, Volume 28, Issue 1, pp 7–16

Treg Vaccination in Autoimmune Type 1 Diabetes

  • Isabelle Serr
  • Benno Weigmann
  • Randi Kristina Franke
  • Carolin Daniel
Leading Article


Foxp3+ regulatory T (Treg) cells are critical contributors to the establishment and maintenance of immunological self-tolerance. Autoimmune type 1 diabetes (T1D) is characterized by the loss of self-tolerance to the insulin-producing β cells in the pancreas and the destruction of β cells, resulting in the development of chronic hyperglycemia at diagnosis. The application of strong-agonistic T-cell receptor ligands provided under subimmunogenic conditions functions as a critical means for the efficient de novo conversion of naive CD4+ T cells into Foxp3+ Treg cells. The specific induction of Treg cells upon supply of strong-agonistic variants of certain self-antigens could therefore function as a critical instrument in order to achieve safe and specific prevention of autoimmunity such as T1D via the restoration of self-tolerance. Such immunotherapeutic strategies are being developed, and in the case of T1D aim to restrict autoimmunity and β-cell destruction. In this review, we discuss the requirements and opportunities for Treg-based tolerance approaches with the goal of interfering with autoimmune T1D.


  1. 1.
    Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464(7293):1293–300.PubMedCrossRefGoogle Scholar
  2. 2.
    Burnet FM. The clonal selection theory. Cambridge: Cambridge Press; 1959.Google Scholar
  3. 3.
    Kappler JW, Roehm N, Marrack P. T cell tolerance by clonal elimination in the thymus. Cell. 1987;49(2):273–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Kisielow P, Teh HS, Bluthmann H, von Boehmer H. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature. 1988;335(6192):730–3.PubMedCrossRefGoogle Scholar
  5. 5.
    Lederberg J. Genes and antibodies. Science. 1959;129(3364):1649–53.PubMedCrossRefGoogle Scholar
  6. 6.
    Asano M, Toda M, Sakaguchi N, Sakaguchi S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med. 1996;184(2):387–96.PubMedCrossRefGoogle Scholar
  7. 7.
    Kim JM, Rasmussen JP, Rudensky AY. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol. 2007;8(2):191–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Lahl K, Loddenkemper C, Drouin C, Freyer J, Arnason J, Eberl G, et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med. 2007;204(1):57–63.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Ochs HD, Ziegler SF, Torgerson TR. FOXP3 acts as a rheostat of the immune response. Immunol Rev. 2005;203:156–64.PubMedCrossRefGoogle Scholar
  10. 10.
    Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+regulatory T cells. Nat Immunol. 2003;4(4):330–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+T regulatory cells. Nat Immunol. 2003;4(4):337–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Modigliani Y, Bandeira A, Coutinho A. A model for developmentally acquired thymus-dependent tolerance to central and peripheral antigens. Immunol Rev. 1996;149:155–74.Google Scholar
  13. 13.
    Modigliani Y, Thomas-Vaslin V, Bandeira A, Coltey M, Le Douarin NM, Coutinho A, et al. Lymphocytes selected in allogeneic thymic epithelium mediate dominant tolerance toward tissue grafts of the thymic epithelium haplotype. Proc Natl Acad Sci USA. 1995;92(16):7555–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science. 1994;265(5176):1237–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Miller A, Lider O, Weiner HL. Antigen-driven bystander suppression after oral administration of antigens. J Exp Med. 1991;174(4):791–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Verginis P, McLaughlin KA, Wucherpfennig KW, von Boehmer H, Apostolou I. Induction of antigen-specific regulatory T cells in wild-type mice: visualization and targets of suppression. Proc Natl Acad Sci USA. 2008;105(9):3479–84.PubMedCrossRefGoogle Scholar
  17. 17.
    Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+ CD25 high regulatory cells in human peripheral blood. J Immunol. 2001;167(3):1245–53.PubMedGoogle Scholar
  18. 18.
    Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G. Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med. 2001;193(11):1303–10.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med. 2001;193(11):1285–94.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Levings MK, Sangregorio R, Roncarolo MG. Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med. 2001;193(11):1295–302.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Ng WF, Duggan PJ, Ponchel F, Matarese G, Lombardi G, Edwards AD, et al. Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood. 2001;98(9):2736–44.PubMedCrossRefGoogle Scholar
  22. 22.
    Taams LS, Vukmanovic-Stejic M, Smith J, Dunne PJ, Fletcher JM, Plunkett FJ, et al. Antigen-specific T cell suppression by human CD4+ CD25+ regulatory T cells. Eur J Immunol. 2002;32(6):1621–30.PubMedCrossRefGoogle Scholar
  23. 23.
    Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–61.PubMedCrossRefGoogle Scholar
  24. 24.
    Roncador G, Brown PJ, Maestre L, Hue S, Martinez-Torrecuadrada JL, Ling KL, et al. Analysis of FOXP3 protein expression in human CD4+ CD25+ regulatory T cells at the single-cell level. Eur J Immunol. 2005;35(6):1681–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Gavin MA, Torgerson TR, Houston E, de Roos P, Ho WY, Stray-Pedersen A, et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci USA. 2006;103(17):6659–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol. 2007;37(1):129–38.PubMedCrossRefGoogle Scholar
  27. 27.
    Allan SE, Song-Zhao GX, Abraham T, McMurchy AN, Levings MK. Inducible reprogramming of human T cells into Treg cells by a conditionally active form of FOXP3. Eur J Immunol. 2008;38(12):3282–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Hoffmann P, Boeld TJ, Eder R, Huehn J, Floess S, Wieczorek G, et al. Loss of FOXP3 expression in natural human CD4+ CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur J Immunol. 2009;39(4):1088–97.PubMedCrossRefGoogle Scholar
  29. 29.
    Du J, Huang C, Zhou B, Ziegler SF. Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3. J Immunol. 2008;180(7):4785–92.PubMedGoogle Scholar
  30. 30.
    Allan SE, Passerini L, Bacchetta R, Crellin N, Dai M, Orban PC, et al. The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. J Clin Invest. 2005;115(11):3276–84.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S, et al. Crucial role of FOXP3 in the development and function of human CD25+ CD4+ regulatory T cells. Int Immunol. 2004;16(11):1643–56.PubMedCrossRefGoogle Scholar
  32. 32.
    Bettelli E, Dastrange M, Oukka M. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci USA. 2005;102(14):5138–43.PubMedCrossRefGoogle Scholar
  33. 33.
    Lopes JE, Torgerson TR, Schubert LA, Anover SD, Ocheltree EL, Ochs HD, et al. Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J Immunol. 2006;177(5):3133–42.PubMedGoogle Scholar
  34. 34.
    Aarts-Riemens T, Emmelot ME, Verdonck LF, Mutis T. Forced overexpression of either of the two common human Foxp3 isoforms can induce regulatory T cells from CD4(+) CD25(−) cells. Eur J Immunol. 2008;38(5):1381–90.PubMedCrossRefGoogle Scholar
  35. 35.
    Cvetanovich GL, Hafler DA. Human regulatory T cells in autoimmune diseases. Curr Opin Immunol. 2010;22(6):753–60.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30(6):899–911.PubMedCrossRefGoogle Scholar
  37. 37.
    Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490–500.PubMedCrossRefGoogle Scholar
  38. 38.
    Apostolou I, Sarukhan A, Klein L, von Boehmer H. Origin of regulatory T cells with known specificity for antigen. Nat Immunol. 2002;3(8):756–63.PubMedGoogle Scholar
  39. 39.
    Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA, et al. Thymic selection of CD4+ CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol. 2001;2(4):301–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Apostolou I, von Boehmer H. In vivo instruction of suppressor commitment in naive T cells. J Exp Med. 2004;199(10):1401–8.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol. 2005;6(12):1219–27.PubMedCrossRefGoogle Scholar
  42. 42.
    Izcue A, Coombes JL, Powrie F. Regulatory lymphocytes and intestinal inflammation. Annu Rev Immunol. 2009;27:313–38.PubMedCrossRefGoogle Scholar
  43. 43.
    Daniel C, Wennhold K, Kim HJ, von Boehmer H. Enhancement of antigen-specific Treg vaccination in vivo. Proc Natl Acad Sci USA. 2010;107(37):16246–51. doi:10.1073/pnas.1007422107.PubMedCrossRefGoogle Scholar
  44. 44.
    Josefowicz SZ, Wilson CB, Rudensky AY. Cutting edge: TCR stimulation is sufficient for induction of Foxp3 expression in the absence of DNA methyltransferase 1. J Immunol. 2009;182(11):6648–52.PubMedCrossRefGoogle Scholar
  45. 45.
    Gottschalk RA, Corse E, Allison JP. TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo. J Exp Med. 2010;207(8):1701–11. doi:10.1084/jem.20091999.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Merkenschlager M, von Boehmer H. PI3 kinase signalling blocks Foxp3 expression by sequestering Foxo factors. J Exp Med. 2010;207(7):1347–50. doi:10.1084/jem.20101156.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA. 2008;105(22):7797–802.PubMedCrossRefGoogle Scholar
  48. 48.
