Scholar
  176. 176.
    Pinto Y, Buchumenski I, Levanon EY, Eisenberg E. Human cancer tissues exhibit reduced A-to-I editing of miRNAs coupled with elevated editing of their targets. Nucleic Acids Res. 2018;46(1):71–82.  https://doi.org/10.1093/nar/gkx1176.PubMedGoogle Scholar
  177. 177.
    Nigita G, Distefano R, Veneziano D, Romano G, Rahman M, Wang K, et al. Tissue and exosomal miRNA editing in non-small cell lung cancer. Sci Rep. 2018;8(1):10222.  https://doi.org/10.1038/s41598-018-28528-1.PubMedPubMedCentralGoogle Scholar
  178. 178.
    Shen J, Hruby GW, McKiernan JM, Gurvich I, Lipsky MJ, Benson MC, et al. Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. Prostate. 2012;72(13):1469–77.  https://doi.org/10.1002/pros.22499.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Manier S, Liu CJ, Avet-Loiseau H, Park J, Shi J, Campigotto F, et al. Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood. 2017;129(17):2429–36.  https://doi.org/10.1182/blood-2016-09-742296.PubMedPubMedCentralGoogle Scholar
  180. 180.
    Sanchez CA, Andahur EI, Valenzuela R, Castellon EA, Fulla JA, Ramos CG, et al. Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget. 2016;7(4):3993–4008.  https://doi.org/10.18632/oncotarget.6540.PubMedGoogle Scholar
  181. 181.
    Muntion S, Ramos TL, Diez-Campelo M, Roson B, Sanchez-Abarca LI, Misiewicz-Krzeminska I, et al. Microvesicles from mesenchymal stromal cells are involved in HPC-microenvironment crosstalk in myelodysplastic patients. PLoS One. 2016;11(2):e0146722.  https://doi.org/10.1371/journal.pone.0146722.PubMedPubMedCentralGoogle Scholar
  182. 182.
    Huang Z, Zhu D, Wu L, He M, Zhou X, Zhang L, et al. Six serum-based miRNAs as potential diagnostic biomarkers for gastric cancer. Cancer Epidemiol Biomarkers Prev. 2017;26(2):188–96.  https://doi.org/10.1158/1055-9965.EPI-16-0607.PubMedGoogle Scholar
  183. 183.
    Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17(2):183–94.  https://doi.org/10.1038/ncb3094.PubMedPubMedCentralGoogle Scholar
  184. 184.
    Hannafon BN, Trigoso YD, Calloway CL, Zhao YD, Lum DH, Welm AL, et al. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 2016;18(1):90.  https://doi.org/10.1186/s13058-016-0753-x.PubMedPubMedCentralGoogle Scholar
  185. 185.
    Madhavan B, Yue S, Galli U, Rana S, Gross W, Muller M, et al. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int J Cancer. 2015;136(11):2616–27.  https://doi.org/10.1002/ijc.29324.PubMedGoogle Scholar
  186. 186.
    Liu W, Hu J, Zhou K, Chen F, Wang Z, Liao B, et al. Serum exosomal miR-125b is a novel prognostic marker for hepatocellular carcinoma. Onco Targets Ther. 2017;10:3843–51.  https://doi.org/10.2147/OTT.S140062.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Rodriguez M, Silva J, Lopez-Alfonso A, Lopez-Muniz MB, Pena C, Dominguez G, et al. Different exosome cargo from plasma/bronchoalveolar lavage in non-small-cell lung cancer. Genes Chromosomes Cancer. 2014;53(9):713–24.  https://doi.org/10.1002/gcc.22181.PubMedGoogle Scholar
  188. 188.
    Li Z, Ma YY, Wang J, Zeng XF, Li R, Kang W, et al. Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients. Onco Targets Ther. 2016;9:139–48.  https://doi.org/10.2147/ott.s95565.PubMedGoogle Scholar
  189. 189.
    Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110(1):13–21.  https://doi.org/10.1016/j.ygyno.2008.04.033.PubMedGoogle Scholar
  190. 190.
    Fernandez-Mercado M, Manterola L, Lawrie CH. MicroRNAs in lymphoma: regulatory role and biomarker potential. Curr Genomics. 2015;16(5):349–58.  https://doi.org/10.2174/1389202916666150707160147.PubMedPubMedCentralGoogle Scholar
  191. 191.
