, Volume 28, Issue 2, pp 181–209 | Cite as

CD30 as a Therapeutic Target for Lymphoma

  • Thomas SchirrmannEmail author
  • Miriam Steinwand
  • Xenia Wezler
  • Andre ten Haaf
  • Mehmet K. Tur
  • Stefan Barth
Review Article


Hodgkin’s lymphoma (HL) and ALK+ anaplastic large-cell lymphoma (ALCL) have become highly curable due to the success of modern regimens of chemotherapy and radiotherapy. However, up to one-third of the patients experience relapse or do not respond to first-line therapy, and half of them relapse again after secondary therapy with limited options for further treatment. In the last 15 years, monoclonal antibodies (mAbs) directed to surface receptors became a new and valuable therapeutic option in many hematologic malignancies. Due to its restricted expression on normal activated lymphocytes and its high expression on malignant cells, CD30 represents an attractive target molecule for HL and ALCL therapy. However, unconjugated CD30 mAbs have demonstrated a lack of objective clinical responses in patients with recurrent HL. CD30 exhibits complex signaling pathways, and binding of its natural ligand or anti-CD30 mAbs can induce apoptosis but may also promote proliferation and activation depending on the cellular context. Moreover, CD30 rapidly internalizes after crosslinking, which counteracts efficient recruitment of immunologic effectors but also provides the opportunity to transfer cytotoxic payloads coupled to CD30-specific mAbs into the tumor cells. Several tumor targeting approaches have been studied, including radio-immunoconjugates, immunotoxins, immunoRNases, immunokinases, and antibody drug conjugates (ADCs). In 2011, the ADC brentuximab-vedotin, consisting of the CD30-specific chimeric mAb cAC10 and the potent tubulin toxin monomethyl auristatin E, gained regulatory approval as a well tolerated and highly active drug in patients with refractory and relapsed HL and ALCL. SGN-35 is on the way to being incorporated in the standard management of CD30+ lymphoma with significant therapeutic impact. This review gives a critical overview about anti-CD30 therapies with unconjugated, engineered, and conjugated mAbs and the therapeutic challenges of treatment of CD30+ lymphoma.


Anaplastic Lymphoma Kinase Autologous Stem Cell Transplantation Gemtuzumab Ozogamicin Brentuximab Vedotin Antibody Drug Conjugate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully thank Stefan Dübel (Technische Universität Braunschweig, Germany) for supporting our work and critical discussions. We acknowledge the financial support of EU FP7 collaborative projects ‘Affinity Proteome’ (contract 222635) and ‘Affinomics’ (contract 241481).


This review was not funded. The authors have no conflicts of interest that are directly relevant to the content of this article.


  1. 1.
    Katz J, Janik JE, Younes A. Brentuximab Vedotin (SGN-35). Clin Cancer Res. 2011;17:6428–36.PubMedGoogle Scholar
  2. 2.
    Swerdlow S, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissue, 4th ed. World Health Organization; 2008.Google Scholar
  3. 3.
    Evens AM, Hutchings M, Diehl V. Treatment of Hodgkin lymphoma: the past, present, and future. Nat Clin Pract Oncol. 2008;5:543–56.PubMedGoogle Scholar
  4. 4.
    Küppers R, Yahalom J, Josting A. Advances in biology, diagnostics, and treatment of Hodgkin’s disease. Biol Blood Marrow Transplant. 2006;12:66–76.PubMedGoogle Scholar
  5. 5.
    Küppers R, Engert A, Hansmann M-L. Hodgkin lymphoma. J Clin Invest. 2012;122:3439–47.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Specht L, Gray RG, Clarke MJ, Peto R. Influence of more extensive radiotherapy and adjuvant chemotherapy on long-term outcome of early-stage Hodgkin’s disease: a meta-analysis of 23 randomized trials involving 3,888 patients. International Hodgkin’s Disease Collaborative Group. J Clin Oncol. 1998;16:830–43.PubMedGoogle Scholar
  7. 7.
    Hehn ST, Miller TP. What is the treatment of choice for advanced-stage Hodgkin’s lymphoma: ABVD, Stanford V, or BEACOPP? Curr Hematol Rep. 2004;3:17–26.PubMedGoogle Scholar
  8. 8.
    Uhm J, Kuruvilla J. Treatment of newly diagnosed advanced stage Hodgkin lymphoma. Blood Rev. 2012;26:167–74.PubMedGoogle Scholar
  9. 9.
    McCarthy J, Gopal AK. Successful use of full-dose dexamethasone, high-dose cytarabine, and cisplatin as part of initial therapy in non-Hodgkin and Hodgkin lymphoma with severe hepatic dysfunction. Clin Lymphoma Myeloma. 2009;9:167–70.PubMedGoogle Scholar
  10. 10.
    McAfee SL, Powell SN, Colby C, Spitzer TR. Dose-escalated total body irradiation and autologous stem cell transplantation for refractory hematologic malignancy. Int J Radiat Oncol Biol Phys. 2002;53:151–6.PubMedGoogle Scholar
  11. 11.
    Ghobrial IM, Wolf RC, Pereira DL, Fonseca R, White WL, Colgan JP, et al. Therapeutic options in patients with lymphoma and severe liver dysfunction. Mayo Clin Proc. 2004;79:169–75.PubMedGoogle Scholar
  12. 12.
    Dores GM, Metayer C, Curtis RE, Lynch CF, Clarke EA, Glimelius B, et al. Second malignant neoplasms among long-term survivors of Hodgkin’s disease: a population-based evaluation over 25 years. J Clin Oncol. 2002;20:3484–94.PubMedGoogle Scholar
  13. 13.
    Adams MJ, Lipsitz SR, Colan SD, Tarbell NJ, Treves ST, Diller L, et al. Cardiovascular status in long-term survivors of Hodgkin’s disease treated with chest radiotherapy. J Clin Oncol. 2004;22:3139–48.PubMedGoogle Scholar
  14. 14.
    Gerber H-P. Emerging immunotherapies targeting CD30 in Hodgkin’s lymphoma. Biochem Pharmacol. 2010;79:1544–52.PubMedGoogle Scholar
  15. 15.
    Falini B, Pileri S, Pizzolo G, Durkop H, Flenghi L, Stirpe F, et al. CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood. 1995;85:1–14.PubMedGoogle Scholar
  16. 16.
    Stein H, Mason DY, Gerdes J, O’Connor N, Wainscoat J, Pallesen G, et al. The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood. 1985;66:848–58.PubMedGoogle Scholar
  17. 17.
    Schwab U, Stein H, Gerdes J, Lemke H, Kirchner H, Schaadt M, et al. Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin’s disease and a subset of normal lymphoid cells. Nature. 1982;299:65–7.PubMedGoogle Scholar
  18. 18.
    Horie R, Watanabe T. CD30: expression and function in health and disease. Semin Immunol. 1998;10:457–70.PubMedGoogle Scholar
  19. 19.
    Dürkop H, Foss H-D, Eitelbach F, Anagnostopoulos I, Latza U, Pileri S, et al. Expression of the CD30 antigen in non-lymphoid tissues and cells. J Pathol. 2000;190:613–8.PubMedGoogle Scholar
  20. 20.
    Garcia-Prats MD, Ballestin C, Sotelo T, Lopez-Encuentra A, Mayordomo JI. A comparative evaluation of immunohistochemical markers for the differential diagnosis of malignant pleural tumours. Histopathology. 1998;32:462–72.PubMedGoogle Scholar
  21. 21.
    Hansen HP, Recke A, Reineke U, Von Tresckow B, Borchmann P, Von Strandmann EP, et al. The ectodomain shedding of CD30 is specifically regulated by peptide motifs in its cysteine-rich domains 2 and 5. FASEB J. 2004;18:893–5.PubMedGoogle Scholar
  22. 22.