    Haxhinasto S, Mathis D, Benoist C. The AKT-mTOR axis regulates de novo differentiation of CD4+ Foxp3+ cells. J Exp Med. 2008;205(3):565–74.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Wohlfert EA, Gorelik L, Mittler R, Flavell RA, Clark RB. Cutting edge: deficiency in the E3 ubiquitin ligase Cbl-b results in a multifunctional defect in T cell TGF-beta sensitivity in vitro and in vivo. J Immunol. 2006;176(3):1316–20.PubMedGoogle Scholar
  50. 50.
    Harada Y, Harada Y, Elly C, Ying G, Paik JH, DePinho RA, et al. Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J Exp Med. 2010;207(7):1381–91.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Ouyang W, Beckett O, Ma Q, Paik JH, DePinho RA, Li MO. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat Immunol. 2010;11(7):618–27.PubMedCrossRefGoogle Scholar
  52. 52.
    von Boehmer H, Daniel C. Therapeutic opportunities for manipulating T(Reg) cells in autoimmunity and cancer. Nat Rev Drug Discovery. 2012;12(1):51–63. doi:10.1038/nrd3683.CrossRefGoogle Scholar
  53. 53.
    Bonifacio E, Achenbach P, Pan L, Ziegler AG. Mucosal insulin vaccination for type 1 diabetes prevention. Exp Clin Endocrinol Diabetes. 2008;116(Suppl 1):S26–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Daniel C, Weigmann B, Bronson R, von Boehmer H. Prevention of type 1 diabetes in mice by tolerogenic vaccination with a strong agonist insulin mimetope. J Exp Med. 2011;208(7):1501–10.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Daniel C, Wennhold K, Kim HJ, von BH. Enhancement of antigen-specific Treg vaccination in vivo. Proc Natl Acad Sci USA. 2010;107(37):16246–51.Google Scholar
  56. 56.
    Daniel C, Nolting J, von Boehmer H. Mechanisms of self-nonself discrimination and possible clinical relevance. Immunotherapy. 2009;1(4):631–44.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Daniel C, Ploegh H, von Boehmer H. Antigen-specific induction of regulatory T cells in vivo and in vitro. Methods Mol Biol. 2011;707:173–85.PubMedCrossRefGoogle Scholar
  58. 58.
    Jaeckel E, Lipes MA, von Boehmer H. Recessive tolerance to preproinsulin 2 reduces but does not abolish type 1 diabetes. Nat Immunol. 2004;5(10):1028–35.PubMedCrossRefGoogle Scholar
  59. 59.
    Nakayama M, Abiru N, Moriyama H, Babaya N, Liu E, Miao D, et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature. 2005;435(7039):220–3.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Alleva DG, Crowe PD, Jin L, Kwok WW, Ling N, Gottschalk M, et al. A disease-associated cellular immune response in type 1 diabetics to an immunodominant epitope of insulin. J Clin Invest. 2001;107(2):173–80.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Daniel D, Wegmann DR. Intranasal administration of insulin peptide B: 9-23 protects NOD mice from diabetes. Ann NY Acad Sci. 1996;778:371–2.PubMedCrossRefGoogle Scholar
  62. 62.
    Wegmann DR, Norbury-Glaser M, Daniel D. Insulin-specific T cells are a predominant component of islet infiltrates in pre-diabetic NOD mice. Eur J Immunol. 1994;24(8):1853–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Ziegler AG, Nepom GT. Prediction and pathogenesis in type 1 diabetes. Immunity. 2010;32(4):468–78.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Fairchild PJ, Wildgoose R, Atherton E, Webb S, Wraith DC. An autoantigenic T cell epitope forms unstable complexes with class II MHC: a novel route for escape from tolerance induction. Int Immunol. 1993;5(9):1151–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Garcia KC, Teyton L, Wilson IA. Structural basis of T cell recognition. Annu Rev Immunol. 1999;17:369–97.PubMedCrossRefGoogle Scholar
  66. 66.
    Hahn M, Nicholson MJ, Pyrdol J, Wucherpfennig KW. Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor. Nat Immunol. 2005;6(5):490–6.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Liu GY, Fairchild PJ, Smith RM, Prowle JR, Kioussis D, Wraith DC. Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity. 1995;3(4):407–15.PubMedCrossRefGoogle Scholar
  68. 68.
