BioDrugs

pp 1–11 | Cite as

Overcoming Tumor-Induced Immune Suppression: From Relieving Inhibition to Providing Costimulation with T Cell Agonists

Review Article

Abstract

Recent advancements in T-cell biology and antibody engineering have opened doors to significant improvements in cancer immunotherapy. Initial success with monoclonal antibodies targeting key receptors that inhibit T-cell function such as cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death-ligand 1 (PD-1) have demonstrated the potency of this new class of therapy, highlighted by long-term complete responses for metastatic cancers once thought incurable. However, only a subset of patients responds to checkpoint blockade because of a multitude of factors, including an immunosuppressive tumor microenvironment and the mutational burden of the cancer. Novel antibodies, as well as ligand-immunoglobulin fusion proteins that target costimulatory immune receptors, are being developed and tested in clinical trials to further enhance the anti-tumor immune response. Many of these costimulatory receptors are in the tumor necrosis factor receptor superfamily (TNFRSF) and are expressed on multiple immune cell types, including inhibitory cells. While TNFRSFs signal through common pathways, the outcome of targeting different receptors depends on the functional status of the cell types expressing the relevant receptors. In this review, we discuss the current state of targeted costimulatory immunotherapy.

Notes

Acknowledgements

The authors thank Annah Rolig for her careful review of this manuscript.

Authors’ contributions

DE reviewed the available literature and wrote the manuscript. WLR contributed to critical review and editing of the manuscript. Both authors read and approved the final manuscript.

Compliance with ethical standards

Funding

This work was supported by the Providence Portland Medical Foundation, Susan G. Komen Grant Career Catalyst Research Grant (CCR15329664), and NIH R21CA190790.

Conflicts of interest

DE has no competing interests. WLR has received commercial research grants, consulting fees, and/or royalties from MedImmune, Bristol-Myers Squibb, Merck, Galectin Therapeutics, Nektar Therapeutics, Aeglea Biotherapeutics, IRX Therapeutics, Tesaro, Shire, and Shimadzu.

