, Volume 27, Issue 5, pp 431–438 | Cite as

The Arrival of JAK Inhibitors: Advancing the Treatment of Immune and Hematologic Disorders

  • Yasuko Furumoto
  • Massimo Gadina
Current Opinion


Altered production of cytokines can result in pathologies ranging from autoimmune diseases to malignancies. The Janus kinase family is a small group of receptor-associated signaling molecules that is essential to the signal cascade originating from type I and type II cytokine receptors. Inhibition of tyrosine kinase enzymatic activity using small molecules has recently become a powerful tool for treatment of several malignancies. Twenty years after the discovery of these enzymes, two inhibitors for this class of kinases have been approved for clinical use and others are currently in the final stage of development. Here we review the principles of cytokines signaling, summarize our current knowledge of the approved inhibitors, and briefly introduce some of the inhibitors that are currently under development.


Rheumatoid Arthritis Patient Herpes Zoster Polycythemia Vera Tofacitinib Ruxolitinib 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the following individuals for critical reading of the manuscript: Dr. Kiyoshi Hirahara, Dr. Giuseppe Sciumè, Ms. Kathryn Davis, and Dr. Jonathan Mallett.


NIAMS have a Collaborative Research Agreement and Development Agreement (CRADA) with Pfizer.


  1. 1.
    O’Shea JJ, Murray PJ. Cytokine signaling modules in inflammatory responses. Immunity. 2008;28(4):477–87.CrossRefPubMedGoogle Scholar
  2. 2.
    Xavier RJ, Rioux JD. Genome-wide association studies: a new window into immune-mediated diseases. Nat Rev Immunol. 2008;8(8):631–43.CrossRefPubMedGoogle Scholar
  3. 3.
    O’Shea JJ, Gadina M, Kanno Y. Cytokine signaling: birth of a pathway. J Immunol. 2011;187(11):5475–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Leonard WJ, O’Shea JJ. Jaks and STATs: biological implications. Ann Rev Immunol. 1998;16:293–322.CrossRefGoogle Scholar
  5. 5.
    Yamaoka K, Saharinen P, Pesu M, Holt VE 3rd, Silvennoinen O, O’Shea JJ. The Janus kinases (Jaks). Genome Biol. 2004;5(12):253.CrossRefPubMedGoogle Scholar
  6. 6.
    Ungureanu D, Wu J, Pekkala T, Niranjan Y, Young C, Jensen ON, et al. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat Struct Mol Biol. 2011;18(9):971–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Harry BL, Eckhardt SG, Jimeno A. JAK2 inhibition for the treatment of hematologic and solid malignancies. Expert Opin Invest Drugs. 2012;21(5):637–55.CrossRefGoogle Scholar
  8. 8.
    Zhou YJ, Chen M, Cusack NA, Kimmel LH, Magnuson KS, Boyd JG, et al. Unexpected effects of FERM domain mutations on catalytic activity of Jak3: structural implication for Janus kinases. Mol Cell. 2001;8(5):959–69.CrossRefPubMedGoogle Scholar
  9. 9.
    O’Shea JJ, Gadina M, Schreiber RD. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell. 2002;109(Suppl):S121–31.CrossRefPubMedGoogle Scholar
  10. 10.
    Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M, et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science. 1997;278(5341):1309–12.CrossRefPubMedGoogle Scholar
  11. 11.
    Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell. 1998;93(3):373–83.CrossRefPubMedGoogle Scholar
  12. 12.
    Van Roosbroeck K, Cox L, Tousseyn T, Lahortiga I, Gielen O, Cauwelier B, et al. JAK2 rearrangements, including the novel SEC31A-JAK2 fusion, are recurrent in classical Hodgkin lymphoma. Blood. 2011;117(15):4056–64.CrossRefPubMedGoogle Scholar
  13. 13.
    Levine RL, Pardanani A, Tefferi A, Gilliland DG. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer. 2007;7(9):673–83.CrossRefPubMedGoogle Scholar
  14. 14.
    Karaghiosoff M, Neubauer H, Lassnig C, Kovarik P, Schindler H, Pircher H, et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity. 2000;13(4):549–60.CrossRefPubMedGoogle Scholar
  15. 15.
    Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006;25(5):745–55.CrossRefPubMedGoogle Scholar
  16. 16.
    Kilic SS, Hacimustafaoglu M, Boisson-Dupuis S, Kreins AY, Grant AV, Abel L, et al. A patient with tyrosine kinase 2 deficiency without hyper-IgE syndrome. J Pediatr. 2012;160(6):1055–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Kovanen PE, Leonard WJ. Cytokines and immunodeficiency diseases: critical roles of the gamma(c)-dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol Rev. 2004;202:67–83.CrossRefPubMedGoogle Scholar
  18. 18.
    Frucht DM, Gadina M, Jagadeesh GJ, Aksentijevich I, Takada K, Bleesing JJ, et al. Unexpected and variable phenotypes in a family with JAK3 deficiency. Genes Immun. 2001;2(8):422–32.CrossRefPubMedGoogle Scholar
  19. 19.
    Brugnoni D, Notarangelo LD, Sottini A, Airo P, Pennacchio M, Mazzolari E, et al. Development of autologous, oligoclonal, poorly functioning T lymphocytes in a patient with autosomal recessive severe combined immunodeficiency caused by defects of the Jak3 tyrosine kinase. Blood. 1998;91(3):949–55.PubMedGoogle Scholar
  20. 20.
