BioDrugs

, Volume 28, Supplement 1, pp 5–13 | Cite as

Tumour Necrosis Factor α Antagonists in the Treatment of Rheumatoid Arthritis: An Immunological Perspective

Review Article

Abstract

Rheumatoid arthritis (RA) is one of the most prevalent autoimmune conditions, affecting approximately 1 % of the adult population. It is associated with decreased quality of life and considerable morbidity and mortality. Various inflammatory cells, including macrophages, neutrophils, mast cells, natural killer cells, B and T cells and stromal cells play key pathophysiological roles in joint inflammation and RA progression. Several cytokines, including interleukin (IL)-1α and/or IL-1β, and tumour necrosis factor (TNF)-α, are involved at each stage of RA pathogenesis; namely, by augmenting autoimmunity, sustaining long-term inflammatory synovitis and promoting joint damage. Different cell types are involved in RA pathogenesis through upregulation of several cytokine and soluble pro-inflammatory mediators. As early as the late 1980s, TNF had been identified as a potential target in RA. Five anti-TNF drugs, infliximab, adalimumab, certolizumab pegol, etanercept and golimumab, are now approved for the treatment of RA in various countries. All are bivalent monoclonal antibodies, with the exception of the monovalent certolizumab and etanercept, which is an engineered dimeric receptor. Although all react with and neutralise soluble TNF in vitro, structural differences in the molecules may contribute to differences in their therapeutic effects and the occurrence of side effects. Pegylated certolizumab permits once-monthly dosing. Other mechanisms of action proposed to be important for the efficacy of anti-TNF agents are as follows: induction of apoptosis of both monocytes and T cells; neutralization of membrane TNF; antibody-dependent cell-mediated and complement-dependent cytotoxicity; and reverse signaling via membrane TNF.