    Que R, Ding G, Chen J, Cao L. Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma. World J Surg Oncol. 2013;11:219.  https://doi.org/10.1186/1477-7819-11-219.PubMedPubMedCentralGoogle Scholar
  192. 192.
    Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH. Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene. 2013;32(22):2747–55.  https://doi.org/10.1038/onc.2012.295.PubMedGoogle Scholar
  193. 193.
    Matsumura T, Sugimachi K, Iinuma H, Takahashi Y, Kurashige J, Sawada G, et al. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer. 2015;113(2):275–81.  https://doi.org/10.1038/bjc.2015.201.PubMedPubMedCentralGoogle Scholar
  194. 194.
    Zhu HT, Liu RB, Liang YY, Hasan AME, Wang HY, Shao Q, et al. Serum microRNA profiles as diagnostic biomarkers for HBV-positive hepatocellular carcinoma. Liver Int. 2017;37(6):888–96.  https://doi.org/10.1111/liv.13356.PubMedGoogle Scholar
  195. 195.
    Zhu M, Huang Z, Zhu D, Zhou X, Shan X, Qi LW, et al. A panel of microRNA signature in serum for colorectal cancer diagnosis. Oncotarget. 2017;8(10):17081–91.  https://doi.org/10.18632/oncotarget.15059.PubMedPubMedCentralGoogle Scholar
  196. 196.
    Le MT, Hamar P, Guo C, Basar E, Perdigao-Henriques R, Balaj L, et al. miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest. 2014;124(12):5109–28.  https://doi.org/10.1172/JCI75695.PubMedPubMedCentralGoogle Scholar
  197. 197.
    Cappellesso R, Tinazzi A, Giurici T, Simonato F, Guzzardo V, Ventura L, et al. Programmed cell death 4 and microRNA 21 inverse expression is maintained in cells and exosomes from ovarian serous carcinoma effusions. Cancer Cytopathol. 2014;122(9):685–93.  https://doi.org/10.1002/cncy.21442.PubMedGoogle Scholar
  198. 198.
    Liu W, Chen S, Liu B. Diagnostic and prognostic values of serum exosomal microRNA-21 in children with hepatoblastoma: a Chinese population-based study. Pediatr Surg Int. 2016;32(11):1059–65.  https://doi.org/10.1007/s00383-016-3960-8.PubMedGoogle Scholar
  199. 199.
    Zhou X, Wen W, Shan X, Zhu W, Xu J, Guo R, et al. A six-microRNA panel in plasma was identified as a potential biomarker for lung adenocarcinoma diagnosis. Oncotarget. 2017;8(4):6513–25.  https://doi.org/10.18632/oncotarget.14311.PubMedGoogle Scholar
  200. 200.
    Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.  https://doi.org/10.1053/j.gastro.2007.05.022.PubMedPubMedCentralGoogle Scholar
  201. 201.
    Wang H, Hou L, Li A, Duan Y, Gao H, Song X. Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma. Biomed Res Int. 2014;2014:864894.  https://doi.org/10.1155/2014/864894.PubMedPubMedCentralGoogle Scholar
  202. 202.
    Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, et al. Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res. 2016;76(7):1770–80.  https://doi.org/10.1158/0008-5472.CAN-15-1625.PubMedGoogle Scholar
  203. 203.
    Masoudi MS, Mehrabian E, Mirzaei H. MiR-21: a key player in glioblastoma pathogenesis. J Cell Biochem. 2018;119(2):1285–90.  https://doi.org/10.1002/jcb.26300.PubMedGoogle Scholar
  204. 204.
    Liu Y, Luo F, Wang B, Li H, Xu Y, Liu X, et al. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett. 2016;370(1):125–35.  https://doi.org/10.1016/j.canlet.2015.10.011.PubMedGoogle Scholar
  205. 205.
    Cui H, Seubert B, Stahl E, Dietz H, Reuning U, Moreno-Leon L, et al. Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene. 2015;34(28):3640–50.  https://doi.org/10.1038/onc.2014.300.PubMedGoogle Scholar
  206. 206.