    Horie R, Aizawa S, Nagai M, Ito K, Higashihara M, Ishida T, et al. A novel domain in the CD30 cytoplasmic tail mediates NFkappaB activation. Int Immunol. 1998;10:203–10.PubMedGoogle Scholar
  23. 23.
    Zheng B, Fiumara P, Li YV, Georgakis G, Snell V, Younes M, et al. MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood. 2003;102:1019–27.PubMedGoogle Scholar
  24. 24.
    Ye H, Park YC, Kreishman M, Kieff E, Wu H. The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol Cell. 1999;4:321–30.PubMedGoogle Scholar
  25. 25.
    Mir SS, Richter BWM, Duckett CS. Differential effects of CD30 activation in anaplastic large cell lymphoma and Hodgkin disease cells. Blood. 2000;96:4307–12.PubMedGoogle Scholar
  26. 26.
    Wright CW, Rumble JM, Duckett CS. CD30 activates both the canonical and alternative nF-κB pathways in anaplastic large cell lymphoma cells. J Biol Chem. 2007;282:10252–62.PubMedGoogle Scholar
  27. 27.
    Matsumoto K, Terakawa M, Fukuda S, Saito H. Analysis of signal transduction pathways involved in anti-CD30 mAb-induced human eosinophil apoptosis. Int Arch Allergy Immunol. 2010;152(Suppl. 1):2–8.PubMedGoogle Scholar
  28. 28.
    Krysov SV, Rowley TF, Al-Shamkhani A. Inhibition of p38 mitogen-activated protein kinase unmasks a CD30-triggered apoptotic pathway in anaplastic large cell lymphoma cells. Mol Cancer Ther. 2007;6:703–11.PubMedGoogle Scholar
  29. 29.
    Vahdat AM, Reiners KS, Simhadri VL, Eichenauer DA, Böll B, Chalaris A, et al. TNF-α-converting enzyme (TACE/ADAM17)-dependent loss of CD30 induced by proteasome inhibition through reactive oxygen species. Leukemia. 2009;24:51–7.PubMedGoogle Scholar
  30. 30.
    Visco C, Nadali G, Vassilakopoulos TP, Bonfante V, Viviani S, Gianni AM, et al. Very high levels of soluble CD30 recognize the patients with classical Hodgkin’s lymphoma retaining a very poor prognosis. Eur J Haematol. 2006;77:387–94.PubMedGoogle Scholar
  31. 31.
    Zanotti R, Trolese A, Ambrosetti A, Nadali G, Visco C, Ricetti MM, et al. Serum levels of soluble CD30 improve International Prognostic Score in predicting the outcome of advanced Hodgkin’s lymphoma. Ann Oncol. 2002;13:1908–14.PubMedGoogle Scholar
  32. 32.
    Smith CA, Gruss HJ, Davis T, Anderson D, Farrah T, Baker E, et al. CD30 antigen, a marker for Hodgkin’s lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell. 1993;73:1349–60.PubMedGoogle Scholar
  33. 33.
    Kennedy MK, Willis CR, Armitage RJ. Deciphering CD30 ligand biology and its role in humoral immunity. Immunology. 2006;118:143–52.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Gruss HJ, Boiani N, Williams DE, Armitage RJ, Smith CA, Goodwin RG. Pleiotropic effects of the CD30 ligand on CD30-expressing cells and lymphoma cell lines. Blood. 1994;83:2045–56.PubMedGoogle Scholar
  35. 35.
    Hodgkin T. On some morbid experiences of the absorbent glands and spleen. Med Chir Trans. 1832;17:69–97.Google Scholar
  36. 36.
    Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M. Report of the committee on Hodgkin’s disease staging classification. Cancer Res. 1971;31:1860–1.PubMedGoogle Scholar
  37. 37.
    Gobbi PG, Ferreri AJM, Ponzoni M, Levis A. Hodgkin lymphoma. Crit Rev Oncol Hematol. 2013;85:216–37.PubMedGoogle Scholar
  38. 38.
    Cheson BD, Horning SJ, Coiffier B, Shipp MA, Fisher RI, Connors JM, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. J Clin Oncol. 1999;17:1244.PubMedGoogle Scholar
  39. 39.
    Cheson BD, Pfistner B, Juweid ME, Gascoyne RD, Specht L, Horning SJ, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25:579–86.PubMedGoogle Scholar
  40. 40.
    Juweid ME, Stroobants S, Hoekstra OS, Mottaghy FM, Dietlein M, Guermazi A, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging subcommittee of international harmonization project in lymphoma. J Clin Oncol. 2007;25:571–8.PubMedGoogle Scholar
  41. 41.
    Gallamini A, Kostakoglu L. Interim FDG-PET in Hodgkin lymphoma: a compass for a safe navigation in clinical trials? Blood. 2012;120:4913–20.PubMedGoogle Scholar
  42. 42.
    Tzankov A, Zimpfer A, Pehrs A-C, Lugli A, Went P, Maurer R, et al. Expression of B-cell markers in classical Hodgkin lymphoma: a tissue microarray analysis of 330 cases. Mod Pathol. 2003;16:1141–7.PubMedGoogle Scholar
  43. 43.
    Cossman J, Annunziata CM, Barash S, Staudt L, Dillon P, He W-W, et al. Reed-sternberg cell genome expression supports a B-cell lineage. Blood. 1999;94:411–6.PubMedGoogle Scholar
  44. 44.
    Müschen M, Küppers R, Spieker T, Bräuninger A, Rajewsky K, Hansmann ML. Molecular single-cell analysis of Hodgkin- and Reed-Sternberg cells harboring unmutated immunoglobulin variable region genes. Lab Invest. 2001;81:289–95.PubMedGoogle Scholar
  45. 45.
    Hertel CB, Zhou X, Hamilton-Dutoit SJ, Junker S. Loss of B cell identity correlates with loss of B cell-specific transcription factors in Hodgkin/Reed-Sternberg cells of classical Hodgkin lymphoma. Oncogene. 2002;21:4908–20.PubMedGoogle Scholar
  46. 46.
    Schwering I, Bräuninger A, Klein U, Jungnickel B, Tinguely M, Diehl V, et al. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2003;101:1505–12.PubMedGoogle Scholar
  47. 47.
    Aldinucci D, Gloghini A, Pinto A, De Filippi R, Carbone A. The classical Hodgkin’s lymphoma microenvironment and its role in promoting tumour growth and immune escape. J Pathol. 2010;221:248–63.PubMedGoogle Scholar
  48. 48.
    Aldinucci D, Lorenzon D, Olivo K, Rapanà B, Gattei V. Interactions between tissue fibroblasts in lymph nodes and Hodgkin/Reed-Sternberg cells. Leukemia Lymphoma. 2004;45:1731–9.PubMedGoogle Scholar
  49. 49.
    Brown RE, Kamal NR. The Reed-Sternberg cell: molecular characterization by proteomic analysis with therapeutic implications. Ann Clin Lab Sci. 2002;32:339–51.PubMedGoogle Scholar
  50. 50.
    Mainou-Fowler T, Angus B, Miller S, Proctor SJ, Taylor PRA, Wood KM. Micro-vessel density and the expression of vascular endothelial growth factor (VEGF) and platelet-derived endothelial cell growth factor (PdEGF) in classical Hodgkin lymphoma (HL). Leuk Lymphoma. 2006;47:223–30.PubMedGoogle Scholar
  51. 51.
    Reiners KS, Gossmann A, von Strandmann EP, Böll B, Engert A, Borchmann P. Effects of the anti-VEGF monoclonal antibody bevacizumab in a preclinical model and in patients with refractory and multiple relapsed Hodgkin lymphoma. J Immunother. 2009;32:508–12.PubMedGoogle Scholar
  52. 52.