References

  1. 1.
    Campbell J, Lowe D, Sleeman MA. Developing the next generation of monoclonal antibodies for the treatment of rheumatoid arthritis. Br J Pharmacol. 2011;162(7):1470–84.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Symmons DP. Epidemiology of rheumatoid arthritis: determinants of onset, persistence and outcome. Best Pract Res Clin Rheumatol. 2002;16(5):707–22.PubMedCrossRefGoogle Scholar
  3. 3.
    Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet. 2010;376(9746):1094–108.PubMedCrossRefGoogle Scholar
  4. 4.
    McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205–19.PubMedCrossRefGoogle Scholar
  5. 5.
    Schulze-Koops H, Kalden JR. The balance of Th1/Th2 cytokines in rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2001;15(5):677–91.PubMedCrossRefGoogle Scholar
  6. 6.
    Lubberts E, Koenders MI, van den Berg WB. The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther. 2005;7(1):29–37.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Miossec P. Interleukin-17 in rheumatoid arthritis: if T cells were to contribute to inflammation and destruction through synergy. Arthritis Rheum. 2003;48(3):594–601.PubMedCrossRefGoogle Scholar
  8. 8.
    McInnes IB, Leung BP, Sturrock RD, Field M, Liew FY. Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-alpha production in rheumatoid arthritis. Nat Med. 1997;3(2):189–95.PubMedCrossRefGoogle Scholar
  9. 9.
    Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 2000;106(12):1481–8.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Horwood NJ, Elliott J, Martin TJ, Gillespie MT. Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology. 1998;139(11):4743–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999;103(9):1345–52.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Brennan FM, Chantry D, Jackson A, Maini R, Feldmann M. Inhibitory effect of TNF alpha antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet. 1989;2(8657):244–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Buchan G, Barrett K, Turner M, Chantry D, Maini RN, Feldmann M. Interleukin-1 and tumour necrosis factor mRNA expression in rheumatoid arthritis: prolonged production of IL-1 alpha. Clin Exp Immunol. 1988;73(3):449–55.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Feldmann M, Brennan FM, Chantry D, Haworth C, Turner M, Abney E, et al. Cytokine production in the rheumatoid joint: implications for treatment. Ann Rheum Dis. 1990;49(Suppl. 1):480–6.PubMedGoogle Scholar
  15. 15.
    Alvaro-Gracia JM, Zvaifler NJ, Brown CB, Kaushansky K, Firestein GS. Cytokines in chronic inflammatory arthritis. VI. Analysis of the synovial cells involved in granulocyte-macrophage colony-stimulating factor production and gene expression in rheumatoid arthritis and its regulation by IL-1 and tumor necrosis factor-alpha. J Immunol. 1991;146(10):3365–71.PubMedGoogle Scholar
  16. 16.
    Haworth C, Brennan FM, Chantry D, Turner M, Maini RN, Feldmann M. Expression of granulocyte-macrophage colony-stimulating factor in rheumatoid arthritis: regulation by tumor necrosis factor-alpha. Eur J Immunol. 1991;21(10):2575–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Williams RO, Feldmann M, Maini RN. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad Sci USA. 1992;89(20):9784–8.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 1991;10(13):4025–31.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Hale G, Dyer MJ, Clark MR, Phillips JM, Marcus R, Riechmann L, et al. Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-1H. Lancet. 1988;2(8625):1394–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Knight DM, Wagner C, Jordan R, McAleer MF, DeRita R, Fass DN, et al. The immunogenicity of the 7E3 murine monoclonal Fab antibody fragment variable region is dramatically reduced in humans by substitution of human for murine constant regions. Mol Immunol. 1995;32(16):1271–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Barnes T, Moots R. Targeting nanomedicines in the treatment of rheumatoid arthritis: focus on certolizumab pegol. Int J Nanomedicine. 2007;2(1):3–7.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Knight DM, Trinh H, Le J, Siegel S, Shealy D, McDonough M, et al. Construction and initial characterization of a mouse–human chimeric anti-TNF antibody. Mol Immunol. 1993;30(16):1443–53.PubMedCrossRefGoogle Scholar
  23. 23.
    Elliott MJ, Maini RN, Feldmann M, Long-Fox A, Charles P, Katsikis P, et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum. 1993;36(12):1681–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Lorenz HM, Antoni C, Valerius T, Repp R, Grunke M, Schwerdtner N, et al. In vivo blockade of TNF-alpha by intravenous infusion of a chimeric monoclonal TNF-alpha antibody in patients with rheumatoid arthritis. Short term cellular and molecular effects. J Immunol. 1996;156(4):1646–53.PubMedGoogle Scholar
  25. 25.
    Maini R, St Clair EW, Breedveld F, Furst D, Kalden J, Weisman M, et al. Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet. 1999;354(9194):1932–9.PubMedCrossRefGoogle Scholar
  26. 26.
    AbbVie Inc. Humira (adalimumab) prescribing information. 2013. http://www.rxabbvie.com/pdf/humira.pdf. Accessed 10 June 2013.
  27. 27.
    Immunex Corp. Enbrel (etanercept) prescribing information. 2011. http://pi.amgen.com/united_states/enbrel/derm/enbrel_pi.pdf. Accessed 15 May 2013.
