Advertisement

BioDrugs

, Volume 31, Issue 6, pp 473–481 | Cite as

Next-Generation Chimeric Antigen Receptor T-Cell Therapy: Going off the Shelf

  • Marco RuellaEmail author
  • Saad S. Kenderian
Current Opinion

Abstract

Autologous, patient-specific chimeric antigen receptor T-cell (CART) therapy has emerged as a powerful and potentially curative therapy for cancer, especially for CD19-positive hematological malignancies. Indeed, on August 30, 2017, the University of Pennsylvania-designed CD19-directed CART (CART-19) cell therapy (CTL019, tisagenlecleucel-t, Kymriah - Novartis) became the first CART therapy approved by the Food and Drug Administration (FDA) for acute lymphoblastic leukemia. However, the development of CART technology and its wider application is partly limited by the patient-specific nature of such a platform and by the time required for manufacturing. The efficacious generation of universal allogeneic CART cells would overcome these limitations and represent a major advance in the field. However, several obstacles in the generation of universal CART cells need to be overcome, namely the risk of CART rejection and the risk of graft-versus-host disease mediated by the allogeneic CART. In this review, we discuss the different strategies being employed to generate universal CART and provide our perspective on the successful development of a truly off-the-shelf CART product.

Notes

Acknowledgements

This work was supported by grants from the SITC (EMD-Serono Cancer Immunotherapy Clinical Fellowship, PI: M.R.), the AACR (Bristol-Myers Squibb Oncology Fellowship in Clinical Cancer Research, PI: M.R.), the Gabrielle’s Angel Foundation (PI: M.R.), the SIES-AIL (PI: M.R.), the ASH Scholar Award (PI: M.R.), the NCI (K99 CA212302-01A1, PI: M.R. and K12CA166039, PI: S.S.K.), the Predolin Foundation (PI: S.S.K.), the NCCN Young Investigator Award (PI: S.S.K.), and the Mayo Clinic Center for Individualized Medicine (PI: S.S.K.).

Authors contribution

M.R. and S.S.K. wrote, reviewed, and accepted the contents of the article.

Compliance with ethical standards

M.R. works under a research collaboration involving the University of Pennsylvania and the Novartis Institute of Biomedical Research, Inc. M.R. and S.S.K. are inventors of intellectual property licensed by the University of Pennsylvania to Novartis.