    Stadinski BD, Delong T, Reisdorph N, Reisdorph R, Powell RL, Armstrong M, et al. Chromogranin A is an autoantigen in type 1 diabetes. Nat Immunol. 2010;11(3):225–31. doi:10.1038/ni.1844.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Stadinski BD, Zhang L, Crawford F, Marrack P, Eisenbarth GS, Kappler JW. Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register. Proc Natl Acad Sci USA. 2010;107(24):10978–83. doi:10.1073/pnas.1006545107.PubMedCrossRefGoogle Scholar
  70. 70.
    Crawford F, Stadinski B, Jin N, Michels A, Nakayama M, Pratt P, et al. Specificity and detection of insulin-reactive CD4+ T cells in type 1 diabetes in the nonobese diabetic (NOD) mouse. Proc Natl Acad Sci USA. 2011;108(40):16729–34. doi:10.1073/pnas.1113954108.PubMedCrossRefGoogle Scholar
  71. 71.
    He XL, Radu C, Sidney J, Sette A, Ward ES, Garcia KC. Structural snapshot of aberrant antigen presentation linked to autoimmunity: the immunodominant epitope of MBP complexed with I-Au. Immunity. 2002;17(1):83–94.PubMedCrossRefGoogle Scholar
  72. 72.
    Sethi DK, Schubert DA, Anders AK, Heroux A, Bonsor DA, Thomas CP, et al. A highly tilted binding mode by a self-reactive T cell receptor results in altered engagement of peptide and MHC. J Exp Med. 2011;208(1):91–102.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Wucherpfennig KW, Sethi D. T cell receptor recognition of self and foreign antigens in the induction of autoimmunity. Semin Immunol. 2011; 23(2):84–91.Google Scholar
  74. 74.
    Mohan JF, Levisetti MG, Calderon B, Herzog JW, Petzold SJ, Unanue ER. Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes. Nat Immunol. 2010;11(4):350–4.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Corper AL, Stratmann T, Apostolopoulos V, Scott CA, Garcia KC, Kang AS, et al. A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes. Science. 2000;288(5465):505–11.PubMedCrossRefGoogle Scholar
  76. 76.
    Latek RR, Suri A, Petzold SJ, Nelson CA, Kanagawa O, Unanue ER, et al. Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice. Immunity. 2000;12(6):699–710.PubMedCrossRefGoogle Scholar
  77. 77.
    Levisetti MG, Suri A, Petzold SJ, Unanue ER. The insulin-specific T cells of nonobese diabetic mice recognize a weak MHC-binding segment in more than one form. J Immunol. 2007;178(10):6051–7.PubMedGoogle Scholar
  78. 78.
    Lee KH, Wucherpfennig KW, Wiley DC. Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes. Nat Immunol. 2001;2(6):501–7. doi:10.1038/88694.PubMedCrossRefGoogle Scholar
  79. 79.
    Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, et al. DNA methylation controls Foxp3 gene expression. Eur J Immunol. 2008;38(6):1654–63.PubMedCrossRefGoogle Scholar
  80. 80.
    Skyler JS, Krischer JP, Wolfsdorf J, Cowie C, Palmer JP, Greenbaum C, et al. Effects of oral insulin in relatives of patients with type 1 diabetes: the diabetes prevention trial-type 1. Diabetes Care. 2005;28(5):1068–76.PubMedCrossRefGoogle Scholar
  81. 81.
    Skyler JS, Krischer JP, Wolfsdorf J, Cowie C, Palmer JP, Greenbaum C, Cuthbertson D, Rafkin-Mervis LE, Chase HP, Leschek E. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med. 2002;346(22):1685–91.Google Scholar
  82. 82.
    Harrison LC, Honeyman MC, Steele CE, Stone NL, Sarugeri E, Bonifacio E, et al. Pancreatic beta-cell function and immune responses to insulin after administration of intranasal insulin to humans at risk for type 1 diabetes. Diabetes Care. 2004;27(10):2348–55.PubMedCrossRefGoogle Scholar
  83. 83.
    Nanto-Salonen K, Kupila A, Simell S, Siljander H, Salonsaari T, Hekkala A, et al. Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet. 2008;372(9651):1746–55.PubMedCrossRefGoogle Scholar
  84. 84.
    Lucas JL, Mirshahpanah P, Haas-Stapleton E, Asadullah K, Zollner TM, Numerof RP. Induction of Foxp3+ regulatory T cells with histone deacetylase inhibitors. Cell Immunol. 2009;257(1–2):97–104.PubMedCrossRefGoogle Scholar
  85. 85.