    Stein H, Foss H-D, Dürkop H, Marafioti T, Delsol G, Pulford K, et al. CD30+ anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96:3681–95.PubMedGoogle Scholar
  53. 53.
    Watanabe M, Ogawa Y, Itoh K, Koiwa T, Kadin ME, Watanabe T, et al. Hypomethylation of CD30 CpG islands with aberrant JunB expression drives CD30 induction in Hodgkin lymphoma and anaplastic large cell lymphoma. Lab Invest. 2008;88:48–57.PubMedGoogle Scholar
  54. 54.
    Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263:1281–4.PubMedGoogle Scholar
  55. 55.
    Piva R, Agnelli L, Pellegrino E, Todoerti K, Grosso V, Tamagno I, et al. Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. J Clin Oncol. 2010;28:1583–90.PubMedGoogle Scholar
  56. 56.
    Amin HM, Lai R. Pathobiology of ALK+ anaplastic large-cell lymphoma. Blood. 2007;110:2259–67.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Merkel O, Hamacher F, Sifft E, Kenner L, Greil R. Novel therapeutic options in anaplastic large cell lymphoma: molecular targets and immunological tools. Mol Cancer Ther. 2011;10:1127–36.PubMedGoogle Scholar
  58. 58.
    Oschlies I, Lisfeld J, Lamant L, Nakazawa A, d’Amore ESG, Hansson U U. ALK-positive anaplastic large cell lymphoma limited to the skin: clinical, histopathological and molecular analysis of 6 pediatric cases: a report from the ALCL99 study. Haematologica. 2013;98:50–6.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Falini B, Pileri S, Zinzani PL, Carbone A, Zagonel V, Wolf-Peeters C, et al. ALK+ lymphoma: clinico-pathological findings and outcome. Blood. 1999;93:2697–706.PubMedGoogle Scholar
  60. 60.
    Savage KJ, Harris NL, Vose JM, Ullrich F, Jaffe ES, Connors JM, et al. ALK− anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood. 2008;111:5496–504.PubMedGoogle Scholar
  61. 61.
    Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26:4124–30.PubMedGoogle Scholar
  62. 62.
    Ferreri AJM, Govi S, Pileri SA, Savage KJ. Anaplastic large cell lymphoma, ALK-negative. Crit Rev Oncol Hematol. 2013;85:206–15.PubMedGoogle Scholar
  63. 63.
    O’Connor OA, Pro B, Pinter-Brown L, Bartlett N, Popplewell L, Coiffier B, et al. Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma: results from the pivotal PROPEL study. J Clin Oncol. 2011;29:1182–9.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Gouill SL, Milpied N, Buzyn A, Latour RPD, Vernant J-P, Mohty M, et al. Graft-versus-lymphoma effect for aggressive T-cell lymphomas in adults: a study by the Société Française de Greffe de Moëlle et de Thérapie Cellulaire. J Clin Oncol. 2008;26:2264–71.PubMedGoogle Scholar
  65. 65.
    Park SJ, Kim S, Lee DH, Jeong YP, Bae Y, Han EM, et al. Primary systemic anaplastic large cell lymphoma in Korean adults: 11 years’ experience at Asan Medical Center. Yonsei Med J. 2008;49:601–9.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Campo E, Chott A, Kinney MC, Leoncini L, Meijer CJLM, Papadimitriou CS, et al. Update on extranodal lymphomas. Conclusions of the Workshop held by the EAHP and the SH in Thessaloniki, Greece. Histopathology. 2006;48:481–504.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Macaulay WL. Lymphomatoid papulosis: a continuing self-healing eruption, clinically benign—histologically malignant. Arch Dermatol. 1968;97:23–30.PubMedGoogle Scholar
  68. 68.
    Duvic M. CD30+ neoplasms of the skin. Curr Hematol Malig Rep. 2011;6:245–50.PubMedGoogle Scholar
  69. 69.
    Higuchi M, Matsuda T, Mori N, Yamada Y, Horie R, Watanabe T, et al. Elevated expression of CD30 in adult T-cell leukemia cell lines: possible role in constitutive NF-κB activation. Retrovirology. 2005;6(2):29.Google Scholar
  70. 70.
    Lim MS, Beaty M, Sorbara L, Cheng RZ, Pittaluga S, Raffeld M, et al. T-cell/histiocyte-rich large B-cell lymphoma: a heterogeneous entity with derivation from germinal center B cells. Am J Surg Pathol. 2002;26:1458–66.PubMedGoogle Scholar
  71. 71.
    Gaal K, Sun NC, Hernandez AM, Arber DA. Sinonasal NK/T-cell lymphomas in the United States. Am J Surg Pathol. 2000;24:1511–7.PubMedGoogle Scholar
  72. 72.
    Castillo J, Winer E, Quesenberry P. Newer monoclonal antibodies for hematological malignancies. Exp Hematol. 2008;36:755–68.PubMedGoogle Scholar
  73. 73.
    Reichert JM. Antibodies to watch in 2013: Mid-year update. MAbs. 2013;5:513–7.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Fuentes G, Scaltriti M, Baselga J, Verma CS. Synergy between trastuzumab and pertuzumab for human epidermal growth factor 2 (Her2) from colocalization: an in silico based mechanism. Breast Cancer Res. 2011;13:R54.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Swain SM, Kim S-B, Cortés J, Ro J, Semiglazov V, Campone M, et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2013;14:461–71.PubMedGoogle Scholar
  76. 76.
    Bologna L, Gotti E, Manganini M, Rambaldi A, Intermesoli T, Introna M, et al. Mechanism of action of type II, glycoengineered, anti-CD20 monoclonal antibody GA101 in B-chronic lymphocytic leukemia whole blood assays in comparison with rituximab and alemtuzumab. J Immunol. 2011;186:3762–9.PubMedGoogle Scholar
  77. 77.
    Manches O, Lui G, Chaperot L, Gressin R, Molens J-P, Jacob M-C, et al. In vitro mechanisms of action of rituximab on primary non-Hodgkin lymphomas. Blood. 2003;101:949–54.PubMedGoogle Scholar
  78. 78.
    Hu W, Ge X, You T, Xu T, Zhang J, Wu G, et al. Human CD59 inhibitor sensitizes rituximab-resistant lymphoma cells to complement-mediated cytolysis. Cancer Res. 2011;71:2298–307.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Cartron G. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor Fcgamma RIIIa gene. Blood. 2002;99:754–8.PubMedGoogle Scholar
  80. 80.
    Klein C, Lammens A, Schäfer W, Georges G, Schwaiger M, Mössner E, et al. Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs. 2013;5:22–33.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Mössner E, Brünker P, Moser S, Püntener U, Schmidt C, Herter S, et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood. 2010;115:4393–402.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Rafiq S, Butchar JP, Cheney C, Mo X, Trotta R, Caligiuri M, et al. Comparative assessment of clinically utilized CD20-directed antibodies in chronic lymphocytic leukemia cells reveals divergent NK cell, monocyte, and macrophage properties. J Immunol. 2013;190:2702–11.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Bevaart L, Jansen MJH, van Vugt MJ, Verbeek JS, van de Winkel JGJ, Leusen JHW. The high-affinity IgG receptor, FcγRI, plays a central role in antibody therapy of experimental melanoma. Cancer Res. 2006;66:1261–4.PubMedGoogle Scholar
  84. 84.
    Oflazoglu E, Stone IJ, Brown L, Gordon KA, van Rooijen N, Jonas M, et al. Macrophages and Fc-receptor interactions contribute to the antitumour activities of the anti-CD40 antibody SGN-40. Br J Cancer. 2009;100:113–7.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Oflazoglu E, Stone IJ, Gordon KA, Grewal IS, van Rooijen N, Law C-L, et al. Macrophages contribute to the antitumor activity of the anti-CD30 antibody SGN-30. Blood. 2007;110:4370–2.PubMedGoogle Scholar
  86. 86.