References

  1. 1.
    Ruella M, Kalos M. Adoptive immunotherapy for cancer. Immunol Rev. 2014;257(1):14–38.CrossRefPubMedGoogle Scholar
  2. 2.
    Kenderian SS, Ruella M, Gill S, Kalos M. Chimeric antigen receptor T-cell therapy to target hematologic malignancies. Cancer Res. 2014.Google Scholar
  3. 3.
    Ruella M, June CH. Chimeric antigen receptor T cells for B cell neoplasms: choose the Right CAR for you. Curr Hematol Malig Rep. 2016.Google Scholar
  4. 4.
    Buechner J, Grupp SA, Maude SL, et al. Global registration trial of efficacy and safety of CTL019 in pediatric and young adult patients with relapsed/refractory (r/r) acute lymphoblastic leukemia (ALL): update to the interim analysis. EHA. 2017;181763.Google Scholar
  5. 5.
    Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra25.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, et al. CD19 CAR-T cells of defined CD4 + :CD8 + composition in adult B cell ALL patients. J Clin Investig. 2016.Google Scholar
  7. 7.
    Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28.CrossRefPubMedGoogle Scholar
  8. 8.
    Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-Cell lymphoma and indolent B-Cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Schuster SJ, Svoboda J, Dwivedy Nasta S, Porter DL, Chong EA, Landsburg DJ, et al. Sustained Remissions following chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19 + Lymphomas. Blood. 2015;126(23):183.Google Scholar
  10. 10.
    Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):309ra139.CrossRefGoogle Scholar
  11. 11.
    Levine BL, June CH. Perspective: assembly line immunotherapy. Nature. 2013;498(7455):S17.CrossRefPubMedGoogle Scholar
  12. 12.
    Torikai H, Cooper LJ. Translational implications for off-the-shelf immune cells expressing chimeric antigen receptors. Mol Ther. 2016;24(7):1178–86.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rooney CM, Aguilar LK, Huls MH, Brenner MK, Heslop HE. Adoptive immunotherapy of EBV-associated malignancies with EBV-specific cytotoxic T-cell lines. Curr Top Microbiol Immunol. 2001;258:221–9.PubMedGoogle Scholar
  14. 14.
    Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet. 2003;362(9393):1375–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Hanley PJ, Bollard CM, Brunstein CG. Adoptive immunotherapy with the use of regulatory T cells and virus-specific T cells derived from cord blood. Cytotherapy. 2015;17(6):749–55.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tzannou I, Papadopoulou A, Naik S, Leung K, Martinez CA, Ramos CA, et al. Off-the-shelf virus-specific T cells to treat bk virus, human herpesvirus 6, cytomegalovirus, epstein-barr virus, and adenovirus infections after allogeneic hematopoietic stem-cell transplantation. J Clin Oncol. 2017; p. JCO2017730655.Google Scholar
  17. 17.
    Brudno JN, Somerville RP, Shi V, Rose JJ, Halverson DC, Fowler DH, et al. Allogeneic T Cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol. 2016;34(10):1112–21.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ghosh A, Smith M, James SE, Davila ML, Velardi E, Argyropoulos KV, et al. Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nat Med. 2017;23(2):242–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sakemura R, Terakura S, Watanabe K, Miyao K, Koyama D, Goto T, et al. A novel strategy of switching on/off CD19CAR expression under tetracycline-based system. Blood. 2015;126(23):4424.Google Scholar
  20. 20.
    Tasian SK, Kenderian SS, Shen F, Ruella M, Shestova O, Kozlowski M, et al. Optimized depletion of chimeric antigen receptor T-cells in murine xenograft models of human acute myeloid leukemia. Blood. 2017;129:2395–407.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science. 1997; 276.Google Scholar
  22. 22.
    Straathof KC, Pule MA, Yotnda P, Dotti G, Vanin EF, Brenner MK, et al. An inducible caspase 9 safety switch for T-cell therapy. Blood. 2005;105(11):4247–54.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gargett T, Brown MP. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol. 2014; 5.Google Scholar
  24. 24.
    Wang X, Chang WC, Wong CW, Colcher D, Sherman M, Ostberg JR, et al. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood. 2011;118(5):1255–63.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Philip B, Kokalaki E, Mekkaoui L, Thomas S, Straathof K, Flutter B, et al. A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood. 2014;124(8):1277–87.CrossRefPubMedGoogle Scholar
  26. 26.
    Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365(18):1673–83.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Leen AM, Bollard CM, Mendizabal AM, Shpall EJ, Szabolcs P, Antin JH, et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood. 2013;121(26):5113–23.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hanley PJ, Cruz CR, Savoldo B, Leen AM, Stanojevic M, Khalil M, et al. Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood. 2009;114(9):1958–67.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rossig C, Bollard CM, Nuchtern JG, Rooney CM, Brenner MK. Epstein-Barr virus-specific human T lymphocytes expressing antitumor chimeric T-cell receptors: potential for improved immunotherapy. Blood. 2002;99(6):2009–16.CrossRefPubMedGoogle Scholar
  30. 30.
    Melenhorst JJ, Leen AM, Bollard CM, Quigley MF, Price DA, Rooney CM, et al. Allogeneic virus-specific T cells with HLA alloreactivity do not produce GVHD in human subjects. Blood. 2010;116(22):4700–2.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cruz CR, Micklethwaite KP, Savoldo B, Ramos CA, Lam S, Ku S, et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood. 2013;122(17):2965–73.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Foster AE, Marangolo M, Sartor MM, Alexander SI, Hu M, Bradstock KF, et al. Human CD62L- memory T cells are less responsive to alloantigen stimulation than CD62L + naive T cells: potential for adoptive immunotherapy and allodepletion. Blood. 2004;104(8):2403–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ, Kahsai O, et al. Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. Blood. 2009;114(19):4099–107.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chan WK, Suwannasaen D, Throm RE, Li Y, Eldridge PW, Houston J, et al. Chimeric antigen receptor-redirected CD45RA-negative T cells have potent antileukemia and pathogen memory response without graft-versus-host activity. Leukemia. 2015;29(2):387–95.CrossRefPubMedGoogle Scholar