  28. 28.
    Janssen Biotech. Remicade (infliximab) prescribing information. 2013. http://www.remicade.com/shared/product/remicade/prescribing-information.pdf. Accessed 10 June 2013.
  29. 29.
    Vincent FB, Morand EF, Murphy K, Mackay F, Mariette X, Marcelli C. Antidrug antibodies (ADAb) to tumour necrosis factor (TNF)-specific neutralising agents in chronic inflammatory diseases: a real issue, a clinical perspective. Ann Rheum Dis. 2013;72(2):165–78.PubMedCrossRefGoogle Scholar
  30. 30.
    UCB Inc. Cimzia (certolizumab pegol) prescribing information. 2012. http://www.cimzia.com/pdf/Prescribing_Information.pdf. Accessed 15 May 2013.
  31. 31.
    Janssen Biotech. Simponi (golimumab) prescribing information. 2013. https://www.simponi.com/prescribing-information.pdf. Accessed 10 June 2013.
  32. 32.
    Horiuchi T, Mitoma H, Harashima S, Tsukamoto H, Shimoda T. Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology. 2010;49(7):1215–28.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Bourne T, Fossati G, Nesbitt A. A PEGylated Fab′ fragment against tumor necrosis factor for the treatment of Crohn disease: exploring a new mechanism of action. BioDrugs. 2008;22(5):331–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Veronese FM, Mero A. The impact of PEGylation on biological therapies. BioDrugs. 2008;22(5):315–29.PubMedCrossRefGoogle Scholar
  35. 35.
    Chen C, Constantinou A, Deonarain M. Modulating antibody pharmacokinetics using hydrophilic polymers. Expert Opin Drug Deliv. 2011;8(9):1221–36.PubMedCrossRefGoogle Scholar
  36. 36.
    Aarden L, Ruuls SR, Wolbink G. Immunogenicity of anti-tumor necrosis factor antibodies—toward improved methods of anti-antibody measurement. Curr Opin Immunol. 2008;20(4):431–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Finckh A, Simard JF, Gabay C, Guerne PA. Evidence for differential acquired drug resistance to anti-tumour necrosis factor agents in rheumatoid arthritis. Ann Rheum Dis. 2006;65(6):746–52.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    van der Laken CJ, Voskuyl AE, Roos JC. Stigter van Walsum M, de Groot ER, Wolbink G et al. Imaging and serum analysis of immune complex formation of radiolabelled infliximab and anti-infliximab in responders and non-responders to therapy for rheumatoid arthritis. Ann Rheum Dis. 2007;66(2):253–6.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Bendtzen K, Ainsworth M, Steenholdt C, Thomsen OO, Brynskov J. Individual medicine in inflammatory bowel disease: monitoring bioavailability, pharmacokinetics and immunogenicity of anti-tumour necrosis factor-alpha antibodies. Scand J Gastroenterol. 2009;44(7):774–81.PubMedCrossRefGoogle Scholar
  40. 40.
    Allez M, Karmiris K, Louis E, Van Assche G, Ben-Horin S, Klein A, et al. Report of the ECCO pathogenesis workshop on anti-TNF therapy failures in inflammatory bowel diseases: definitions, frequency and pharmacological aspects. J Crohns Colitis. 2010;4(4):355–66.PubMedCrossRefGoogle Scholar
  41. 41.
    Hart MH, de Vrieze H, Wouters D, Wolbink GJ, Killestein J, de Groot ER, et al. Differential effect of drug interference in immunogenicity assays. J Immunol Methods. 2011;372(1–2):196–203.PubMedCrossRefGoogle Scholar
  42. 42.
    Jamnitski A, Krieckaert CL, Nurmohamed MT, Hart MH, Dijkmans BA, Aarden L, et al. Patients non-responding to etanercept obtain lower etanercept concentrations compared with responding patients. Ann Rheum Dis. 2012;71(1):88–91.PubMedCrossRefGoogle Scholar
  43. 43.
    Dixon WG, Hyrich KL, Watson KD, Lunt M, Galloway J, Ustianowski A, et al. Drug-specific risk of tuberculosis in patients with rheumatoid arthritis treated with anti-TNF therapy: results from the British Society for Rheumatology Biologics Register (BSRBR). Ann Rheum Dis. 2010;69(3):522–8.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA. 2006;295(19):2275–85.PubMedCrossRefGoogle Scholar
  45. 45.
    Symmons DP, Silman AJ. Anti-tumor necrosis factor alpha therapy and the risk of lymphoma in rheumatoid arthritis: no clear answer. Arthritis Rheum. 2004;50(6):1703–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Askling J, Fored CM, Brandt L, Baecklund E, Bertilsson L, Feltelius N, et al. Risks of solid cancers in patients with rheumatoid arthritis and after treatment with tumour necrosis factor antagonists. Ann Rheum Dis. 2005;64(10):1421–6.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Lopez-Olivo MA, Tayar JH, Martinez-Lopez JA, Pollono EN, Cueto JP, Gonzales-Crespo MR, et al. Risk of malignancies in patients with rheumatoid arthritis treated with biologic therapy: a meta-analysis. JAMA. 2012;308(9):898–908.PubMedCrossRefGoogle Scholar
  48. 48.
    Ehrenfeld M, Abu-Shakra M, Buskila D, Shoenfeld Y. The dual association between lymphoma and autoimmunity. Blood Cells Mol Dis. 2001;27(4):750–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Zintzaras E, Voulgarelis M, Moutsopoulos HM. The risk of lymphoma development in autoimmune diseases: a meta-analysis. Arch Intern Med. 2005;165(20):2337–44.PubMedCrossRefGoogle Scholar
  50. 50.
    Kaiser R. Incidence of lymphoma in patients with rheumatoid arthritis: a systematic review of the literature. Clin Lymphoma Myeloma. 2008;8(2):87–93.PubMedCrossRefGoogle Scholar
  51. 51.