    Weng W-K, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21:3940–7.PubMedGoogle Scholar
  87. 87.
    Farag SS, Flinn IW, Modali R, Lehman TA, Young D, Byrd JC. FcγRIIIa and FcγRIIa polymorphisms do not predict response to rituximab in B-cell chronic lymphocytic leukemia. Blood. 2004;103:1472–4.PubMedGoogle Scholar
  88. 88.
    Marcus R, Hagenbeek A. The therapeutic use of rituximab in non-Hodgkin’s lymphoma. Eur J Haematol Suppl 2007;78(67):5–14.Google Scholar
  89. 89.
    Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med. 2000;6:443–6.PubMedGoogle Scholar
  90. 90.
    Feugier P, Hoof AV, Sebban C, Solal-Celigny P, Bouabdallah R, Fermé C, et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol. 2005;23:4117–26.PubMedGoogle Scholar
  91. 91.
    Westhoff TH, Jochimsen F, Schmittel A, Stöffler-Meilicke M, Schäfer JH, Zidek W, et al. Fatal hepatitis B virus reactivation by an escape mutant following rituximab therapy. Blood. 2003;102:1930.PubMedGoogle Scholar
  92. 92.
    Teeling JL, Mackus WJM, Wiegman LJJM, van den Brakel JHN, Beers SA, French RR, et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol. 2006;177:362–71.PubMedGoogle Scholar
  93. 93.
    Hillmen P, Skotnicki AB, Robak T, Jaksic B, Dmoszynska A, Wu J, et al. Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. J Clin Oncol. 2007;25:5616–23.PubMedGoogle Scholar
  94. 94.
    Wezler X, Hust M, Helmsing S, Schirrmann T, Dübel S. Human antibodies targeting CD30+ lymphomas. Human Antibodies. 2012;21:13–28.PubMedGoogle Scholar
  95. 95.
    Borchmann P, Treml JF, Hansen H, Gottstein C, Schnell R, Staak O, et al. The human anti-CD30 antibody 5F11 shows in vitro and in vivo activity against malignant lymphoma. Blood. 2003;102:3737–42.PubMedGoogle Scholar
  96. 96.
    Tian Z-G, Longo DL, Funakoshi S, Asai O, Ferris DK, Widmer M, et al. In vivo antitumor effects of unconjugated CD30 monoclonal antibodies on human anaplastic large-cell lymphoma xenografts. Cancer Res. 1995;55:5335–41.PubMedGoogle Scholar
  97. 97.
    Franke AC, Jung D, Ellis TM. Characterization of the CD30L binding domain on the human CD30 molecule using anti-CD30 antibodies. Hybridoma. 2000;19:43–8.PubMedGoogle Scholar
  98. 98.
    Horn-Lohrens O, Tiemann M, Lange H, Kobarg J, Hafner M, Hansen H, et al. Shedding of the soluble form of CD30 from the Hodgkin-analogous cell line L540 is strongly inhibited by a new CD30-specific antibody (Ki-4). Int J Cancer. 1995;60:539–44.PubMedGoogle Scholar
  99. 99.
    Wahl AF, Klussman K, Thompson JD, Chen JH, Francisco LV, Risdon G, et al. The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin’s disease. Cancer Res. 2002;62:3736–42.PubMedGoogle Scholar
  100. 100.
    Foyil KV, Bartlett NL. Anti-CD30 antibodies for Hodgkin lymphoma. Curr Hematol Malig Rep. 2010;5:140–7.PubMedGoogle Scholar
  101. 101.
    Falini B, Flenghi L, Fedeli L, Broe MK, Bonino C, Stein H, et al. In vivo targeting of Hodgkin and Reed-Sternberg cells of Hodgkin’s disease with monoclonal antibody Ber-H2 (CD30): immunohistological evidence. Br J Haematol. 1992;82:38–45.PubMedGoogle Scholar
  102. 102.
    Bartlett NL, Younes A, Carabasi MH, Forero A, Rosenblatt JD, Leonard JP, et al. A phase 1 multidose study of SGN-30 immunotherapy in patients with refractory or recurrent CD30+ hematologic malignancies. Blood. 2008;111:1848–54.PubMedGoogle Scholar
  103. 103.
    Forero-Torres A, Leonard JP, Younes A, Rosenblatt JD, Brice P, Bartlett NL, et al. A Phase II study of SGN-30 (anti-CD30 mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br J Haematol. 2009;146:171–9.PubMedGoogle Scholar
  104. 104.
    Blum KA, Jung S-H, Johnson JL, Lin TS, Hsi ED, Lucas DM, et al. Serious pulmonary toxicity in patients with Hodgkin’s lymphoma with SGN-30, gemcitabine, vinorelbine, and liposomal doxorubicin is associated with an FcγRIIIa-158 V/F polymorphism. Ann Oncol. 2010;21:2246–54.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Duvic M, Reddy SA, Pinter-Brown L, Korman NJ, Zic J, Kennedy DA, et al. A phase II study of SGN-30 in cutaneous anaplastic large cell lymphoma and related lymphoproliferative disorders. Clin Cancer Res. 2009;15:6217–24.PubMedGoogle Scholar
  106. 106.
    Ansell SM, Horwitz SM, Engert A, Khan KD, Lin T, Strair R, et al. Phase I/II study of an anti-CD30 monoclonal antibody (MDX-060) in Hodgkin’s lymphoma and anaplastic large-cell lymphoma. J Clin Oncol. 2007;25:2764–9.PubMedGoogle Scholar
  107. 107.
    Heuck F, Ellermann J, Borchmann P, Rothe A, Hansen H, Engert A, et al. Combination of the human anti-CD30 antibody 5F11 with cytostatic drugs enhances its antitumor activity against Hodgkin and anaplastic large cell lymphoma cell lines. J Immunother. 2004;27:347–53.PubMedGoogle Scholar
  108. 108.
    Zhang M, Yao Z, Zhang Z, Garmestani K, Goldman CK, Ravetch JV, et al. Effective therapy for a murine model of human anaplastic large-cell lymphoma with the anti-CD30 monoclonal antibody, HeFi-1, does not require activating Fc receptors. Blood. 2006;108:705–10.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Pfeifer W, Levi E, Petrogiannis-Haliotis T, Lehmann L, Wang Z, Kadin ME. A murine xenograft model for human CD30+ anaplastic large cell lymphoma. Am J Pathol. 1999;155:1353–9.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Preithner S, Elm S, Lippold S, Locher M, Wolf A, da Silva AJ, et al. High concentrations of therapeutic IgG1 antibodies are needed to compensate for inhibition of antibody-dependent cellular cytotoxicity by excess endogenous immunoglobulin G. Mol Immunol. 2006;43:1183–93.PubMedGoogle Scholar
  111. 111.
    Jefferis R, Lund J, Pound JD. IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Immunol Rev. 1998;163:59–76.PubMedGoogle Scholar
  112. 112.
    Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J Biol Chem. 2002;277:26733–40.PubMedGoogle Scholar
  113. 113.
    Niwa R, Sakurada M, Kobayashi Y, Uehara A, Matsushima K, Ueda R, et al. Enhanced natural killer cell binding and activation by low-fucose IgG1 antibody results in potent antibody-dependent cellular cytotoxicity induction at lower antigen density. Clin Cancer Res. 2005;11:2327–36.PubMedGoogle Scholar
  114. 114.
    Niwa R, Shoji-Hosaka E, Sakurada M, Shinkawa T, Uchida K, Nakamura K, et al. Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to t-cell leukemia and lymphoma. Cancer Res. 2004;64:2127–33.PubMedGoogle Scholar
  115. 115.