    Huang Y, Zhu J, Li W, Zhang Z, Xiong P, Wang H, et al. Serum microRNA panel excavated by machine learning as a potential biomarker for the detection of gastric cancer. Oncol Rep. 2018;39(3):1338–46.  https://doi.org/10.3892/or.2017.6163.PubMedGoogle Scholar
  207. 207.
    Sohn W, Kim J, Kang SH, Yang SR, Cho JY, Cho HC, et al. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Exp Mol Med. 2015;47:e184.  https://doi.org/10.1038/emm.2015.68.PubMedPubMedCentralGoogle Scholar
  208. 208.
    Ye SB, Zhang H, Cai TT, Liu YN, Ni JJ, He J, et al. Exosomal miR-24-3p impedes T-cell function by targeting FGF11 and serves as a potential prognostic biomarker for nasopharyngeal carcinoma. J Pathol. 2016;240(3):329–40.  https://doi.org/10.1002/path.4781.PubMedGoogle Scholar
  209. 209.
    Jiao C, Jiao X, Zhu A, Ge J, Xu X. Exosomal miR-34s panel as potential novel diagnostic and prognostic biomarker in patients with hepatoblastoma. J Pediatr Surg. 2017;52(4):618–24.  https://doi.org/10.1016/j.jpedsurg.2016.09.070.PubMedGoogle Scholar
  210. 210.
    Corcoran C, Rani S, O’Driscoll L. miR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression. Prostate. 2014;74(13):1320–34.  https://doi.org/10.1002/pros.22848.PubMedGoogle Scholar
  211. 211.
    Guduric-Fuchs J, O’Connor A, Camp B, O’Neill CL, Medina RJ, Simpson DA. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics. 2012;13:357.  https://doi.org/10.1186/1471-2164-13-357.PubMedPubMedCentralGoogle Scholar
  212. 212.
    Pigati L, Yaddanapudi SC, Iyengar R, Kim DJ, Hearn SA, Danforth D, et al. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One. 2010;5(10):e13515.  https://doi.org/10.1371/journal.pone.0013515.PubMedPubMedCentralGoogle Scholar
  213. 213.
    Liu C, Eng C, Shen J, Lu Y, Takata Y, Mehdizadeh A, et al. Serum exosomal miR-4772-3p is a predictor of tumor recurrence in stage II and III colon cancer. Oncotarget. 2016;7(46):76250–60.  https://doi.org/10.18632/oncotarget.12841.PubMedPubMedCentralGoogle Scholar
  214. 214.
    Sugimachi K, Matsumura T, Hirata H, Uchi R, Ueda M, Ueo H, et al. Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. Br J Cancer. 2015;112(3):532–8.  https://doi.org/10.1038/bjc.2014.621.PubMedPubMedCentralGoogle Scholar
  215. 215.
    Wu H, Zhou J, Mei S, Wu D, Mu Z, Chen B, et al. Circulating exosomal microRNA-96 promotes cell proliferation, migration and drug resistance by targeting LMO7. J Cell Mol Med. 2017;21(6):1228–36.  https://doi.org/10.1111/jcmm.13056.PubMedGoogle Scholar
  216. 216.
    Akers JC, Hua W, Li H, Ramakrishnan V, Yang Z, Quan K, et al. A cerebrospinal fluid microRNA signature as biomarker for glioblastoma. Oncotarget. 2017;8(40):68769–79.  https://doi.org/10.18632/oncotarget.18332.PubMedPubMedCentralGoogle Scholar
  217. 217.
    Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer. 2015;14:155.  https://doi.org/10.1186/s12943-015-0426-x.PubMedPubMedCentralGoogle Scholar
  218. 218.
    Isin M, Uysaler E, Ozgur E, Koseoglu H, Sanli O, Yucel OB, et al. Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease. Front Genet. 2015;6:168.  https://doi.org/10.3389/fgene.2015.00168.PubMedPubMedCentralGoogle Scholar
  219. 219.
    Liu T, Zhang X, Gao S, Jing F, Yang Y, Du L, et al. Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget. 2016;7(51):85551–63.  https://doi.org/10.18632/oncotarget.13465.PubMedPubMedCentralGoogle Scholar
  220. 220.
    Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23(13):1494–504.  https://doi.org/10.1101/gad.1800909.PubMedPubMedCentralGoogle Scholar
  221. 221.
    Diepenbruck M, Christofori G. Epithelial-mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr Opin Cell Biol. 2016;43:7–13.  https://doi.org/10.1016/j.ceb.2016.06.002.PubMedGoogle Scholar
  222. 222.
    Hood JL. Melanoma exosome induction of endothelial cell GM-CSF in pre-metastatic lymph nodes may result in different M1 and M2 macrophage mediated angiogenic processes. Med Hypotheses. 2016;94:118–22.  https://doi.org/10.1016/j.mehy.2016.07.009.PubMedPubMedCentralGoogle Scholar
  223. 223.
    Franzen CA, Blackwell RH, Todorovic V, Greco KA, Foreman KE, Flanigan RC, et al. Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes. Oncogenesis. 2015;4:e163.  https://doi.org/10.1038/oncsis.2015.21.PubMedPubMedCentralGoogle Scholar
  224. 224.
    Vella LJ. The emerging role of exosomes in epithelial-mesenchymal-transition in cancer. Front Oncol. 2014;4:361.  https://doi.org/10.3389/fonc.2014.00361.PubMedPubMedCentralGoogle Scholar
  225. 225.
    Liu Y, Gu Y, Han Y, Zhang Q, Jiang Z, Zhang X, et al. Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell. 2016;30(2):243–56.  https://doi.org/10.1016/j.ccell.2016.06.021.PubMedGoogle Scholar
  226. 226.
    Rahman MA, Barger JF, Lovat F, Gao M, Otterson GA, Nana-Sinkam P. Lung cancer exosomes as drivers of epithelial mesenchymal transition. Oncotarget. 2016;7(34):54852–66.  https://doi.org/10.18632/oncotarget.10243.PubMedPubMedCentralGoogle Scholar
  227. 227.
    Cao M, Seike M, Soeno C, Mizutani H, Kitamura K, Minegishi Y, et al. MiR-23a regulates TGF-beta-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. Int J Oncol. 2012;41(3):869–75.  https://doi.org/10.3892/ijo.2012.1535.PubMedPubMedCentralGoogle Scholar
  228. 228.
    Kim J, Kim TY, Lee MS, Mun JY, Ihm C, Kim SA. Exosome cargo reflects TGF-beta1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells. Biochem Biophys Res Commun. 2016;478(2):643–8.  https://doi.org/10.1016/j.bbrc.2016.07.124.PubMedGoogle Scholar
  229. 229.
    Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, et al. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One. 2010;5(10):e13247.  https://doi.org/10.1371/journal.pone.0013247.PubMedPubMedCentralGoogle Scholar
  230. 230.
    Tanaka S, Hosokawa M, Yonezawa T, Hayashi W, Ueda K, Iwakawa S. Induction of epithelial-mesenchymal transition and down-regulation of miR-200c and miR-141 in oxaliplatin-resistant colorectal cancer cells. Biol Pharm Bull. 2015;38(3):435–40.  https://doi.org/10.1248/bpb.b14-00695.PubMedGoogle Scholar
  231. 231.
    Xiao D, Barry S, Kmetz D, Egger M, Pan J, Rai SN, et al. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment. Cancer Lett. 2016;376(2):318–27.  https://doi.org/10.1016/j.canlet.2016.03.050.PubMedPubMedCentralGoogle Scholar
  232. 232.
    Liao J, Liu R, Shi YJ, Yin LH, Pu YP. Exosome-shuttling microRNA-21 promotes cell migration and invasion-targeting PDCD4 in esophageal cancer. Int J Oncol. 2016;48(6):2567–79.  https://doi.org/10.3892/ijo.2016.3453.PubMedGoogle Scholar
  233. 233.
    Lu X, Kang Y. Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia. 2007;12(2–3):153–62.  https://doi.org/10.1007/s10911-007-9047-3.PubMedGoogle Scholar
  234. 234.
    Fidler IJ. Selection of successive tumour lines for metastasis. Nat New Biol. 1973;242(118):148–9.Google Scholar
  235. 235.
    Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8(2):98–101.PubMedGoogle Scholar
  236. 236.
    Hood JL, San RS, Wickline SA. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 2011;71(11):3792–801.  https://doi.org/10.1158/0008-5472.CAN-10-4455.PubMedGoogle Scholar
  237. 237.
    Javle M, Li Y, Tan D, Dong X, Chang P, Kar S, et al. Biomarkers of TGF-beta signaling pathway and prognosis of pancreatic cancer. PLoS One. 2014;9(1):e85942.  https://doi.org/10.1371/journal.pone.0085942.PubMedPubMedCentralGoogle Scholar
  238. 238.
    Ellermeier J, Wei J, Duewell P, Hoves S, Stieg MR, Adunka T, et al. Therapeutic efficacy of bifunctional siRNA combining TGF-beta1 silencing with RIG-I activation in pancreatic cancer. Cancer Res. 2013;73(6):1709–20.  https://doi.org/10.1158/0008-5472.CAN-11-3850.PubMedGoogle Scholar
  239. 239.
    Lugini L, Valtieri M, Federici C, Cecchetti S, Meschini S, Condello M, et al. Exosomes from human colorectal cancer induce a tumor-like behavior in colonic mesenchymal stromal cells. Oncotarget. 2016;7(31):50086–98.  https://doi.org/10.18632/oncotarget.10574.PubMedPubMedCentralGoogle Scholar
  240. 240.
    Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–91.  https://doi.org/10.1038/nm.2753.PubMedPubMedCentralGoogle Scholar
  241. 241.
    Abusamra AJ, Zhong Z, Zheng X, Li M, Ichim TE, Chin JL, et al. Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis. 2005;35(2):169–73.  https://doi.org/10.1016/j.bcmd.2005.07.001.PubMedGoogle Scholar
  242. 242.
    Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol. 2009;183(6):3720–30.  https://doi.org/10.4049/jimmunol.0900970.PubMedPubMedCentralGoogle Scholar
  243. 243.
    Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One. 2010;5(7):e11469.  https://doi.org/10.1371/journal.pone.0011469.PubMedPubMedCentralGoogle Scholar
  244. 244.
    Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans. 2013;41(1):245–51.  https://doi.org/10.1042/BST20120265.PubMedPubMedCentralGoogle Scholar
  245. 245.
    Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest. 2010;120(2):457–71.  https://doi.org/10.1172/JCI40483.PubMedPubMedCentralGoogle Scholar
  246. 246.
    Nagaraj S, Nelson A, Youn JI, Cheng P, Quiceno D, Gabrilovich DI. Antigen-specific CD4(+) T cells regulate function of myeloid-derived suppressor cells in cancer via retrograde MHC class II signaling. Cancer Res. 2012;72(4):928–38.  https://doi.org/10.1158/0008-5472.CAN-11-2863.PubMedPubMedCentralGoogle Scholar
  247. 247.
    Lv LH, Wan YL, Lin Y, Zhang W, Yang M, Li GL, et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem. 2012;287(19):15874–85.  https://doi.org/10.1074/jbc.M112.340588.PubMedPubMedCentralGoogle Scholar
  248. 248.
    Goler-Baron V, Assaraf YG. Structure and function of ABCG2-rich extracellular vesicles mediating multidrug resistance. PLoS One. 2011;6(1):e16007.  https://doi.org/10.1371/journal.pone.0016007.PubMedPubMedCentralGoogle Scholar
  249. 249.
    Bebawy M, Combes V, Lee E, Jaiswal R, Gong J, Bonhoure A, et al. Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells. Leukemia. 2009;23(9):1643–9.  https://doi.org/10.1038/leu.2009.76.PubMedGoogle Scholar
  250. 250.
    Corcoran C, Rani S, O’Brien K, O’Neill A, Prencipe M, Sheikh R, et al. Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS One. 2012;7(12):e50999.  https://doi.org/10.1371/journal.pone.0050999.PubMedPubMedCentralGoogle Scholar
  251. 251.
    Safaei R, Larson BJ, Cheng TC, Gibson MA, Otani S, Naerdemann W, et al. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther. 2005;4(10):1595–604.  https://doi.org/10.1158/1535-7163.MCT-05-0102.PubMedGoogle Scholar
  252. 252.