References

  1. 1.
    Heath WR, Carbone FR. Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol. 2001;19:47–64.PubMedCrossRefGoogle Scholar
  2. 2.
    Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–58.PubMedCrossRefGoogle Scholar
  3. 3.
    Burkholder B, Huang RY, Burgess R, Luo S, Jones VS, Zhang W, et al. Tumor-induced perturbations of cytokines and immune cell networks. Biochim Biophys Acta. 2014;1845(2):182–201.PubMedGoogle Scholar
  4. 4.
    Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14(4):847–56.PubMedCrossRefGoogle Scholar
  5. 5.
    Hicklin DJ, Marincola FM, Ferrone S. HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today. 1999;5(4):178–86.PubMedCrossRefGoogle Scholar
  6. 6.
    Emens LA, Ascierto PA, Darcy PK, Demaria S, Eggermont AMM, Redmond WL, et al. Cancer immunotherapy: opportunities and challenges in the rapidly evolving clinical landscape. Eur J Cancer. 2017;81:116–29.PubMedCrossRefGoogle Scholar
  7. 7.
    Hellmann MD, Friedman CF, Wolchok JD. Combinatorial cancer immunotherapies. Adv Immunol. 2016;130:251–77.PubMedCrossRefGoogle Scholar
  8. 8.
    Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018;18(3):153–67.PubMedCrossRefGoogle Scholar
  9. 9.
    Garrido F, Aptsiauri N, Doorduijn EM, Garcia Lora AM, van Hall T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol. 2016;39:44–51.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Tagliamonte M, Petrizzo A, Tornesello ML, Buonaguro FM, Buonaguro L. Antigen-specific vaccines for cancer treatment. Hum Vaccin Immunother. 2014;10(11):3332–46.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJ. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer. 2016;16(4):219–33.PubMedCrossRefGoogle Scholar
  12. 12.
    Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, et al. A new member of the immunoglobulin superfamily–CTLA-4. Nature. 1987;328(6127):267–70.Google Scholar
  13. 13.
    Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev. 2009;229(1):12–26.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23:515–48.PubMedCrossRefGoogle Scholar
  15. 15.
    Inman BA, Frigola X, Dong H, Kwon ED. Costimulation, coinhibition and cancer. Curr Cancer Drug Targets. 2007;7(1):15–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Kuhns MS, Epshteyn V, Sobel RA, Allison JP. Cytotoxic T lymphocyte antigen-4 (CTLA-4) regulates the size, reactivity, and function of a primed pool of CD4 + T cells. Proc Natl Acad Sci U S A. 2000;97(23):12711–6.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wolchok JD, Hodi FS, Weber JS, Allison JP, Urba WJ, Robert C, et al. Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann N Y Acad Sci. 2013;1291:1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Tremelimumab. Drugs R D. 2010;10(2):123–32.Google Scholar
  20. 20.
    Ribas A, Kefford R, Marshall MA, Punt CJ, Haanen JB, Marmol M, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol. 2013;31(5):616–22.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Callahan MK, Wolchok JD, Allison JP. Anti-CTLA-4 antibody therapy: immune monitoring during clinical development of a novel immunotherapy. Semin Oncol. 2010;37(5):473–84.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol. 2013;14(12):1212–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Homet Moreno B, Ribas A. Anti-programmed cell death protein-1/ligand-1 therapy in different cancers. Br J Cancer. 2015;112(9):1421–7.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kang SP, Gergich K, Lubiniecki GM, de Alwis DP, Chen C, Tice MAB, et al. Pembrolizumab KEYNOTE-001: an adaptive study leading to accelerated approval for two indications and a companion diagnostic. Ann Oncol. 2017;28(6):1388–98.PubMedCentralCrossRefGoogle Scholar
  26. 26.
    Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Bauml J, Seiwert TY, Pfister DG, Worden F, Liu SV, Gilbert J, et al. Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: results from a single-arm, phase II study. J Clin Oncol. 2017;35(14):1542–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Deeks ED. Nivolumab: a review of its use in patients with malignant melanoma. Drugs. 2014;74(11):1233–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Santini FC, Rudin CM. Atezolizumab for the treatment of non-small cell lung cancer. Expert Rev Clin Pharmacol. 2017;10(9):935–45.PubMedCrossRefGoogle Scholar