    Shibata-Koyama M, Iida S, Misaka H, Mori K, Yano K, Shitara K, et al. Nonfucosylated rituximab potentiates human neutrophil phagocytosis through its high binding for FcγRIIIb and MHC class II expression on the phagocytotic neutrophils. Exp Hematol. 2009;37:309–21.PubMedGoogle Scholar
  116. 116.
    Iida S, Misaka H, Inoue M, Shibata M, Nakano R, Yamane-Ohnuki N, et al. Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcγRIIIa. Clin Cancer Res. 2006;12:2879–87.PubMedGoogle Scholar
  117. 117.
    Ishida T, Ueda R. Antibody therapy for Adult T-cell leukemia–lymphoma. Int J Hematol. 2011;94:443–52.PubMedGoogle Scholar
  118. 118.
    Ishida T, Joh T, Uike N, Yamamoto K, Utsunomiya A, Yoshida S, et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol. 2012;30:837–42.PubMedGoogle Scholar
  119. 119.
    Beck A, Reichert JM. Marketing approval of mogamulizumab. MAbs. 2012;4:419–25.PubMedCentralPubMedGoogle Scholar
  120. 120.
    Cardarelli PM, Moldovan-Loomis M-C, Preston B, Black A, Passmore D, Chen T-H, et al. In vitro and in vivo characterization of MDX-1401 for therapy of malignant lymphoma. Clin Cancer Res. 2009;15:3376–83.PubMedGoogle Scholar
  121. 121.
    Blum KA, Smith M, Fung H, Combs, D, Ramies DA, Younes A. Phase I study of an anti-CD30 Fc engineered humanized monoclonal antibody in Hodgkin lymphoma (HL) or anaplastic large cell lymphoma (ALCL) patients: Safety, pharmacokinetics (PK), immunogenicity, and efficacy. J Clin Oncol. 2009;27 Suppl. 15 (ASCO Annual Meeting Proceedings: abstract 8531).Google Scholar
  122. 122.
    Hartmann F, Renner C, Jung W, Sahin U, Pfreundschuh M. Treatment of Hodgkin’s disease with bispecific antibodies. Ann Oncol. 1996;7(Suppl. 4):143–6.PubMedGoogle Scholar
  123. 123.
    Chames P, Baty D. Bispecific antibodies for cancer therapy. MAbs. 2009;1:539–47.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Renner C, Bauer S, Sahin U, Jung W, van Lier R, Jacobs G, et al. Cure of disseminated xenografted human Hodgkin’s tumors by bispecific monoclonal antibodies and human T cells: the role of human T-cell subsets in a preclinical model. Blood. 1996;87:2930–7.PubMedGoogle Scholar
  125. 125.
    Bjorndahl JM, Sung SS, Hansen JA, Fu SM. Human T cell activation: differential response to anti-CD28 as compared to anti-CD3 monoclonal antibodies. Eur J Immunol. 1989;19:881–7.PubMedGoogle Scholar
  126. 126.
    Pohl C, Denfeld R, Renner C, Jung W, Bohlen H, Sahin U, et al. CD30-antigen-specific targeting and activation of T cells via murine bispecific monoclonal antibodies against CD3 and CD28: potential use for the treatment of Hodgkin’s lymphoma. Int J Cancer. 1993;54:820–7.PubMedGoogle Scholar
  127. 127.
    Bauer S, Renner C, Juwana JP, Held G, Ohnesorge S, Gerlach K, et al. Immunotherapy of human tumors with T-cell-activating bispecific antibodies: stimulation of cytotoxic pathways in vivo. Cancer Res. 1999;59:1961–5.PubMedGoogle Scholar
  128. 128.
    Hünig T. The storm has cleared: lessons from the CD28 superagonist TGN1412 trial. Nat Rev Immunol. 2012;12:317–8.PubMedGoogle Scholar
  129. 129.
    Konjević G, Jurisić V, Banićevic B, Spuzić I. The difference in NK-cell activity between patients with non-Hodgkin’s lymphomas and Hodgkin’s disease. Br J Haematol. 1999;104:144–51.PubMedGoogle Scholar
  130. 130.
    Reiners KS, Kessler J, Sauer M, Rothe A, Hansen HP, Reusch U, et al. Rescue of impaired NK cell activity in hodgkin lymphoma with bispecific antibodies in vitro and in patients. Mol Ther. 2013;21:895–903.PubMedCentralPubMedGoogle Scholar
  131. 131.
    Hombach A, Jung W, Pohl C, Renner C, Sahin U, Schmits R, et al. A CD16/CD30 bispecific monoclonal antibody induces lysis of Hodgkin’s cells by unstimulated natural killer cells in vitro and in vivo. Int J Cancer. 1993;55:830–6.PubMedGoogle Scholar
  132. 132.
    Renner C, Pfreundschuh M. Treatment of heterotransplanted Hodgkin’s tumors in SCID mice by a combination of human NK or T cells and bispecific antibodies. J Hematother. 1995;4:447–51.PubMedGoogle Scholar
  133. 133.
    Hartmann F, Renner C, Jung W, Deisting C, Juwana M, Eichentopf B, et al. Treatment of refractory Hodgkin’s disease with an anti-CD16/CD30 bispecific antibody. Blood. 1997;89:2042–7.PubMedGoogle Scholar
  134. 134.
    Hartmann F, Renner C, Jung W, da Costa L, Tembrink S, Held G, et al. Anti-CD16/CD30 bispecific antibody treatment for Hodgkin’s disease role of infusion schedule and costimulation with cytokines. Clin Cancer Res. 2001;7:1873–81.PubMedGoogle Scholar
  135. 135.
    Schlapschy M, Gruber H, Gresch O, Schäfer C, Renner C, Pfreundschuh M, et al. Functional humanization of an anti-CD30 Fab fragment for the immunotherapy of Hodgkin’s lymphoma using an in vitro evolution approach. Protein Eng Des Sel. 2004;17:847–60.PubMedGoogle Scholar
  136. 136.
    Arndt MA, Krauss J, Kipriyanov SM, Pfreundschuh M, Little M. A bispecific diabody that mediates natural killer cell cytotoxicity against xenotransplantated human Hodgkin’s tumors. Blood. 1999;94:2562–8.PubMedGoogle Scholar
  137. 137.
    Borchmann P, Schnell R, Fuss I, Manzke O, Davis T, Lewis LD, et al. Phase 1 trial of the novel bispecific molecule H22xKi-4 in patients with refractory Hodgkin lymphoma. Blood. 2002;100:3101–7.PubMedGoogle Scholar
  138. 138.
    Sundarapandiyan K, Keler T, Behnke D, Engert A, Barth S, Matthey B, et al. Bispecific antibody-mediated destruction of Hodgkin’s lymphoma cells. J Immunol Methods. 2001;248:113–23.PubMedGoogle Scholar
  139. 139.
    Ranft K, Thepen T, Fischer R, Barth S, Stöcker M. Recombinant bispecific single chain antibody fragments induce Fc gamma-receptor-mediated elimination of CD30+ lymphoma cells. Cancer Lett. 2009;282:187–94.PubMedGoogle Scholar
  140. 140.
    Heiss MM, Murawa P, Koralewski P, Kutarska E, Kolesnik OO, Ivanchenko VV, et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int J Cancer. 2010;127:2209–21.PubMedCentralPubMedGoogle Scholar
  141. 141.
    Ricart AD, Tolcher AW. Technology insight: cytotoxic drug immunoconjugates for cancer therapy. Nat Clin Pract Oncol. 2007;4:245–55.PubMedGoogle Scholar
  142. 142.