    Rutgeerts P, D’Haens G, Targan S, Vasiliauskas E, Hanauer SB, Present DH, et al. Efficacy and safety of retreatment with anti-tumor necrosis factor antibody (infliximab) to maintain remission in Crohn’s disease. Gastroenterology. 1999;117(4):761–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Sandborn WJ, Hanauer SB, Katz S, Safdi M, Wolf DG, Baerg RD, et al. Etanercept for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology. 2001;121(5):1088–94.PubMedCrossRefGoogle Scholar
  53. 53.
    Nesbitt A, Fossati G, Bergin M, Stephens P, Stephens S, Foulkes R, et al. Mechanism of action of certolizumab pegol (CDP870): in vitro comparison with other anti-tumor necrosis factor alpha agents. Inflamm Bowel Dis. 2007;13(11):1323–32.PubMedCrossRefGoogle Scholar
  54. 54.
    Fossati G, Nesbitt A. Reverse signalling of membrane TNF in human natural killer cells: a comparison of the effect of certolizumab pegol and other anti-TNF agents. Ann Rheum Dis. 2011;70(Suppl. 3):529.Google Scholar
  55. 55.
    Malaviya R, Sun Y, Tan JK, Wang A, Magliocco M, Yao M, et al. Etanercept induces apoptosis of dermal dendritic cells in psoriatic plaques of responding patients. J Am Acad Dermatol. 2006;55(4):590–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Pattacini L, Boiardi L, Casali B, Salvarani C. Differential effects of anti-TNF-alpha drugs on fibroblast-like synoviocyte apoptosis. Rheumatology. 2010;49(3):480–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Tatlican S, Arikok A, Gulbahar O, Eren C, Cevirgen B, Eskioglu F. Etanercept does not have an apoptosis-inducing effect on psoriatic keratinocytes. J Dermatolog Treat. 2010;21(5):306–10.PubMedCrossRefGoogle Scholar
  58. 58.
    Shen C, Assche GV, Colpaert S, Maerten P, Geboes K, Rutgeerts P, et al. Adalimumab induces apoptosis of human monocytes: a comparative study with infliximab and etanercept. Aliment Pharmacol Ther. 2005;21(3):251–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Van den Brande JM, Braat H, van den Brink GR, Versteeg HH, Bauer CA, Hoedemaeker I, et al. Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn’s disease. Gastroenterology. 2003;124(7):1774–85.PubMedCrossRefGoogle Scholar
  60. 60.
    Fossati G, Nesbitt A. In vitro complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity by the anti-TNF agents adalimumab, etanercept, infliximab, and certolizumab pegol (CDP870) [abstract 807]. Am J Gastroenterol. 2005; 100(Suppl.):S299.Google Scholar
  61. 61.
    Fossati G, Nesbitt A, editors. Reverse signalling of membrane TNF in human natural killer cells: a comparison of the effect of certolizumab pegol and other anti-TNF agents. EULAR; 2011; London, UK.Google Scholar
  62. 62.
    Hanauer SB, Sandborn WJ, Rutgeerts P, Fedorak RN, Lukas M, MacIntosh D, et al. Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial. Gastroenterology. 2006;130(2):323–33.PubMedCrossRefGoogle Scholar
  63. 63.
    Sandborn WJ, Feagan BG, Stoinov S, Honiball PJ, Rutgeerts P, Mason D, et al. Certolizumab pegol for the treatment of Crohn’s disease. N Engl J Med. 2007;357(3):228–38.PubMedCrossRefGoogle Scholar
  64. 64.
    Targan SR, Hanauer SB, van Deventer SJ, Mayer L, Present DH, Braakman T, et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N Engl J Med. 1997;337(15):1029–35.PubMedCrossRefGoogle Scholar
  65. 65.
    Colombel JF, Sandborn WJ, Rutgeerts P, Enns R, Hanauer SB, Panaccione R, et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: the CHARM trial. Gastroenterology. 2007;132(1):52–65.PubMedCrossRefGoogle Scholar
  66. 66.
    Hanauer SB, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet. 2002;359(9317):1541–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Schreiber S, Khaliq-Kareemi M, Lawrance IC, Thomsen OO, Hanauer SB, McColm J, et al. Maintenance therapy with certolizumab pegol for Crohn’s disease. N Engl J Med. 2007;357(3):239–50.PubMedCrossRefGoogle Scholar
  68. 68.
    Palframan R, Airey M, Moore A, Vugler A, Nesbitt A. Use of biofluorescence imaging to compare the distribution of certolizumab pegol, adalimumab, and infliximab in the inflamed paws of mice with collagen-induced arthritis. J Immunol Methods. 2009;348(1–2):36–41.PubMedCrossRefGoogle Scholar
  69. 69.
    Weir N, Athwal D, Brown D, Foulkes R, Kollias G, Nesbitt A, et al. A new generation of high-affinity humanized PEGylated Fab’ fragment anti-tumor necrosis factor-alpha monoclonal antibodies. Therapy. 2006;3(4):535–45.Google Scholar
  70. 70.
    Scallon BJ, Moore MA, Trinh H, Knight DM, Ghrayeb J. Chimeric anti-TNF-alpha monoclonal antibody cA2 binds recombinant transmembrane TNF-alpha and activates immune effector functions. Cytokine. 1995;7(3):251–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Scallon B, Cai A, Solowski N, Rosenberg A, Song XY, Shealy D, et al. Binding and functional comparisons of two types of tumor necrosis factor antagonists. J Pharmacol Exp Ther. 2002;301(2):418–26.PubMedCrossRefGoogle Scholar
  72. 72.
    Henry AI, Gong H, Nesbitt AM. Mapping the certolizumab pegol epitope on TNF and comparison with infliximab, adalimumab, and etanercept. Gastroenterology. 2011;140(5, Suppl 1):S–630.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Divisione di Reumatologia, Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
  2. 2.Department of Internal Medicine and Medical SpecialtiesUniversity of Rome “La Sapienza”RomeItaly

Personalised recommendations