BioDrugs

, Volume 28, Issue 6, pp 487–497

The Role of Interleukin-17A in Psoriatic Disease

  • Silvano Adami
  • Andrea Cavani
  • Francesco Rossi
  • Giampiero Girolomoni
Review Article

Abstract

The pathogenic mechanisms of specific immune-mediated inflammatory diseases (IMIDs) are not fully understood, but are thought to involve activated T cells with the release of pro-inflammatory cytokines. Understanding the autoimmune inflammatory pathways has led to the development of biological agents that target specific components of effector immune mechanisms. Despite the availability of many effective drugs, a large proportion of patients with moderate to severe IMID do not receive adequate treatment, and many therapies show decreased efficacy over time. Therefore, there is a need for new therapies. One subset of T helper cells, Th17, and the cytokine interleukin-17 (IL-17) play a central role in the pathophysiology of autoimmune diseases such as psoriasis. IL-17 is involved in the modulation of pro-inflammatory cytokines, haematopoietic growth factors, antimicrobial peptides, chemokines, and molecules involved in tissue remodelling; the inflammatory cascades triggered by Th17 cells and IL-17 itself, when unregulated, can result in widespread inflammation-related damage. Evidence of increased Th17 activity and high levels of IL-17 has been found in psoriasis, as well as other inflammatory conditions, thereby signalling the potential utility of IL-17 as a therapeutic target. Clinical trials investigating IL-17 inhibitors, such as secukinumab, in patients with psoriatic disease have reported no significant safety concerns so far. It is hoped that these agents will improve the long-term prognosis of patients with these debilitating disorders.

References

  1. 1.
    Firestein GS, Corr M. Common mechanisms in immune-mediated inflammatory disease. J Rheumatol Suppl. 2005;73:8–13; discussion 29–30.Google Scholar
  2. 2.
    Weng X, Liu L, Barcellos LF, Allison JE, Herrinton LJ. Clustering of inflammatory bowel disease with immune mediated diseases among members of a northern California-managed care organization. Am J Gastroenterol. 2007;102(7):1429–35. doi:10.1111/j.1572-0241.2007.01215.x.PubMedCrossRefGoogle Scholar
  3. 3.
    Rosenbaum JT, Russell AS, Guenther LC, El-Gabalawy H. The influence of uveitis on patients with immune-mediated inflammatory disease. J Rheumatol Suppl. 2011;88:26–30. doi:10.3899/jrheum.110907.PubMedCrossRefGoogle Scholar
  4. 4.
    Ortega C, Fernandez AS, Carrillo JM, Romero P, Molina IJ, Moreno JC, et al. IL-17-producing CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete Th17-related cytokines. J Leukoc Biol. 2009;86(2):435–43. doi:10.1189/JLB.0109046.PubMedCrossRefGoogle Scholar
  5. 5.
    Imboden JB. The immunopathogenesis of rheumatoid arthritis. Annu Rev Pathol. 2009;4:417–34. doi:10.1146/annurev.pathol.4.110807.092254.PubMedCrossRefGoogle Scholar
  6. 6.
    Pedraz J, Dauden E, Delgado-Jimenez Y, Garcia-Rio I, Garcia-Diez A. Sequential study on the treatment of moderate-to-severe chronic plaque psoriasis with mycophenolate mofetil and cyclosporin. J Eur Acad Dermatol Venereol. 2006;20(6):702–6. doi:10.1111/j.1468-3083.2006.01577.x.PubMedCrossRefGoogle Scholar
  7. 7.
    Kuenzli S, Saurat JH. Retinoids for the treatment of psoriasis: outlook for the future. Curr Opin Investig Drugs. 2001;2(5):625–30.PubMedGoogle Scholar
  8. 8.
    Kunz M. Current treatment of psoriasis with biologics. Curr Drug Discov Technol. 2009;6(4):231–40.PubMedCrossRefGoogle Scholar
  9. 9.
    Clark CM, Kirby B, Morris AD, Davison S, Zaki I, Emerson R, et al. Combination treatment with methotrexate and cyclosporin for severe recalcitrant psoriasis. Br J Dermatol. 1999;141(2):279–82.PubMedCrossRefGoogle Scholar
  10. 10.