    Schnell R, Dietlein M, Schomäcker K, Kobe C, Borchmann P, Schicha H, et al. Yttrium-90 ibritumomab tiuxetan-induced complete remission in a patient with classical lymphocyte-rich Hodgkin’s Lymphoma. Onkologie. 2008;31:49–51.PubMedGoogle Scholar
  143. 143.
    Illidge T, Morschhauser F. Radioimmunotherapy in follicular lymphoma. Best Pract Res Clin Haematol. 2011;24:279–93.PubMedGoogle Scholar
  144. 144.
    Dietlein M, Börner SM, Fischer T, Hansen H, Schnell R, Zimmermanns B, et al. Development of anti-CD30 radioimmunoconstructs (RICs) for treatment of Hodgkin’s lymphoma. Nuklearmedizin. 2010;49:97–105.PubMedGoogle Scholar
  145. 145.
    Zhang M, Yao Z, Patel H, Garmestani K, Zhang Z, Talanov VS, et al. Effective therapy of murine models of human leukemia and lymphoma with radiolabeled anti-CD30 antibody, HeFi-1. PNAS. 2007;104:8444–8.PubMedCentralPubMedGoogle Scholar
  146. 146.
    Schnell R, Dietlein M, Staak JO, Borchmann P, Schomaecker K, Fischer T, et al. Treatment of refractory Hodgkin’s lymphoma patients with an iodine-131–labeled murine anti-CD30 monoclonal antibody. J Clin Oncol. 2005;23:4669–78.PubMedGoogle Scholar
  147. 147.
    Pastan I, Willingham MC, FitzGerald DJ. Immunotoxins. Cell. 1986;47:641–8.PubMedGoogle Scholar
  148. 148.
    Kreitman RJ. Recombinant immunotoxins containing truncated bacterial toxins for the treatment of hematologic malignancies. BioDrugs. 2009;23:1–13.PubMedCentralPubMedGoogle Scholar
  149. 149.
    Mathew M, Verma RS. Humanized immunotoxins: a new generation of immunotoxins for targeted cancer therapy. Cancer Sci. 2009;100:1359–65.PubMedGoogle Scholar
  150. 150.
    Rybak SM, Newton DL. Immunotoxins and beyond: targeted RNases. In: Dübel S, editor. Handbook of therapeutic antibodies [Internet]. New York: Wiley; 2008 [cited 2013 May 10]. p. 379–410.
  151. 151.
    Messmann RA, Vitetta ES, Headlee D, Senderowicz AM, Figg WD, Schindler J, et al. A phase I study of combination therapy with immunotoxins IgG-HD37-deglycosylated ricin A chain (dgA) and IgG-RFB4-dgA (Combotox) in patients with refractory CD19(+), CD22(+) B cell lymphoma. Clin Cancer Res. 2000;6:1302–13.PubMedGoogle Scholar
  152. 152.
    Pasqualucci L, Wasik M, Teicher BA, Flenghi L, Bolognesi A, Stirpe F, et al. Antitumor activity of anti-CD30 immunotoxin (Ber-H2/saporin) in vitro and in severe combined immunodeficiency disease mice xenografted with human CD30+ anaplastic large-cell lymphoma. Blood. 1995;85:2139–46.PubMedGoogle Scholar
  153. 153.
    Falini B, Bolognesi A, Flenghi L, Tazzari PL, Broe MK, Stein H, et al. Response of refractory Hodgkin’s disease to monoclonal anti-CD30 immunotoxin. Lancet. 1992;339:1195–6.PubMedGoogle Scholar
  154. 154.
    Battelli MG, Buonamici L, Bolognesi A, Stirpe F. In vivo and in vitro uptake of an anti-CD30/saporin immunotoxin by rat liver parenchymal and nonparenchymal cells. Hepatology. 1994;20:940–7.PubMedGoogle Scholar
  155. 155.
    Schnell R, Borchmann P, Staak JO, Schindler J, Ghetie V, Vitetta ES, et al. Clinical evaluation of ricin A-chain immunotoxins in patients with Hodgkin’s lymphoma. Ann Oncol. 2003;14:729–36.PubMedGoogle Scholar
  156. 156.
    Schnell R, Staak O, Borchmann P, Schwartz C, Matthey B, Hansen H, et al. A phase I study with an anti-CD30 ricin A-chain immunotoxin (Ki-4.dgA) in patients with refractory CD30+ Hodgkin’s and non-Hodgkin’s lymphoma. Clin Cancer Res. 2002;8:1779–86.PubMedGoogle Scholar
  157. 157.
    Engert A, Diehl V, Schnell R, Radszuhn A, Hatwig MT, Drillich S, et al. A phase-I study of an anti-CD25 ricin A-chain immunotoxin (RFT5-SMPT-dgA) in patients with refractory Hodgkin’s lymphoma. Blood. 1997;89:403–10.PubMedGoogle Scholar
  158. 158.
    Sforzini S, de Totero D, Gaggero A, Ippoliti R, Glennie MJ, Canevari S, et al. Targeting of saporin to Hodgkin’s lymphoma cells by anti-CD30 and anti-CD25 bispecific antibodies. Br J Haematol. 1998;102:1061–8.PubMedGoogle Scholar
  159. 159.
    Sforzini S, Bolognesi A, Meazza R, Marciano S, Casalini P, Dürkop H, et al. Differential sensitivity of CD30+ neoplastic cells to gelonin delivered by anti-CD30/anti-gelonin bispecific antibodies. Br J Haematol. 1995;90:572–7.PubMedGoogle Scholar
  160. 160.
    Terenzi A, Bolognesi A, Pasqualucci L, Flenghi L, Pileri S, Stein H, et al. Anti-CD30 (BER = H2) immunotoxins containing the type-1 ribosome-inactivating proteins momordin and PAP-S (pokeweed antiviral protein from seeds) display powerful antitumour activity against CD30+ tumour cells in vitro and in SCID mice. Br J Haematol. 1996;92:872–9.PubMedGoogle Scholar
  161. 161.
    Klimka A, Barth S, Matthey B, Roovers RC, Lemke H, Hansen H, et al. An anti-CD30 single-chain Fv selected by phage display and fused to Pseudomonas exotoxin A (Ki-4(scFv)-ET?) is a potent immunotoxin against a Hodgkin-derived cell line. Br J Cancer. 1999;80:1214–22.PubMedCentralPubMedGoogle Scholar
  162. 162.
    Barth S, Huhn M, Matthey B, Tawadros S, Schnell R, Schinköthe T, et al. Ki-4(scFv)-ETA’, a new recombinant anti-CD30 immunotoxin with highly specific cytotoxic activity against disseminated Hodgkin tumors in SCID mice. Blood. 2000;95:3909–14.PubMedGoogle Scholar
  163. 163.
    Kreitman RJ, Tallman MS, Robak T, Coutre S, Wilson WH, Stetler-Stevenson M, et al. Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol. 2012;30:1822–8.PubMedCentralPubMedGoogle Scholar
  164. 164.
    Schirrmann T, Wessels J, Arndt MAE, Rybak SM, Dübel S. Targeted therapeutic RNases (ImmunoRNases). Expert Opin Biol Ther. 2009;9:79–95.PubMedGoogle Scholar
  165. 165.
    Braschoss S, Hirsch B, Dübel S, Stein H, Dürkop H. New anti-CD30 human pancreatic ribonuclease-based immunotoxin reveals strong and specific cytotoxicity in vivo. Leuk Lymphoma. 2007;48:1179–86.PubMedGoogle Scholar
  166. 166.
    Menzel C, Schirrmann T, Konthur Z, Jostock T, Dübel S. Human antibody RNase fusion protein targeting CD30+ lymphomas. Blood. 2008;111:3830–7.PubMedGoogle Scholar
  167. 167.