  30. 30.
    Powles T, O’Donnell PH, Massard C, Arkenau HT, Friedlander TW, Hoimes CJ, et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol. 2017;3(9):e172411.PubMedCrossRefGoogle Scholar
  31. 31.
    Gulley JL, Rajan A, Spigel DR, Iannotti N, Chandler J, Wong DJL, et al. Avelumab for patients with previously treated metastatic or recurrent non-small-cell lung cancer (JAVELIN Solid Tumor): dose-expansion cohort of a multicentre, open-label, phase 1b trial. Lancet Oncol. 2017;18(5):599–610.PubMedCrossRefGoogle Scholar
  32. 32.
    Yu S, Li A, Liu Q, Yuan X, Xu H, Jiao D, et al. Recent advances of bispecific antibodies in solid tumors. J Hematol Oncol. 2017;10(1):155.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wu J, Fu J, Zhang M, Liu D. Blinatumomab: a bispecific T cell engager (BiTE) antibody against CD19/CD3 for refractory acute lymphoid leukemia. J Hematol Oncol. 2015;04(8):104.CrossRefGoogle Scholar
  34. 34.
    Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Song Y, Buchwald P. TNF superfamily protein-protein interactions: feasibility of small- molecule modulation. Curr Drug Targets. 2015;16(4):393–408.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Xie P. TRAF molecules in cell signaling and in human diseases. J Mol Signal. 2013;8(1):7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Walczak H. Death receptor-ligand systems in cancer, cell death, and inflammation. Cold Spring Harb Perspect Biol. 2013;5(5):a008698.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kretschmer A, Schwanbeck R, Valerius T, Rosner T. Antibody Isotypes for Tumor Immunotherapy. Transfus Med Hemother. 2017;44(5):320–6.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Chiu ML, Gilliland GL. Engineering antibody therapeutics. Curr Opin Struct Biol. 2016;38:163–73.PubMedCrossRefGoogle Scholar
  40. 40.
    Bruggemann M, Osborn MJ, Ma B, Hayre J, Avis S, Lundstrom B, et al. Human antibody production in transgenic animals. Arch Immunol Ther Exp (Warsz). 2015;63(2):101–8.CrossRefGoogle Scholar
  41. 41.
    Czajkowsky DM, Hu J, Shao Z, Pleass RJ. Fc-fusion proteins: new developments and future perspectives. EMBO Mol Med. 2012;4(10):1015–28.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Bansal-Pakala P, Halteman BS, Cheng MHY, Croft M. Costimulation of CD8 T Cell responses by OX40. J Immunol. 2004;172(8):4821–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Gramaglia I, Weinberg AD, Lemon M, Croft M. Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J Immunol. 1998;161(12):6510–7.PubMedGoogle Scholar
  44. 44.
    Bulliard Y, Jolicoeur R, Zhang J, Dranoff G, Wilson NS, Brogdon JL. OX40 engagement depletes intratumoral Tregs via activating FcgammaRs, leading to antitumor efficacy. Immunol Cell Biol. 2014;92(6):475–80.PubMedCrossRefGoogle Scholar
  45. 45.
    So T, Croft M. Cutting Edge: OX40 Inhibits TGF-β and antigen-driven conversion of Naive CD4 T Cells into CD25 + Foxp3 + T cells. J Immunol. 2007;179(3):1427–30.PubMedCrossRefGoogle Scholar
  46. 46.
    Vu MD, Xiao X, Gao W, Degauque N, Chen M, Kroemer A, et al. OX40 costimulation turns off Foxp3 + Tregs. Blood. 2007;110(7):2501–10.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Murata K, Ishii N, Takano H, Miura S, Ndhlovu LC, Nose M, et al. Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J Exp Med. 2000;191(2):365–74.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Paterson DJ, Jefferies WA, Green JR, Brandon MR, Corthesy P, Puklavec M, et al. Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. Mol Immunol. 1987;24(12):1281–90.PubMedCrossRefGoogle Scholar
  49. 49.
    Tanaka Y, Inoi T, Tozawa H, Yamamoto N, Hinuma Y. A glycoprotein antigen detected with new monoclonal antibodies on the surface of human lymphocytes infected with human T-cell leukemia virus type-I (HTLV-I). Int J Cancer. 1985;36(5):549–55.PubMedCrossRefGoogle Scholar