    Luo X, Herold KC, Miller SD. Immunotherapy of type 1 diabetes: where are we and where should we be going? Immunity. 2010;32(4):488–99.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Thrower SL, James L, Hall W, Green KM, Arif S, Allen JS, et al. Proinsulin peptide immunotherapy in type 1 diabetes: report of a first-in-man phase I safety study. Clin Exp Immunol. 2009;155(2):156–65. doi:10.1111/j.1365-2249.2008.03814.x.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Peakman M, von Herrath M. Antigen-specific immunotherapy for type 1 diabetes: maximizing the potential. Diabetes. 2010;59(9):2087–93. doi:10.2337/db10-0630.PubMedCrossRefGoogle Scholar
  88. 88.
    Orban T, Farkas K, Jalahej H, Kis J, Treszl A, Falk B, et al. Autoantigen-specific regulatory T cells induced in patients with type 1 diabetes mellitus by insulin B-chain immunotherapy. J Autoimmun. 2010;34(4):408–15. doi:10.1016/j.jaut.2009.10.005.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    von Herrath M, Peakman M, Roep B. Progress in immune-based therapies for type 1 diabetes. Clin Exp Immunol. 2013;172(2):186–202. doi:10.1111/cei.12085.CrossRefGoogle Scholar
  90. 90.
    Long SA, Rieck M, Sanda S, Bollyky JB, Samuels PL, Goland R, et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs beta-cell function. Diabetes. 2012;61(9):2340–8. doi:10.2337/db12-0049.PubMedCrossRefGoogle Scholar
  91. 91.
    Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12(11):786–98. doi:10.1038/nri3311.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7(2):118–30.PubMedCrossRefGoogle Scholar
  93. 93.
    Manz MG. Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity. 2007;26(5):537–41.PubMedCrossRefGoogle Scholar
  94. 94.
    Willinger T, Rongvaux A, Strowig T, Manz MG, Flavell RA. Improving human hemato–lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol. 2011;32(7):321–7. doi:10.1016/ Scholar
  95. 95.
    Willinger T, Rongvaux A, Takizawa H, Yancopoulos GD, Valenzuela DM, Murphy AJ, et al. Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung. Proc Natl Acad Sci USA. 2011;108(6):2390–5. doi:10.1073/pnas.1019682108.PubMedCrossRefGoogle Scholar
  96. 96.
    Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11(9):636–46. doi:10.1038/nrg2842.PubMedCrossRefGoogle Scholar
  97. 97.
    Baker M. Gene-editing nucleases. Nat Methods. 2012;9(1):23–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Marodon G, Desjardins D, Mercey L, Baillou C, Parent P, Manuel M, et al. High diversity of the immune repertoire in humanized NOD.SCID.gamma c−/− mice. Eur J Immunol. 2009;39(8):2136–45.PubMedCrossRefGoogle Scholar
  99. 99.
    Winkler C, Krumsiek J, Lempainen J, Achenbach P, Grallert H, Giannopoulou E, et al. A strategy for combining minor genetic susceptibility genes to improve prediction of disease in type 1 diabetes. Genes Immun. 2012;13(7):549–55. doi:10.1038/gene.2012.36.PubMedCrossRefGoogle Scholar
  100. 100.
    Sullivan SP, Koutsonanos DG, Del Pilar Martin M, Lee JW, Zarnitsyn V, Choi SO, et al. Dissolving polymer microneedle patches for influenza vaccination. Nat Med. 2010;16(8):915–20. doi:10.1038/nm.2182.PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Alleva DG, Gaur A, Jin L, Wegmann D, Gottlieb PA, Pahuja A, et al. Immunological characterization and therapeutic activity of an altered-peptide ligand, NBI-6024, based on the immunodominant type 1 diabetes autoantigen insulin B-chain (9-23) peptide. Diabetes. 2002;51(7):2126–34.PubMedCrossRefGoogle Scholar
  102. 102.
    Radford KD, Fuller TN, Bushey B, Daniel C, Pellegrini JE. Prophylactic isopropyl alcohol inhalation and intravenous ondansetron versus ondansetron alone in the prevention of postoperative nausea and vomiting in high-risk patients. AANA J. 2011;79(4 Suppl):S69–74.PubMedGoogle Scholar
  103. 103.
    Mitragotri S. Immunization without needles. Nat Rev Immunol. 2005;5(12):905–16. doi:10.1038/nri1728.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Isabelle Serr
    • 1
  • Benno Weigmann
    • 2
  • Randi Kristina Franke
    • 1
  • Carolin Daniel
    • 1
  1. 1.Junior Group Immunological Tolerance in Type 1 Diabetes, Institute of Diabetes Research 1Helmholtz Zentrum Muenchen-German Center for Environmental Health (GmbH)MuenchenGermany
  2. 2.Medical Clinic IUniversity Erlangen-NuernbergErlangenGermany

Personalised recommendations