  35. 35.
    Turtle CJ, Hanafi LA, Berger C, Hudecek M, Pender B, Robinson E, et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med. 2016;8(355):355ra116.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gattinoni L, Klebanoff CA, Restifo NP. Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer. 2012.Google Scholar
  37. 37.
    Bleakley M, Heimfeld S, Loeb KR, Jones LA, Chaney C, Seropian S, et al. Outcomes of acute leukemia patients transplanted with naive T cell-depleted stem cell grafts. J Clin Invest. 2015;125(7):2677–89.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Themeli M, Kloss CC, Ciriello G, Fedorov VD, Perna F, Gonen M, et al. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat Biotechnol. 2013;31(10):928–33.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–10.CrossRefPubMedGoogle Scholar
  40. 40.
    Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105(8):3051–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Romanski A, Uherek C, Bug G, Seifried E, Klingemann H, Wels WS, et al. CD19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies. J Cell Mol Med. 2016;20(7):1287–94.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Heczey A, Liu D, Tian G, Courtney AN, Wei J, Marinova E, et al. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood. 2014;124(18):2824–33.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Deniger DC, Switzer K, Mi T, Maiti S, Hurton L, Singh H, et al. Bispecific T-cells expressing polyclonal repertoire of endogenous γδ T-cell receptors and introduced CD19-specific chimeric antigen receptor. Mol Ther. 2013;21(3):638–47.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Klichinsky M, Ruella M, Shestova O, Kenderian SS, Kim MY, O’Connor R, et al. Abstract 4575: chimeric antigen receptor macrophages (CARMA) for adoptive cellular immunotherapy of solid tumors. Can Res. 2017;77(13):4575.CrossRefGoogle Scholar
  45. 45.
    Yin H, Kauffman KJ, Anderson DG. Delivery technologies for genome editing. Nat Rev Drug Discov. 2017;16(6):387–99.CrossRefPubMedGoogle Scholar
  46. 46.
    Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, et al. Establishment of HIV-1 resistance in CD4 + T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008;26(7):808–16.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29(2):143–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Sather BD, Romano Ibarra GS, Sommer K, Curinga G, Hale M, Khan IF, et al. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci Transl Med. 2015;7(307):307ra156.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Osborn MJ, Webber BR, Knipping F, Lonetree CL, Tennis N, DeFeo AP, et al. Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases. Mol Ther. 2016;24(3):570–81.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ren J, Zhao Y. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein Cell. 2017.Google Scholar
  52. 52.
    Singh N, Shi J, June CH, Ruella M. Genome-Editing Technologies in Adoptive T Cell Immunotherapy for Cancer. Curr Hematol Malig Rep. 2017; 1–8. doi https://doi.org/10.1007/s11899-017-0417-7
  53. 53.
    Torikai H, Reik A, Liu PQ, Zhou Y, Zhang L, Maiti S, et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood. 2012;119(24):5697–705.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Poirot L, Philip B, Schiffer-Mannioui C, Le Clerre D, Chion-Sotinel I, Derniame S, et al. Multiplex genome-edited T-cell manufacturing platform for “Off-the-Shelf” adoptive T-cell immunotherapies. Cancer Res. 2015;75(18):3853–64.CrossRefPubMedGoogle Scholar
  55. 55.
    Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med. 2017;9(374):eaaj2013.CrossRefPubMedGoogle Scholar
  56. 56.
    Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH, et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget. 2017;8:17002.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition. Clin Cancer Res. 2016;23:2255–66.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543(7643):113–7.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Hale M, Lee B, Honaker Y, Leung WH, Grier AE, Jacobs HM, et al. Homology-directed recombination for enhanced engineering of chimeric antigen receptor T cells. Mol Ther Methods Clin Dev. 2017;17(4):192–203.CrossRefGoogle Scholar
  60. 60.
    Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Torikai H, Reik A, Soldner F, Warren EH, Yuen C, Zhou Y, et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood. 2013;122(8):1341–9.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    ASGCT. 19th Annual Meeting: Abstracts. Mol Ther J Am Soc Gene Ther. 2016;24(Suppl 1):S1–304.Google Scholar
  64. 64.
    Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2016;23:2255–66.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Gornalusse GG, Hirata RK, Funk SE, Riolobos L, Lopes VS, Manske G, et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat Biotechnol. 2017;35(8):765–72.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Jandus C, Boligan KF, Chijioke O, Liu H, Dahlhaus M, Demoulins T, et al. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J Clin Invest. 2014;124(4):1810–20.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8(5):409–12.CrossRefPubMedGoogle Scholar
  68. 68.
    Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell. 2012;11(2):147–52.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center for Cellular ImmunotherapiesPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  3. 3.Abramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Division of Hematology, Department of MedicineMayo ClinicRochesterUSA
  5. 5.Department of ImmunologyMayo ClinicRochesterUSA

Personalised recommendations