    Kuijpers AL, van de Kerkhof PC. Risk-benefit assessment of methotrexate in the treatment of severe psoriasis. Am J Clin Dermatol. 2000;1(1):27–39.PubMedCrossRefGoogle Scholar
  11. 11.
    Gaffen SL. An overview of IL-17 function and signaling. Cytokine. 2008;43(3):402–7. doi:10.1016/j.cyto.2008.07.017.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10(7):479–89. doi:10.1038/nri2800.PubMedCrossRefGoogle Scholar
  13. 13.
    Hu Y, Shen F, Crellin NK, Ouyang W. The IL-17 pathway as a major therapeutic target in autoimmune diseases. Ann N Y Acad Sci. 2011;1217:60–76. doi:10.1111/j.1749-6632.2010.05825.x.PubMedCrossRefGoogle Scholar
  14. 14.
    Girolomoni G, Mrowietz U, Paul C. Psoriasis: rationale for targeting interleukin-17. Br J Dermatol. 2012;167(4):717–24. doi:10.1111/j.1365-2133.2012.11099.x.PubMedCrossRefGoogle Scholar
  15. 15.
    Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med. 2010;2(52):52ra72. doi:10.1126/scitranslmed.3001107.
  16. 16.
    Miossec P. IL-17 and Th17 cells in human inflammatory diseases. Microbes Infect. 2009;11(5):625–30. doi:10.1016/j.micinf.2009.04.003.PubMedCrossRefGoogle Scholar
  17. 17.
    Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11(10):763–76. doi:10.1038/nrd3794.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhu S, Qian Y. IL-17/IL-17 receptor system in autoimmune disease: mechanisms and therapeutic potential. Clin Sci (Lond). 2012;122(11):487–511. doi:10.1042/CS20110496.PubMedCrossRefGoogle Scholar
  19. 19.
    Di Cesare A, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol. 2009;129(6):1339–50. doi:10.1038/jid.2009.59.PubMedCrossRefGoogle Scholar
  20. 20.
    Ma HL, Liang S, Li J, Napierata L, Brown T, Benoit S, et al. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Invest. 2008;118(2):597–607. doi:10.1172/JCI33263.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Rosmarin D, Strober BE. The potential of interleukin 12 inhibition in the treatment of psoriasis. J Drugs Dermatol. 2005;4(3):318–25.PubMedGoogle Scholar
  22. 22.
    Menter A, Korman NJ, Elmets CA, Feldman SR, Gelfand JM, Gordon KB, et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: section 6. Guidelines of care for the treatment of psoriasis and psoriatic arthritis: case-based presentations and evidence-based conclusions. J Am Acad Dermatol. 2011;65(1):137–74. doi:10.1016/j.jaad.2010.11.055.PubMedCrossRefGoogle Scholar
  23. 23.
    Nast A, Boehncke WH, Mrowietz U, Ockenfels HM, Philipp S, Reich K, et al. S3-Guidelines on the treatment of Psoriasis vulgaris (English version). Update. J Dtsch Dermatol Ges. 2012;10(Suppl 2):S1–95. doi:10.1111/j.1610-0387.2012.07919.x.CrossRefGoogle Scholar
  24. 24.
    Reich K, Signorovitch J, Ramakrishnan K, Yu AP, Wu EQ, Gupta SR, et al. Benefit-risk analysis of adalimumab versus methotrexate and placebo in the treatment of moderate to severe psoriasis: comparison of adverse event-free response days in the CHAMPION trial. J Am Acad Dermatol. 2010;63(6):1011–8. doi:10.1016/j.jaad.2009.12.029.PubMedCrossRefGoogle Scholar
  25. 25.
    van Lumig PP, Driessen RJ, Berends MA, Boezeman JB, van de Kerkhof PC, de Jong EM. Safety of treatment with biologics for psoriasis in daily practice: 5-year data. J Eur Acad Dermatol Venereol. 2012;26(3):283–91. doi:10.1111/j.1468-3083.2011.04044.x.PubMedCrossRefGoogle Scholar
  26. 26.