    Verstovsek S, Kantarjian HM, Estrov Z, Cortes JE, Thomas DA, Kadia T, et al. Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: survival advantage in comparison to matched historical controls. Blood. 2012;120(6):1202–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. New Engl J Med. 2012;366(9):799–807.CrossRefPubMedGoogle Scholar
  22. 22.
    Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. New Engl J Med. 2010;363(12):1117–27.CrossRefPubMedGoogle Scholar
  23. 23.
    Mesa RA. Ruxolitinib, a selective JAK1 and JAK2 inhibitor for the treatment of myeloproliferative neoplasms and psoriasis. IDrugs: Invest Drugs J. 2010;13(6):394–403.Google Scholar
  24. 24.
    Pardanani A, Gotlib JR, Jamieson C, Cortes JE, Talpaz M, Stone RM, et al. Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J Clin Oncol: Off J Am Soc Clin Oncol. 2011;29(7):789–96.CrossRefGoogle Scholar
  25. 25.
    Weigert O, Lane AA, Bird L, Kopp N, Chapuy B, van Bodegom D, et al. Genetic resistance to JAK2 enzymatic inhibitors is overcome by HSP90 inhibition. J Exp Med. 2012;209(2):259–73.CrossRefPubMedGoogle Scholar
  26. 26.
    Koppikar P, Bhagwat N, Kilpivaara O, Manshouri T, Adli M, Hricik T, et al. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature. 2012;489(7414):155–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Kontzias A, Kotlyar A, Laurence A, Changelian P, O’Shea JJ. Jakinibs: a new class of kinase inhibitors in cancer and autoimmune disease. Curr Opin Pharmacol. 2012;12(4):464–70.CrossRefPubMedGoogle Scholar
  28. 28.
    Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008;26(1):127–32.CrossRefPubMedGoogle Scholar
  29. 29.
    Changelian PS, Flanagan ME, Ball DJ, Kent CR, Magnuson KS, Martin WH, et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science. 2003;302(5646):875–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Ghoreschi K, Jesson MI, Li X, Lee JL, Ghosh S, Alsup JW, et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol. 2011;186(7):4234–43.CrossRefPubMedGoogle Scholar
  31. 31.
    Yoshida H, Kimura A, Fukaya T, Sekiya T, Morita R, Shichita T, et al. Low dose CP-690,550 (tofacitinib), a pan-JAK inhibitor, accelerates the onset of experimental autoimmune encephalomyelitis by potentiating Th17 differentiation. Biochem Biophys Res Commun. 2012;418(2):234–40.CrossRefPubMedGoogle Scholar
  32. 32.
    Conklyn M, Andresen C, Changelian P, Kudlacz E. The JAK3 inhibitor CP-690550 selectively reduces NK and CD8+ cell numbers in cynomolgus monkey blood following chronic oral dosing. J Leukoc Biol. 2004;76(6):1248–55.CrossRefPubMedGoogle Scholar
  33. 33.
    van Gurp E, Weimar W, Gaston R, Brennan D, Mendez R, Pirsch J, et al. Phase 1 dose-escalation study of CP-690 550 in stable renal allograft recipients: preliminary findings of safety, tolerability, effects on lymphocyte subsets and pharmacokinetics. Am J Transplant: Off J Am Soc Transplant Am Soc Transplant Surg. 2008;8(8):1711–8.CrossRefGoogle Scholar
  34. 34.
    Kudlacz E, Conklyn M, Andresen C, Whitney-Pickett C, Changelian P. The JAK-3 inhibitor CP-690550 is a potent anti-inflammatory agent in a murine model of pulmonary eosinophilia. Eur J Pharmacol. 2008;582(1–3):154–61.CrossRefPubMedGoogle Scholar
  35. 35.
    Onuora S. Experimental arthritis: JAK inhibition with tofacitinib curbs RANKL-induced joint damage. Nat Rev Rheumatol. 2012;8(10):564.CrossRefPubMedGoogle Scholar
  36. 36.
    Rosengren S, Corr M, Firestein GS, Boyle DL. The JAK inhibitor CP-690,550 (tofacitinib) inhibits TNF-induced chemokine expression in fibroblast-like synoviocytes: autocrine role of type I interferon. Ann Rheum Dis. 2012;71(3):440–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Yokoyama S, Perera PY, Waldmann TA, Hiroi T, Perera LP. Tofacitinib, a Janus kinase inhibitor demonstrates efficacy in an IL-15 transgenic mouse model that recapitulates pathologic manifestations of celiac disease. J Clin Immunol. 2013;33(3):586–94.CrossRefPubMedGoogle Scholar
  38. 38.
    Fleischmann R, Kremer J, Cush J, Schulze-Koops H, Connell CA, Bradley JD, et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. New Engl J Med. 2012;367(6):495–507.CrossRefPubMedGoogle Scholar
  39. 39.
    van Vollenhoven RF, Fleischmann R, Cohen S, Lee EB, Garcia Meijide JA, Wagner S, et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. New Engl J Med. 2012;367(6):508–19.Google Scholar
  40. 40.
    Sandborn WJ, Ghosh S, Panes J, Vranic I, Su C, Rousell S, et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. New Engl J Med. 2012;367(7):616–24.CrossRefPubMedGoogle Scholar
  41. 41.
    Lu LD, Stump KL, Wallace NH, Dobrzanski P, Serdikoff C, Gingrich DE, et al. Depletion of autoreactive plasma cells and treatment of lupus nephritis in mice using CEP-33779, a novel, orally active, selective inhibitor of JAK2. J Immunol. 2011;187(7):3840–53.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2013

Authors and Affiliations

  1. 1.Translational Immunology Section, Office of Science and TechnologyNational Institute of Arthritis Musculoskeletal and Skin Diseases National Institutes of HealthBethesdaUSA
  2. 2.BethesdaUSA

Personalised recommendations