  50. 50.
    Weinberg AD, Wegmann KW, Funatake C, Whitham RH. Blocking OX-40/OX-40 ligand interaction in vitro and in vivo leads to decreased T cell function and amelioration of experimental allergic encephalomyelitis. J Immunol. 1999;162(3):1818–26.PubMedGoogle Scholar
  51. 51.
    Weinberg AD, Rivera MM, Prell R, Morris A, Ramstad T, Vetto JT, et al. Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol. 2000;164(4):2160–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Salek-Ardakani S, Moutaftsi M, Crotty S, Sette A, Croft M. OX40 drives protective vaccinia virus-specific CD8 T cells. J Immunol. 2008;181(11):7969–76.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Redmond WL, Gough MJ, Charbonneau B, Ratliff TL, Weinberg AD. Defects in the acquisition of CD8 T cell effector function after priming with tumor or soluble antigen can be overcome by the addition of an OX40 agonist. J Immunol. 2007;179(11):7244–53.PubMedCrossRefGoogle Scholar
  54. 54.
    Curti BD, Kovacsovics-Bankowski M, Morris N, Walker E, Chisholm L, Floyd K, et al. OX40 is a potent immune-stimulating target in late-stage cancer patients. Can Res. 2013;73(24):7189–98.CrossRefGoogle Scholar
  55. 55.
    Carbone E, Ruggiero G, Terrazzano G, Palomba C, Manzo C, Fontana S, et al. A new mechanism of NK cell cytotoxicity activation: the CD40-CD40 ligand interaction. J Exp Med. 1997;185(12):2053–60.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ. CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol. 2004;22:307–28.PubMedCrossRefGoogle Scholar
  57. 57.
    Haxhinasto SA, Bishop GA. Synergistic B cell activation by CD40 and the B cell antigen receptor: role of B lymphocyte antigen receptor-mediated kinase activation and tumor necrosis factor receptor-associated factor regulation. J Biol Chem. 2004;279(4):2575–82.PubMedCrossRefGoogle Scholar
  58. 58.
    Zhu N, Ramirez LM, Lee RL, Magnuson NS, Bishop GA, Gold MR. CD40 signaling in B cells regulates the expression of the pim-1 kinase via the NF- B pathway. J Immunol. 2002;168(2):744–54.PubMedCrossRefGoogle Scholar
  59. 59.
    Danese S. The CD40/CD40L costimulatory pathway in inflammatory bowel disease. Gut. 2004;53(7):1035–43.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Smith CM, Wilson NS, Waithman J, Villadangos JA, Carbone FR, Heath WR, et al. Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol. 2004;5(11):1143–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature. 1998;393(6684):480–3.PubMedCrossRefGoogle Scholar
  62. 62.
    Sigal LJ, Crotty S, Andino R, Rock KL. Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature. 1999;398(6722):77–80.PubMedCrossRefGoogle Scholar
  63. 63.
    Guermonprez P, Saveanu L, Kleijmeer M, Davoust J, Van Endert P, Amigorena S. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature. 2003;425(6956):397–402.PubMedCrossRefGoogle Scholar
  64. 64.
    Vonderheide RH, Glennie MJ. Agonistic CD40 antibodies and cancer therapy. Clin Cancer Res. 2013;19(5):1035–43.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Khong A, Brown MD, Vivian JB, Robinson BW, Currie AJ. Agonistic anti-CD40 antibody therapy is effective against postoperative cancer recurrence and metastasis in a murine tumor model. J Immunother. 2013;36(7):365–72.PubMedCrossRefGoogle Scholar
  66. 66.
    Tutt AL, O’Brien L, Hussain A, Crowther GR, French RR, Glennie MJ. T cell immunity to lymphoma following treatment with anti-cd40 monoclonal antibody. J Immunol. 2002;168(6):2720–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Vonderheide RH, Dutcher JP, Anderson JE, Eckhardt SG, Stephans KF, Razvillas B, et al. Phase I study of recombinant human CD40 ligand in cancer patients. J Clin Oncol. 2001;19(13):3280–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Vonderheide RH, Flaherty KT, Khalil M, Stumacher MS, Bajor DL, Hutnick NA, et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol. 2007;25(7):876–83.PubMedCrossRefGoogle Scholar
  69. 69.