    Esposito M, Gisondi P, Cassano N, Ferrucci G, Del Giglio M, Loconsole F, et al. Survival rate of antitumour necrosis factor-alpha treatments for psoriasis in routine dermatological practice: a multicentre observational study. Br J Dermatol. 2013;169(3):666–72. doi:10.1111/bjd.12422.PubMedCrossRefGoogle Scholar
  27. 27.
    Le Saux N. Biologic response modifiers to decrease inflammation: focus on infection risks. Paediatr Child Health. 2012;17(3):147–54.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Imperato AK, Bingham CO 3rd, Abramson SB. Overview of benefit/risk of biological agents. Clin Exp Rheumatol. 2004;22(5 Suppl 35):S108–14.PubMedGoogle Scholar
  29. 29.
    Menter A. The status of biologic therapies in the treatment of moderate to severe psoriasis. Cutis. 2009;84(4 Suppl):14–24.PubMedGoogle Scholar
  30. 30.
    Ortiz-Ibanez K, Alsina MM, Munoz-Santos C. Tofacitinib and other kinase inhibitors in the treatment of psoriasis. Actas Dermosifiliogr. 2013;104(4):304–10. doi:10.1016/j.adengl.2013.03.002.PubMedCrossRefGoogle Scholar
  31. 31.
    ClinicalTrials.gov. A study to evaluate the efficacy and safety/tolerability of subcutaneous SCH 900222/MK-3222 in participants with moderate-to-severe chronic plaque psoriasis (P07771/MK-3222-011). 2013. http://www.clinicaltrials.gov/show/NCT01729754. Accessed 25 Sept 2013.
  32. 32.
    Strober B, Buonanno M, Clark JD, Kawabata T, Tan H, Wolk R, et al. Effect of tofacitinib, a Janus kinase inhibitor, on haematological parameters during 12 weeks of psoriasis treatment. Br J Dermatol. 2013. doi:10.1111/bjd.12517.Google Scholar
  33. 33.
    Papp KA, Menter A, Strober B, Langley RG, Buonanno M, Wolk R, et al. Efficacy and safety of tofacitinib, an oral Janus kinase inhibitor, in the treatment of psoriasis: a phase 2b randomized placebo-controlled dose-ranging study. Br J Dermatol. 2012;167(3):668–77. doi:10.1111/j.1365-2133.2012.11168.x.PubMedCrossRefGoogle Scholar
  34. 34.
    Leonardi C, Matheson R, Zachariae C, Cameron G, Li L, Edson-Heredia E, et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med. 2012;366(13):1190–9. doi:10.1056/NEJMoa1109997.PubMedCrossRefGoogle Scholar
  35. 35.
    Papp KA, Leonardi C, Menter A, Ortonne JP, Krueger JG, Kricorian G, et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N Engl J Med. 2012;366(13):1181–9. doi:10.1056/NEJMoa1109017.PubMedCrossRefGoogle Scholar
  36. 36.
    Papp KA, Langley RG, Sigurgeirsson B, Abe M, Baker DR, Konno P, et al. Efficacy and safety of secukinumab in the treatment of moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled phase II dose-ranging study. Br J Dermatol. 2013;168(2):412–21. doi:10.1111/bjd.12110.PubMedCrossRefGoogle Scholar
  37. 37.
    Menter A, Gottlieb A, Feldman SR, Van Voorhees AS, Leonardi CL, Gordon KB, et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: Section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics. J Am Acad Dermatol. 2008;58(5):826–50. doi:10.1016/j.jaad.2008.02.039.PubMedCrossRefGoogle Scholar
  38. 38.
    Zeichner JA. A practical approach to screening psoriasis patients for therapy with biologic agents. J Clin Aesthet Dermatol. 2008;1(3):50–4.Google Scholar
  39. 39.
    Vincent FB, Morand EF, Murphy K, Mackay F, Mariette X, Marcelli C. Antidrug antibodies (ADAb) to tumour necrosis factor (TNF)-specific neutralising agents in chronic inflammatory diseases: a real issue, a clinical perspective. Ann Rheum Dis. 2013;72(2):165–78. doi:10.1136/annrheumdis-2012-202545.PubMedCrossRefGoogle Scholar
  40. 40.