    Huhn M, Sasse S, Tur MK, Matthey B, Schinköthe T, Rybak SM, et al. Human angiogenin fused to human CD30 ligand (Ang-CD30L) exhibits specific cytotoxicity against CD30-positive lymphoma. Cancer Res. 2001;61:8737–42.PubMedGoogle Scholar
  168. 168.
    Barth S, Matthey B, Huhn M, Diehl V, Engert A. CD30L-ETA’: a new recombinant immunotoxin based on the CD30 ligand for possible use against human lymphoma. Cytokines Cell Mol Ther. 1999;5:69–78.PubMedGoogle Scholar
  169. 169.
    Stöcker M, Tur MK, Sasse S, Krüssmann A, Barth S, Engert A. Secretion of functional anti-CD30-angiogenin immunotoxins into the supernatant of transfected 293T-cells. Protein Expr Purif. 2003;28:211–9.PubMedGoogle Scholar
  170. 170.
    Tur MK, Neef I, Jost E, Galm O, Jäger G, Stöcker M, et al. Targeted restoration of down-regulated DAPK2 tumor suppressor activity induces apoptosis in Hodgkin lymphoma cells. J Immunother. 2009;32:431–41.PubMedGoogle Scholar
  171. 171.
    Hetzel C, Bachran C, Fischer R, Fuchs H, Barth S, Stöcker M. Small cleavable adapters enhance the specific cytotoxicity of a humanized immunotoxin directed against CD64-positive cells. J Immunother. 2008;31:370–6.PubMedGoogle Scholar
  172. 172.
    Larson RA, Sievers EL, Stadtmauer EA, Löwenberg B, Estey EH, Dombret H, et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer. 2005;104:1442–52.PubMedGoogle Scholar
  173. 173.
    Giles FJ, Kantarjian HM, Kornblau SM, Thomas DA, Garcia-Manero G, Waddelow TA, et al. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer. 2001;92:406–13.PubMedGoogle Scholar
  174. 174.
    Wadleigh M, Richardson PG, Zahrieh D, Lee SJ, Cutler C, Ho V, et al. Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood. 2003;102:1578–82.PubMedGoogle Scholar
  175. 175.
    Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K, Chace DF, et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood. 2003;102:1458–65.PubMedGoogle Scholar
  176. 176.
    Zinzani PL, Viviani S, Anastasia A, Vitolo U, Luminari S, Zaja F, et al. Brentuximab vedotin in relapsed/refractory Hodgkin’s lymphoma: Italian experience and results of the use in the daily clinic outside clinical trials. Haematologica [Internet]. 2013 [cited 2013 Jul 20].
  177. 177.
    Gibb A, Jones C, Bloor A, Kulkarni S, Illidge T, Linton K, et al. Brentuximab vedotin in refractory CD30+ lymphomas: a bridge to allogeneic transplantation in approximately one quarter of patients treated on a Named Patient Programme at a single UK Centre. Haematologica [Internet]. 2012 [cited 2013 Feb 20].
  178. 178.
    De Claro RA, McGinn K, Kwitkowski V, Bullock J, Khandelwal A, Habtemariam B, et al. U.S. Food and Drug Administration approval summary: brentuximab vedotin for the treatment of relapsed Hodgkin lymphoma or relapsed systemic anaplastic large-cell lymphoma. Clin Cancer Res. 2012;18:5845–9.PubMedGoogle Scholar
  179. 179.
    Sutherland MSK, Sanderson RJ, Gordon KA, Andreyka J, Cerveny CG, Yu C, et al. Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J Biol Chem. 2006;281:10540–7.PubMedGoogle Scholar
  180. 180.
    Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363:1812–21.PubMedGoogle Scholar
  181. 181.
    Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30:2183–9.PubMedCentralPubMedGoogle Scholar
  182. 182.
    Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30:2190–6.PubMedGoogle Scholar
  183. 183.
    Little R, Wittes RE, Longo DL, Wilson WH. Vinblastine for recurrent Hodgkin’s disease following autologous bone marrow transplant. J Clin Oncol. 1998;16:584–8.PubMedGoogle Scholar
  184. 184.
    Brugières L, Pacquement H, Deley M-CL, Leverger G, Lutz P, Paillard C, et al. Single-drug vinblastine as salvage treatment for refractory or relapsed anaplastic large-cell lymphoma: a report from the French Society of Pediatric Oncology. J Clin Oncol. 2009;27:5056–61.PubMedGoogle Scholar
  185. 185.
    Bartlett NL, Niedzwiecki D, Johnson JL, Friedberg JW, Johnson KB, van Besien K, et al. Gemcitabine, vinorelbine, and pegylated liposomal doxorubicin (GVD), a salvage regimen in relapsed Hodgkin’s lymphoma: CALGB 59804. Ann Oncol. 2007;18:1071–9.PubMedGoogle Scholar
  186. 186.
    Chen R, Palmer JM, Thomas SH, Tsai N-C, Farol L, Nademanee A, et al. Brentuximab vedotin enables successful reduced-intensity allogeneic hematopoietic cell transplantation in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2012;119:6379–81.PubMedCentralPubMedGoogle Scholar
  187. 187.
    Lunning MA, Younes A. Brentuximab vedotin: the science of common sense. Leuk Lymphoma. 2013;30:1–2.Google Scholar
  188. 188.
    Sasse S, Rothe A, Goergen H, Eichenauer DA, Lohri A, Kreher S, et al. Brentuximab vedotin (SGN-35) in patients with transplant-naive relapsed/refractory Hodgkin lymphoma. Leuk Lymphoma. 2013;27:1–5.Google Scholar
  189. 189.
    Forero-Torres A, Fanale M, Advani R, Bartlett NL, Rosenblatt JD, Kennedy DA, et al. Brentuximab vedotin in transplant-naive patients with relapsed or refractory hodgkin lymphoma: analysis of two phase I studies. Oncologist. 2012;17:1073–80.PubMedCentralPubMedGoogle Scholar
  190. 190.
    Gjerdrum LM, Woetmann A, Odum N, Hother C, Henrik-Nielsen R, Gniadecki R, et al. FOXP3 positive regulatory T-cells in cutaneous and systemic CD30 positive T-cell lymphoproliferations. Eur J Haematol. 2008;80:483–9.PubMedGoogle Scholar
  191. 191.
    Müllauer L, Mosberger I, Chott A. Fas ligand expression in nodal non-Hodgkin’s lymphoma. Mod Pathol. 1998;11:369–75.PubMedGoogle Scholar
  192. 192.
    Wu F, Wang P, Zhang J, Young LC, Lai R, Li L. Studies of phosphoproteomic changes induced by nucleophosmin-anaplastic lymphoma kinase (ALK) highlight deregulation of tumor necrosis factor (TNF)/Fas/TNF-related apoptosis-induced ligand signaling pathway in ALK-positive anaplastic large cell lymphoma. Mol Cell Proteomics. 2010;9:1616–32.PubMedCentralPubMedGoogle Scholar
  193. 193.
    Younes A, Romaguera J, Hagemeister F, McLaughlin P, Rodriguez MA, Fiumara P, et al. A pilot study of rituximab in patients with recurrent, classic Hodgkin disease. Cancer. 2003;98:310–4.PubMedGoogle Scholar
  194. 194.
    Bumgardner GL, Hardie I, Johnson RW, Lin A, Nashan B, Pescovitz MD, et al. Results of 3-year phase III clinical trials with daclizumab prophylaxis for prevention of acute rejection after renal transplantation. Transplantation. 2001;72:839–45.PubMedGoogle Scholar
  195. 195.
    Ceesay MM, Matutes E, Taylor GP, Fields P, Cavenagh J, Simpson S, et al. Phase II study on combination therapy with CHOP-Zenapax for HTLV-I associated adult T-cell leukaemia/lymphoma (ATLL). Leuk Res. 2012;36:857–61.PubMedGoogle Scholar
  196. 196.