    Lehmann BD, Paine MS, Brooks AM, McCubrey JA, Renegar RH, Wang R, et al. Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 2008;68(19):7864–71.  https://doi.org/10.1158/0008-5472.CAN-07-6538.PubMedGoogle Scholar
  253. 253.
    Khan S, Jutzy JM, Aspe JR, McGregor DW, Neidigh JW, Wall NR. Survivin is released from cancer cells via exosomes. Apoptosis. 2011;16(1):1–12.  https://doi.org/10.1007/s10495-010-0534-4.PubMedPubMedCentralGoogle Scholar
  254. 254.
    Jaiswal R, Luk F, Gong J, Mathys JM, Grau GE, Bebawy M. Microparticle conferred microRNA profiles–implications in the transfer and dominance of cancer traits. Mol Cancer. 2012;11:37.  https://doi.org/10.1186/1476-4598-11-37.PubMedPubMedCentralGoogle Scholar
  255. 255.
    Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, Zeiher AM, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012;14(3):249–56.  https://doi.org/10.1038/ncb2441.PubMedGoogle Scholar
  256. 256.
    Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000;6(4):443–6.  https://doi.org/10.1038/74704.PubMedGoogle Scholar
  257. 257.
    Aung T, Chapuy B, Vogel D, Wenzel D, Oppermann M, Lahmann M, et al. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc Natl Acad Sci U S A. 2011;108(37):15336–41.  https://doi.org/10.1073/pnas.1102855108.PubMedPubMedCentralGoogle Scholar
  258. 258.
    Battke C, Ruiss R, Welsch U, Wimberger P, Lang S, Jochum S, et al. Tumour exosomes inhibit binding of tumour-reactive antibodies to tumour cells and reduce ADCC. Cancer Immunol Immunother. 2011;60(5):639–48.  https://doi.org/10.1007/s00262-011-0979-5.PubMedGoogle Scholar
  259. 259.
    Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285(23):17442–52.  https://doi.org/10.1074/jbc.M110.107821.PubMedPubMedCentralGoogle Scholar
  260. 260.
    Cho DY, Lin SZ, Yang WK, Hsu DM, Lee HC, Lee WY, et al. Recent advances of dendritic cells (DCs)-based immunotherapy for malignant gliomas. Cell Transplant. 2009;18(9):977–83.  https://doi.org/10.3727/096368909X12483162196962.PubMedGoogle Scholar
  261. 261.
    Cho JA, Yeo DJ, Son HY, Kim HW, Jung DS, Ko JK, et al. Exosomes: a new delivery system for tumor antigens in cancer immunotherapy. Int J Cancer. 2005;114(4):613–22.  https://doi.org/10.1002/ijc.20757.PubMedGoogle Scholar
  262. 262.
    Elsner L, Muppala V, Gehrmann M, Lozano J, Malzahn D, Bickeboller H, et al. The heat shock protein HSP70 promotes mouse NK cell activity against tumors that express inducible NKG2D ligands. J Immunol. 2007;179(8):5523–33.Google Scholar
  263. 263.
    Escudier B, Dorval T, Chaput N, Andre F, Caby MP, Novault S, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med. 2005;3(1):10.  https://doi.org/10.1186/1479-5876-3-10.PubMedPubMedCentralGoogle Scholar
  264. 264.
    Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med. 2005;3(1):9.  https://doi.org/10.1186/1479-5876-3-9.PubMedPubMedCentralGoogle Scholar
  265. 265.
    de la Fuente A, Alonso-Alconada L, Costa C, Cueva J, Garcia-Caballero T, Lopez-Lopez R, et al. M-Trap: exosome-based capture of tumor cells as a new technology in peritoneal metastasis. J Natl Cancer Inst. 2015;107(9):djv184.  https://doi.org/10.1093/jnci/djv184.PubMedPubMedCentralGoogle Scholar
  266. 266.
    Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 2016;12(3):655–64.  https://doi.org/10.1016/j.nano.2015.10.012.PubMedGoogle Scholar
  267. 267.
    Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine. 2012;7:1525–41.  https://doi.org/10.2147/IJN.S29661.PubMedPubMedCentralGoogle Scholar
  268. 268.