    Dorner T, Kinnman N. Tak PP. Targeting B cells in immune-mediated inflammatory disease: a comprehensive review of mechanisms of action and identification of biomarkers. Pharmacol Ther. 2010;125(3):464–75. doi:10.1016/j.pharmthera.2010.01.001.PubMedCrossRefGoogle Scholar
  41. 41.
    Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S, et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity. 2009;31(5):787–98. doi:10.1016/j.immuni.2009.09.014.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Eyerich K, Pennino D, Scarponi C, Foerster S, Nasorri F, Behrendt H et al. IL-17 in atopic eczema: linking allergen-specific adaptive and microbial-triggered innate immune response. J Allergy Clin Immunol. 2009;123(1):59–66 e4. doi:10.1016/j.jaci.2008.10.031.
  43. 43.
    Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med. 2001;194(4):519–27.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Hirahara K, Ghoreschi K, Laurence A, Yang XP, Kanno Y, O’Shea JJ. Signal transduction pathways and transcriptional regulation in Th17 cell differentiation. Cytokine Growth Factor Rev. 2010;21(6):425–34. doi:10.1016/j.cytogfr.2010.10.006.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Parachuru VP, Coates DE, Milne TJ, Hussaini HM, Rich AM, Seymour GJ. Forkhead box P3-positive regulatory T-cells and interleukin 17-positive T-helper 17 cells in chronic inflammatory periodontal disease. J Periodontal Res. 2014. doi:10.1111/jre.12169.PubMedGoogle Scholar
  46. 46.
    Corneth OB, Mus AM, Asmawidjaja PS, Klein Wolterink RG, van Nimwegen M, Brem MD et al. Absence of interleukin-17 receptor A signaling prevents autoimmune inflammation of the joint and leads to a Th2-like phenotype in collagen-induced arthritis. Arthritis Rheumatol. 2014;66(2):340–9. doi:10.1002/art.38229.
  47. 47.
    Pennino D, Eyerich K, Scarponi C, Carbone T, Eyerich S, Nasorri F, et al. IL-17 amplifies human contact hypersensitivity by licensing hapten nonspecific Th1 cells to kill autologous keratinocytes. J Immunol. 2010;184(9):4880–8. doi:10.4049/jimmunol.0901767.PubMedCrossRefGoogle Scholar
  48. 48.
    Yosef N, Shalek AK, Gaublomme JT, Jin H, Lee Y, Awasthi A, et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature. 2013;496(7446):461–8. doi:10.1038/nature11981.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    O’Shea JJ, Steward-Tharp SM, Laurence A, Watford WT, Wei L, Adamson AS, et al. Signal transduction and Th17 cell differentiation. Microbes Infect. 2009;11(5):599–611. doi:10.1016/j.micinf.2009.04.007.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Ichiyama K, Yoshida H, Wakabayashi Y, Chinen T, Saeki K, Nakaya M, et al. Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat. J Biol Chem. 2008;283(25):17003–8. doi:10.1074/jbc.M801286200.PubMedCrossRefGoogle Scholar
  51. 51.
    Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med. 2009;361(9):888–98. doi:10.1056/NEJMra0707449.PubMedCrossRefGoogle Scholar
  52. 52.
    Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517. doi:10.1146/annurev.immunol.021908.132710.PubMedCrossRefGoogle Scholar
  53. 53.
    O’Garra A, Stockinger B, Veldhoen M. Differentiation of human T(H)-17 cells does require TGF-beta!. Nat Immunol. 2008;9(6):588–90. doi:10.1038/ni0608-588.PubMedCrossRefGoogle Scholar
  54. 54.
    Chen Z, Laurence A, O’Shea JJ. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation. Semin Immunol. 2007;19(6):400–8. doi:10.1016/j.smim.2007.10.015.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Cai Y, Shen X, Ding C, Qi C, Li K, Li X, et al. Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity. 2011;35(4):596–610. doi:10.1016/j.immuni.2011.08.001.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Katayama M, Ohmura K, Yukawa N, Terao C, Hashimoto M, Yoshifuji H, et al. Neutrophils are essential as a source of IL-17 in the effector phase of arthritis. PLoS One. 2013;8(5):e62231. doi:10.1371/journal.pone.0062231.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Gaffen SL. Recent advances in the IL-17 cytokine family. Curr Opin Immunol. 2011;23(5):613–9. doi:10.1016/j.coi.2011.07.006.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Pappu R, Ramirez-Carrozzi V, Ota N, Ouyang W, Hu Y. The IL-17 family cytokines in immunity and disease. J Clin Immunol. 2010;30(2):185–95. doi:10.1007/s10875-010-9369-6.PubMedCrossRefGoogle Scholar
  59. 59.
    Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009;9(8):556–67. doi:10.1038/nri2586.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Gaffen SL, Kramer JM, Yu JJ, Shen F. The IL-17 cytokine family. Vitam Horm. 2006;74:255–82. doi:10.1016/S0083-6729(06)74010-9.PubMedCrossRefGoogle Scholar
  61. 61.
    Gaffen SL. Life before seventeen: cloning of the IL-17 receptor. J Immunol. 2011;187(9):4389–91. doi:10.4049/jimmunol.1102576.PubMedCrossRefGoogle Scholar
  62. 62.
    Steiner GE, Newman ME, Paikl D, Stix U, Memaran-Dagda N, Lee C, et al. Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate. Prostate. 2003;56(3):171–82. doi:10.1002/pros.10238.PubMedCrossRefGoogle Scholar
  63. 63.
    Albanesi C, Scarponi C, Cavani A, Federici M, Nasorri F, Girolomoni G. Interleukin-17 is produced by both Th1 and Th2 lymphocytes, and modulates interferon-gamma- and interleukin-4-induced activation of human keratinocytes. J Invest Dermatol. 2000;115(1):81–7. doi:10.1046/j.1523-1747.2000.00041.x.PubMedCrossRefGoogle Scholar
  64. 64.
    Xu S, Cao X. Interleukin-17 and its expanding biological functions. Cell Mol Immunol. 2010;7(3):164–74. doi:10.1038/cmi.2010.21.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Doyle MS, Collins ES, Fitzgerald OM, Pennington SR. New insight into the functions of the interleukin-17 receptor adaptor protein Act1 in psoriatic arthritis. Arthritis Res Ther. 2012;14(5):226. doi:10.1186/ar4071.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Kehlen A, Thiele K, Riemann D, Langner J. Expression, modulation and signalling of IL-17 receptor in fibroblast-like synoviocytes of patients with rheumatoid arthritis. Clin Exp Immunol. 2002;127(3):539–46.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Cho ML, Kang JW, Moon YM, Nam HJ, Jhun JY, Heo SB, et al. STAT3 and NF-kappaB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. J Immunol. 2006;176(9):5652–61.PubMedCrossRefGoogle Scholar
  68. 68.
    Patel DN, King CA, Bailey SR, Holt JW, Venkatachalam K, Agrawal A, et al. Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-kappaB and C/EBPbeta activation. J Biol Chem. 2007;282(37):27229–38. doi:10.1074/jbc.M703250200.PubMedCrossRefGoogle Scholar
  69. 69.
    Song X, Qian Y. IL-17 family cytokines mediated signaling in the pathogenesis of inflammatory diseases. Cell Signal. 2013;25(12):2335–47. doi:10.1016/j.cellsig.2013.07.021.PubMedCrossRefGoogle Scholar
  70. 70.
    Gutowska-Owsiak D, Schaupp AL, Salimi M, Selvakumar TA, McPherson T, Taylor S, et al. IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion. Exp Dermatol. 2012;21(2):104–10. doi:10.1111/j.1600-0625.2011.01412.x.PubMedCrossRefGoogle Scholar
  71. 71.
    Kato H, Endres J, Fox DA. The roles of IFN-gamma versus IL-17 in pathogenic effects of human Th17 cells on synovial fibroblasts. Mod Rheumatol. 2013. doi:10.1007/s10165-012-0811-x.PubMedCentralGoogle Scholar
  72. 72.
    Russolillo A, Iervolino S, Peluso R, Lupoli R, Di Minno A, Pappone N, et al. Obesity and psoriatic arthritis: from pathogenesis to clinical outcome and management. Rheumatology (Oxford). 2013;52(1):62–7. doi:10.1093/rheumatology/kes242.PubMedCrossRefGoogle Scholar
  73. 73.