    Skov L, Kragballe K, Zachariae C, Obitz ER, Holm EA, Jemec GBE, et al. HuMax-CD4: a fully human monoclonal anti-CD4 antibody for the treatment of psoriasis vulgaris. Arch Dermatol. 2003;139:1433–9.PubMedGoogle Scholar
  197. 197.
    D’Amore F, Radford J, Relander T, Jerkeman M, Tilly H, Österborg A, et al. Phase II trial of zanolimumab (HuMax-CD4) in relapsed or refractory non-cutaneous peripheral T cell lymphoma. Br J Haematol. 2010;150:565–73.PubMedGoogle Scholar
  198. 198.
    Kim YH, Duvic M, Obitz E, Gniadecki R, Iversen L, Österborg A, et al. Clinical efficacy of zanolimumab (HuMax-CD4): two phase 2 studies in refractory cutaneous T-cell lymphoma. Blood. 2007;109:4655–62.PubMedGoogle Scholar
  199. 199.
    Ansell SM, Hurvitz SA, Koenig PA, LaPlant BR, Kabat BF, Fernando D, et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-hodgkin lymphoma. Clin Cancer Res. 2009;15:6446–53.PubMedCentralPubMedGoogle Scholar
  200. 200.
    Kelley TW, Pohlman B, Elson P, Hsi ED. The ratio of FOXP3+ regulatory T cells to granzyme B+ cytotoxic T/NK cells predicts prognosis in classical Hodgkin lymphoma and is independent of bcl-2 and MAL expression. AJCP. 2007;128:958–65.PubMedGoogle Scholar
  201. 201.
    Byrd JC, Kipps TJ, Flinn IW, Castro J, Lin TS, Wierda W, et al. Phase 1/2 study of lumiliximab combined with fludarabine, cyclophosphamide, and rituximab in patients with relapsed or refractory chronic lymphocytic leukemia. Blood. 2010;115:489–95.PubMedCentralPubMedGoogle Scholar
  202. 202.
    Byrd JC, O’Brien S, Flinn IW, Kipps TJ, Weiss M, Rai K, et al. Phase 1 study of lumiliximab with detailed pharmacokinetic and pharmacodynamic measurements in patients with relapsed or refractory chronic lymphocytic leukemia. Clin Cancer Res. 2007;13:4448–55.PubMedGoogle Scholar
  203. 203.
    Czuczman MS, Thall A, Witzig TE, Vose JM, Younes A, Emmanouilides C, et al. Phase I/II study of galiximab, an anti-CD80 antibody, for relapsed or refractory follicular lymphoma. J Clin Oncol. 2005;23:4390–8.PubMedGoogle Scholar
  204. 204.
    Byrd JC, Kipps TJ, Flinn IW, Cooper M, Odenike O, Bendiske J, et al. Phase I study of the anti-CD40 humanized monoclonal antibody lucatumumab (HCD122) in relapsed chronic lymphocytic leukemia. Leuk Lymphoma. 2012;53:2136–42.PubMedGoogle Scholar
  205. 205.
    Hussein M, Berenson JR, Niesvizky R, Munshi N, Matous J, Sobecks R, et al. A phase I multidose study of dacetuzumab (SGN-40; humanized anti-CD40 monoclonal antibody) in patients with multiple myeloma. Haematologica. 2010;95:845–8.PubMedCentralPubMedGoogle Scholar
  206. 206.
    Rosenblat TL, McDevitt MR, Mulford DA, Pandit-Taskar N, Divgi CR, Panageas KS, et al. Sequential cytarabine and α-particle immunotherapy with bismuth-213–lintuzumab (HuM195) for acute myeloid leukemia. Clin Cancer Res. 2010;16:5303–11.PubMedCentralPubMedGoogle Scholar
  207. 207.
    Fehniger TA, Larson S, Trinkaus K, Siegel MJ, Cashen AF, Blum KA, et al. A phase 2 multicenter study of lenalidomide in relapsed or refractory classical Hodgkin lymphoma. Blood. 2011;118:5119–25.PubMedCentralPubMedGoogle Scholar
  208. 208.
    Rosato RR, Almenara JA, Grant S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res. 2003;63:3637–45.PubMedGoogle Scholar
  209. 209.
    Bhalla S, Balasubramanian S, David K, Sirisawad M, Buggy J, Mauro L, et al. PCI-24781 induces caspase and reactive oxygen species–dependent apoptosis through NF-κB mechanisms and is synergistic with bortezomib in lymphoma cells. Clin Cancer Res. 2009;15:3354–65.PubMedCentralPubMedGoogle Scholar
  210. 210.
    Younes A, Oki Y, Bociek RG, Kuruvilla J, Fanale M, Neelapu S, et al. Mocetinostat for relapsed classical Hodgkin’s lymphoma: an open-label, single-arm, phase 2 trial. Lancet Oncol. 2011;12:1222–8.PubMedGoogle Scholar
  211. 211.
    Zheng B, Georgakis GV, Li Y, Bharti A, McConkey D, Aggarwal BB, et al. Induction of cell cycle arrest and apoptosis by the proteasome inhibitor PS-341 in Hodgkin disease cell lines is independent of inhibitor of nuclear factor-κB mutations or activation of the CD30, CD40, and RANK receptors. Clin Cancer Res. 2004;10:3207–15.PubMedGoogle Scholar
  212. 212.
    Younes A, Pro B, Fayad L. Experience with bortezomib for the treatment of patients with relapsed classical Hodgkin lymphoma. Blood. 2006;107:1731–2.PubMedGoogle Scholar
  213. 213.
    Georgakis GV, Li Y, Humphreys R, Andreeff M, O’Brien S, Younes M, et al. Activity of selective fully human agonistic antibodies to the TRAIL death receptors TRAIL-R1 and TRAIL-R2 in primary and cultured lymphoma cells: induction of apoptosis and enhancement of doxorubicin- and bortezomib-induced cell death. Br J Haematol. 2005;130:501–10.PubMedGoogle Scholar
  214. 214.
    Kasamon YL, Ambinder RF. Immunotherapies for Hodgkin’s lymphoma. Crit Rev Oncol Hematol. 2008;66:135–44.PubMedGoogle Scholar
  215. 215.
    Vaklavas C, Forero-Torres A. Safety and efficacy of brentuximab vedotin in patients with Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Ther Adv Hematol. 2012;3:209–25.PubMedCentralPubMedGoogle Scholar
  216. 216.
    Gopal AK, Ramchandren R, O’Connor OA, Berryman RB, Advani RH, Chen R, et al. Safety and efficacy of brentuximab vedotin for Hodgkin lymphoma recurring after allogeneic stem cell transplantation. Blood. 2012;120:560–8.PubMedCentralPubMedGoogle Scholar
  217. 217.
    Rothe A, Sasse S, Goergen H, Eichenauer DA, Lohri A, Jäger U, et al. Brentuximab vedotin for relapsed or refractory CD30+ hematologic malignancies: the German Hodgkin Study Group experience. Blood. 2012;120:1470–2.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Thomas Schirrmann
    • 1
    Email author
  • Miriam Steinwand
    • 1
  • Xenia Wezler
    • 1
  • Andre ten Haaf
    • 4
  • Mehmet K. Tur
    • 4
  • Stefan Barth
    • 2
    • 3
  1. 1.Department of Biotechnology, Institute of Biochemistry, Biotechnology and BioinformaticsTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Department of Pharmaceutical Product DevelopmentFraunhofer Institute for Molecular Biology and Applied EcologyAachenGermany
  3. 3.Department of Experimental Medicine and ImmunotherapyInstitute for Applied Medical EngineeringAachenGermany
  4. 4.Department of Experimental Pathology and Immunotherapy, Institute of PathologyJustus Liebig University GiessenGiessenGermany

Personalised recommendations