    Zhang W, Li C, Shen C, Liu Y, Zhao X, Liu Y, et al. Prodrug-based nano-drug delivery system for co-encapsulate paclitaxel and carboplatin for lung cancer treatment. Drug Deliv. 2016;23(7):2575–80.  https://doi.org/10.3109/10717544.2015.1035466.PubMedGoogle Scholar
  269. 269.
    Airoldi M, Amadori D, Barni S, Cinieri S, De Placido S, Di Leo A, et al. Clinical activity and cardiac tolerability of non-pegylated liposomal doxorubicin in breast cancer: a synthetic review. Tumori. 2011;97(6):690–2.  https://doi.org/10.1700/1018.11082.PubMedGoogle Scholar
  270. 270.
    Swenson CE, Perkins WR, Roberts P, Janoff AS. Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate). The Breast. 2001;10:1–7.  https://doi.org/10.1016/S0960-9776(01)80001-1.Google Scholar
  271. 271.
    Doxorubicin (Myocet) 50 mg powder, dispersion and solvent for concentrate for dispersion for infusion. Teva Pharma B.V., Electronic Medicines Compendium. 2015. https://www.medicines.org.uk/emc/product/5378/smpc#companyDetails. Accessed 4 Jan 2019.
  272. 272.
    Trivedi M, Talekar M, Shah P, Ouyang Q, Amiji M. Modification of tumor cell exosome content by transfection with wt-p53 and microRNA-125b expressing plasmid DNA and its effect on macrophage polarization. Oncogenesis. 2016;5(8):e250.  https://doi.org/10.1038/oncsis.2016.52.PubMedPubMedCentralGoogle Scholar
  273. 273.
    Federici C, Petrucci F, Caimi S, Cesolini A, Logozzi M, Borghi M, D'Ilio S, Lugini L, Violante N, Azzarito T, Majorani C, Brambilla D, Fais S. Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. PLoS One. 2014;9(2):e88193.  https://doi.org/10.1371/journal.pone.0088193.PubMedPubMedCentralGoogle Scholar
  274. 274.
    Iessi E, Logozzi M, Lugini L, Azzarito T, Federici C, Spugnini EP, et al. Acridine Orange/exosomes increase the delivery and the effectiveness of acridine orange in human melanoma cells: a new prototype for theranostics of tumors. J Enzyme Inhib Med Chem. 2017;32(1):648–57.  https://doi.org/10.1080/14756366.2017.1292263.PubMedPubMedCentralGoogle Scholar
  275. 275.
    Kusuzaki K, Hosogi S, Ashihara E, Matsubara T, Satonaka H, Nakamura T, et al. Translational research of photodynamic therapy with acridine orange which targets cancer acidity. Curr Pharm Des. 2012;18(10):1414–20.Google Scholar
  276. 276.
    Blakely CM, Watkins TBK, Wu W, Gini B, Chabon JJ, McCoach CE, McGranahan N, Wilson GA, Birkbak NJ, Olivas VR, Rotow J, Maynard A, Wang V, Gubens MA, Banks KC, Lanman RB, Caulin AF, St John J, Cordero AR, Giannikopoulos P, Simmons AD, Mack PC, Gandara DR, Husain H, Doebele RC, Riess JW, Diehn M, Swanton C, Bivona TG. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat. Genet. 2017;49(12):1693–1704.Google Scholar
  277. 277.
    Zocco D, Ferruzzi P, Cappello F, Kuo WP, Fais S. Extracellular vesicles as shuttles of tumor biomarkers and anti-tumor drugs. Front Oncol. 2014;4:267.  https://doi.org/10.3389/fonc.2014.00267.PubMedPubMedCentralGoogle Scholar
  278. 278.
    Lener T, Gimona M, Aigner L, Borger V, Buzas E, Camussi G, et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles. 2015;4:30087.  https://doi.org/10.3402/jev.v4.30087.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Cell Therapy Institute, Nova Southeastern UniversityFort LauderdaleUSA
  2. 2.BonePharm, LLCTampaUSA
  3. 3.Translational Research and Economic DevelopmentNova Southeastern UniversityFort LauderdaleUSA

Personalised recommendations