    Marzano AV, Tedeschi A, Polloni I, Crosti C, Cugno M. Interactions between inflammation and coagulation in autoimmune and immune-mediated skin diseases. Curr Vasc Pharmacol. 2012;10(5):647–52.PubMedCrossRefGoogle Scholar
  74. 74.
    Nograles KE, Zaba LC, Guttman-Yassky E, Fuentes-Duculan J, Suarez-Farinas M, Cardinale I, et al. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br J Dermatol. 2008;159(5):1092–102. doi:10.1111/j.1365-2133.2008.08769.x.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Albanesi C, Scarponi C, Bosisio D, Sozzani S, Girolomoni G. Immune functions and recruitment of plasmacytoid dendritic cells in psoriasis. Autoimmunity. 2010;43(3):215–9. doi:10.3109/08916930903510906.PubMedCrossRefGoogle Scholar
  76. 76.
    Zaba LC, Cardinale I, Gilleaudeau P, Sullivan-Whalen M, Suarez-Farinas M, Fuentes-Duculan J, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med. 2007;204(13):3183–94. doi:10.1084/jem.20071094.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Albanesi C, Cavani A, Girolomoni G. IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes: synergistic or antagonist effects with IFN-gamma and TNF-alpha. J Immunol. 1999;162(1):494–502.PubMedGoogle Scholar
  78. 78.
    Rizzo HL, Kagami S, Phillips KG, Kurtz SE, Jacques SL, Blauvelt A. IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. J Immunol. 2011;186(3):1495–502. doi:10.4049/jimmunol.1001001.PubMedCrossRefGoogle Scholar
  79. 79.
    Schett G. Joint remodelling in inflammatory disease. Ann Rheum Dis. 2007;66 Suppl 3:iii42–4. doi:10.1136/ard.2007.078972.
  80. 80.
    de Rooy DP, van der Linden MP, Knevel R, Huizinga TW, van der Helm-van Mil AH. Predicting arthritis outcomes—what can be learned from the Leiden Early Arthritis Clinic? Rheumatology (Oxford). 2011;50(1):93–100. doi:10.1093/rheumatology/keq230.
  81. 81.
    Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, Iwakura Y, et al. Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther. 2010;12(1):R29. doi:10.1186/ar2936.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Kostenuik PJ, Shalhoub V. Osteoprotegerin: a physiological and pharmacological inhibitor of bone resorption. Curr Pharm Des. 2001;7(8):613–35.PubMedCrossRefGoogle Scholar
  83. 83.
    Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42. doi:10.1038/nature01658.PubMedCrossRefGoogle Scholar
  84. 84.
    Stolina M, Adamu S, Ominsky M, Dwyer D, Asuncion F, Geng Z, et al. RANKL is a marker and mediator of local and systemic bone loss in two rat models of inflammatory arthritis. J Bone Miner Res. 2005;20(10):1756–65. doi:10.1359/JBMR.050601.PubMedCrossRefGoogle Scholar
  85. 85.
    Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien CA, et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology. 2005;146(11):4577–83. doi:10.1210/en.2005-0239.PubMedCrossRefGoogle Scholar
  86. 86.
    Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007;13(2):156–63. doi:10.1038/nm1538.PubMedCrossRefGoogle Scholar
  87. 87.
    Crotti TN, Smith MD, Weedon H, Ahern MJ, Findlay DM, Kraan M, et al. Receptor activator NF-kappaB ligand (RANKL) expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathy, osteoarthritis, and from normal patients: semiquantitative and quantitative analysis. Ann Rheum Dis. 2002;61(12):1047–54.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Liu YY, Long L, Wang SY, Guo JP, Ye H, Cui LF, et al. Circulating Dickkopf-1 and osteoprotegerin in patients with early and longstanding rheumatoid arthritis. Chin Med J (Engl). 2010;123(11):1407–12.PubMedGoogle Scholar
  89. 89.
    Singh TP, Schon MP, Wallbrecht K, Michaelis K, Rinner B, Mayer G, et al. 8-Methoxypsoralen plus ultraviolet A therapy acts via inhibition of the IL-23/Th17 axis and induction of Foxp3+ regulatory T cells involving CTLA4 signaling in a psoriasis-like skin disorder. J Immunol. 2010;184(12):7257–67. doi:10.4049/jimmunol.0903719.PubMedCrossRefGoogle Scholar
  90. 90.