    Byrd JC, Kipps TJ, Flinn IW, Cooper M, Odenike O, Bendiske J, et al. Phase I study of the anti-CD40 humanized monoclonal antibody lucatumumab (HCD122) in relapsed chronic lymphocytic leukemia. Leuk Lymphoma. 2012;53(11):2136–42.PubMedCrossRefGoogle Scholar
  70. 70.
    Vinay DS, Kwon BS. 4-1BB signaling beyond T cells. Cell Mol Immunol. 2011;8(4):281–4.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Dawicki W, Watts TH. Expression and function of 4-1BB during CD4 versus CD8 T cell responses in vivo. Eur J Immunol. 2004;34(3):743–51.PubMedCrossRefGoogle Scholar
  72. 72.
    Vinay DS, Kwon BS. Immunotherapy of cancer with 4-1BB. Mol Cancer Ther. 2012;11(5):1062–70.PubMedCrossRefGoogle Scholar
  73. 73.
    Middendorp S, Xiao Y, Song JY, Peperzak V, Krijger PH, Jacobs H, et al. Mice deficient for CD137 ligand are predisposed to develop germinal center-derived B-cell lymphoma. Blood. 2009;114(11):2280–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Vinay DS, Choi JH, Kim JD, Choi BK, Kwon BS. Role of endogenous 4-1BB in the development of systemic lupus erythematosus. Immunology. 2007;122(3):394–400.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellstrom KE, et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med. 1997;3(6):682–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Gauttier V, Judor JP, Le Guen V, Cany J, Ferry N, Conchon S. Agonistic anti-CD137 antibody treatment leads to antitumor response in mice with liver cancer. Int J Cancer. 2014;135(12):2857–67.PubMedCrossRefGoogle Scholar
  77. 77.
    Li B, Lin J, Vanroey M, Jure-Kunkel M, Jooss K. Established B16 tumors are rejected following treatment with GM-CSF-secreting tumor cell immunotherapy in combination with anti-4-1BB mAb. Clin Immunol. 2007;125(1):76–87.PubMedCrossRefGoogle Scholar
  78. 78.
    Li Q, Carr A, Ito F, Teitz-Tennenbaum S, Chang AE. Polarization effects of 4-1BB during CD28 costimulation in generating tumor-reactive T cells for cancer immunotherapy. Cancer Res. 2003;63(10):2546–52.PubMedGoogle Scholar
  79. 79.
    Morales-Kastresana A, Catalan E, Hervas-Stubbs S, Palazon A, Azpilikueta A, Bolanos E, et al. Essential complicity of perforin-granzyme and FAS-L mechanisms to achieve tumor rejection following treatment with anti-CD137 mAb. J Immunother Cancer. 2013;1:3.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Lin W, Voskens CJ, Zhang X, Schindler DG, Wood A, Burch E, et al. Fc-dependent expression of CD137 on human NK cells: insights into “agonistic” effects of anti-CD137 monoclonal antibodies. Blood. 2008;112(3):699–707.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kohrt HE, Houot R, Goldstein MJ, Weiskopf K, Alizadeh AA, Brody J, et al. CD137 stimulation enhances the antilymphoma activity of anti-CD20 antibodies. Blood. 2011;117(8):2423–32.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Tolcher AW, Sznol M, Hu-Lieskovan S, Papadopoulos KP, Patnaik A, Rasco DW, et al. Phase Ib study of utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in combination with pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin Cancer Res. 2017;23(18):5349–57.PubMedCrossRefGoogle Scholar
  83. 83.
    Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002;3(2):135–42.PubMedCrossRefGoogle Scholar
  84. 84.
    McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, et al. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity. 2002;16(2):311–23.PubMedCrossRefGoogle Scholar
  85. 85.
    Tone Y, Kidani Y, Ogawa C, Yamamoto K, Tsuda M, Peter C, et al. Gene expression in the Gitr locus is regulated by NF-kappaB and Foxp3 through an enhancer. J Immunol. 2014;192(8):3915–24.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Snell LM, McPherson AJ, Lin GH, Sakaguchi S, Pandolfi PP, Riccardi C, et al. CD8 T cell-intrinsic GITR is required for T cell clonal expansion and mouse survival following severe influenza infection. J Immunol. 2010;185(12):7223–34.PubMedCrossRefGoogle Scholar
  87. 87.
    Esparza EM, Lindsten T, Stockhausen JM, Arch RH. Tumor necrosis factor receptor (TNFR)-associated factor 5 is a critical intermediate of costimulatory signaling pathways triggered by glucocorticoid-induced TNFR in T cells. J Biol Chem. 2006;281(13):8559–64.PubMedCrossRefGoogle Scholar