    Gudjonsson JE, Johnston A, Ellis CN. Novel systemic drugs under investigation for the treatment of psoriasis. J Am Acad Dermatol. 2012;67(1):139–47. doi:10.1016/j.jaad.2011.06.037.PubMedCrossRefGoogle Scholar
  91. 91.
    Patel DD, Lee DM, Kolbinger F, Antoni C. Effect of IL-17A blockade with secukinumab in autoimmune diseases. Ann Rheum Dis. 2013;72 Suppl 2:ii116–23. doi:10.1136/annrheumdis-2012-202371.
  92. 92.
    Rich P, Sigurgeirsson B, Thaci D, Ortonne JP, Paul C, Schopf RE, et al. Secukinumab induction and maintenance therapy in moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled, phase II regimen-finding study. Br J Dermatol. 2013;168(2):402–11. doi:10.1111/bjd.12112.PubMedCrossRefGoogle Scholar
  93. 93.
    Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Mazurov V, et al. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann Rheum Dis. 2013;72(6):863–9. doi:10.1136/annrheumdis-2012-201601.PubMedCrossRefGoogle Scholar
  94. 94.
    Kagami S, Rizzo HL, Kurtz SE, Miller LS, Blauvelt A. IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J Immunol. 2010;185(9):5453–62. doi:10.4049/jimmunol.1001153.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    McInnes IB, Sieper J, Braun J, Emery P, van der Heijde D, Isaacs JD, et al. Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial. Ann Rheum Dis. 2013. doi:10.1136/annrheumdis-2012-202646.Google Scholar
  96. 96.
    Dick AD, Tugal-Tutkun I, Foster S, Zierhut M, Melissa Liew SH, Bezlyak V et al. Secukinumab in the treatment of noninfectious uveitis: results of three randomized, controlled clinical trials. Ophthalmology. 2013;120(4):777–87. doi:10.1016/j.ophtha.2012.09.040.
  97. 97.
    Rich P, Sigurgeirsson B, Thaci DP, Ortonne JP, Paul C, Schopf RE, et al. Secukinumab induction and maintenance therapy in moderate-to-severe plaque psoriasis: a randomised, double-blind, placebo-controlled, phase II regimen-finding study. Br J Dermatol. 2012. doi:10.1111/bjd.12070.PubMedGoogle Scholar
  98. 98.
    Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61(12):1693–700. doi:10.1136/gutjnl-2011-301668.PubMedCrossRefGoogle Scholar
  99. 99.
    Her M, Kavanaugh A. Treatment of spondyloarthropathy: the potential for agents other than TNF inhibitors. Curr Opin Rheumatol. 2013. doi:10.1097/BOR.0b013e3283620177.PubMedGoogle Scholar
  100. 100.
    Meyer MW, Zachariae C, Bendtzen K, Skov L. Lack of anti-drug antibodies in patients with psoriasis well-controlled on long-term treatment with tumour necrosis factor inhibitors. Acta Derm Venereol. 2012;92(4):362–4. doi:10.2340/00015555-1376.PubMedCrossRefGoogle Scholar
  101. 101.
    Gajdosik Z. Brodalumab (AMG-827). Drugs Fut. 2012;37(12):837.CrossRefGoogle Scholar
  102. 102.
    Busse WW, Holgate S, Kerwin E, Chon Y, Feng J, Lin J, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med. 2013;188(11):1294–302. doi:10.1164/rccm.201212-2318OC.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Silvano Adami
    • 1
  • Andrea Cavani
    • 2
  • Francesco Rossi
    • 3
  • Giampiero Girolomoni
    • 4
  1. 1.Section of Rheumatology, Department of MedicineUniversity of VeronaVeronaItaly
  2. 2.Laboratory of Experimental ImmunologyIstituto Dermopatico dell’Immacolata, IDI-IRCCSRomeItaly
  3. 3.Section of Pharmacology, Department of Experimental MedicineSecond University of NaplesNaplesItaly
  4. 4.Section of Dermatology and Venereology, Department of MedicineUniversity of VeronaVeronaItaly

Personalised recommendations