  88. 88.
    Ronchetti S, Ricci E, Petrillo MG, Cari L, Migliorati G, Nocentini G, et al. Glucocorticoid-induced tumour necrosis factor receptor-related protein: a key marker of functional regulatory T cells. J Immunol Res. 2015;2015:171520.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Schaer DA, Budhu S, Liu C, Bryson C, Malandro N, Cohen A, et al. GITR pathway activation abrogates tumor immune suppression through loss of regulatory T cell lineage stability. Cancer Immunol Res. 2013;1(5):320–31.PubMedCrossRefGoogle Scholar
  90. 90.
    Cohen AD, Schaer DA, Liu C, Li Y, Hirschhorn-Cymmerman D, Kim SC, et al. Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. PLoS One. 2010;5(5):e10436.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Tone M, Tone Y, Adams E, Yates SF, Frewin MR, Cobbold SP, et al. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Proc Natl Acad Sci USA. 2003;100(25):15059–64.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Stephens GL, McHugh RS, Whitters MJ, Young DA, Luxenberg D, Carreno BM, et al. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4 + CD25 + T cells. J Immunol. 2004;173(8):5008–20.PubMedCrossRefGoogle Scholar
  93. 93.
    Ronchetti S, Zollo O, Bruscoli S, Agostini M, Bianchini R, Nocentini G, et al. GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. Eur J Immunol. 2004;34(3):613–22.PubMedCrossRefGoogle Scholar
  94. 94.
    Liu C, Workman CJ, Vignali DA. Targeting regulatory T cells in tumors. FEBS J. 2016;283(14):2731–48.PubMedCrossRefGoogle Scholar
  95. 95.
    Shang B, Liu Y, Jiang SJ, Liu Y. Prognostic value of tumor-infiltrating FoxP3 + regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep. 2015;14(5):15179.CrossRefGoogle Scholar
  96. 96.
    Tigue NJ, Bamber L, Andrews J, Ireland S, Hair J, Carter E, et al. MEDI1873, a potent, stabilized hexameric agonist of human GITR with regulatory T-cell targeting potential. Oncoimmunology. 2017;6(3):e1280645.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature. 1999;397(6716):263–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Yao S, Zhu Y, Zhu G, Augustine M, Zheng L, Goode DJ, et al. B7-h2 is a costimulatory ligand for CD28 in human. Immunity. 2011;34(5):729–40.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Wang S, Zhu G, Chapoval AI, Dong H, Tamada K, Ni J, et al. Costimulation of T cells by B7-H2, a B7-like molecule that binds ICOS. Blood. 2000;96(8):2808–13.PubMedGoogle Scholar
  100. 100.
    Yoshinaga SK, Whoriskey JS, Khare SD, Sarmiento U, Guo J, Horan T, et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature. 1999;402(6763):827–32.PubMedCrossRefGoogle Scholar
  101. 101.
    So L, Fruman DA. PI3K signalling in B- and T-lymphocytes: new developments and therapeutic advances. Biochem J. 2012;442(3):465–81.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Löhning M, Hutloff A, Kallinich T, Mages HW, Bonhagen K, Radbruch A, et al. Expression of ICOS in vivo defines CD4 + effector t cells with high inflammatory potential and a strong bias for secretion of interleukin 10. J Exp Med. 2003;197(2):181–93.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Fan X, Quezada SA, Sepulveda MA, Sharma P, Allison JP. Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J Exp Med. 2014;211(4):715–25.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Chen H, Fu T, Suh WK, Tsavachidou D, Wen S, Gao J, et al. CD4 T cells require ICOS-mediated PI3K signaling to increase T-Bet expression in the setting of anti-CTLA-4 therapy. Cancer Immunol Res. 2014;2(2):167–76.PubMedCrossRefGoogle Scholar
  105. 105.
    Fu T, He Q, Sharma P. The ICOS/ICOSL pathway is required for optimal antitumor responses mediated by anti-CTLA-4 therapy. Can Res. 2011;71(16):5445–54.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Earle A. Chiles Research InstituteProvidence Portland Medical CenterPortlandUSA
  2. 2.Molecular Microbiology and Immunology DepartmentOregon Health and Science UniversityPortlandUSA

Personalised recommendations