Advertisement

Applied Health Economics and Health Policy

, Volume 16, Issue 5, pp 735–744 | Cite as

The Choice of Transcatheter Aortic Valve Implementation (TAVI): Do Patient Co-morbidity and Hospital Ownership Type Matter?

  • Udo Schneider
  • Andreas Schmid
  • Roland Linder
  • Dirk Horenkamp-Sonntag
  • Frank Verheyen
Original Research Article

Abstract

Background

Innovative technologies challenge healthcare systems, as evidence on costs and benefits frequently usually are slow to reflect new technology. We investigated these dynamics for Germany, using the emergence of transcatheter aortic valve implementation (TAVI) as an alternative to conventional aortic valve replacements (CAVR).

Objective

We focused on the role of patient co-morbidity—which would be a medical explanation for adopting TAVI—and hospital ownership status, hypothesizing that for-profit facilities are more likely to capitalize on the favorable reimbursement conditions of TAVI.

Methods

The analysis uses claims data from the Techniker Krankenkasse, the largest health insurance fund in Germany, for the years 2009–2015, covering 2892 patients with TAVI and 9523 with CAVR. The decision on TAVI versus CAVR was estimated for patient-level data, that is, socioeconomic data as well as co-morbidity. At the hospital level, we included the ownership type. We also controlled for effects of the respective owner (rather than the type of ownership), including a random intercept.

Results

While the co-morbidity score of TAVI patients was much higher in the early years, over time, the score almost converged with that of CAVR patients. This is in agreement with emerging evidence that suggests the use of TAVI also leads to better patient outcomes. Our results indicate that the type of ownership does not drive the switch to TAVI. We found little, if any, effect from the respective owner, regardless of ownership type.

Conclusion

Overall, the effects of co-morbidity suggest that providers acted responsibly when adopting TAVI while evidence was still emerging.

Notes

Author Contributions

Udo Schneider was responsible for the study design, the statistical analysis, and the preparation of the manuscript draft. Andreas Schmid prepared data for hospital ownership and contributed to the statistical analysis, literature review, and the final manuscript. Roland Linder was responsible for the medical setting of the study and critical assessment of the statistical analysis. Dirk Horenkamp-Sonntag designed the pick-up of the diagnoses for the co-morbidity index and its interpretation. Frank Verheyen was responsible for study design and study co-ordination.

Compliance with Ethical Standards

Conflict of interest

No funding was received for the study. Udo Schneider, Andreas Schmid, Roland Linder, Dirk Horenkamp-Sonntag, and Frank Verheyen declare that they have no conflicts of interest.

Supplementary material

40258_2018_414_MOESM1_ESM.pdf (111 kb)
Supplementary material 1 (PDF 110 kb)

References

  1. 1.
    IQTIG: Qualitätsreport 2015 [Quality report 2015]. Berlin. 2016.Google Scholar
  2. 2.
    Kuck K-H, Eggebrecht H, Elsässer A, Hamm C, Haude M, Ince H, Katus H, Möllmann H, Naber CK, Schunkert H, Thiele H, Werner N. Qualitätskriterien zur Durchführung der kathetergestützten Aortenklappenimplantation (TAVI). Der Kardiologe. 2016;10(5):282–300.  https://doi.org/10.1007/s12181-016-0082-4.CrossRefGoogle Scholar
  3. 3.
    Miller DC, Blackstone EH, Mack MJ, Svensson LG, Kodali SK, Kapadia S, Rajeswaran J, Anderson WN, Moses JW, Tuzcu EM, Webb JG, Leon MB, Smith CR. Transcatheter (TAVR) versus surgical (AVR) aortic valve replacement: occurrence, hazard, risk factors, and consequences of neurologic events in the PARTNER trial. J Thorac Cardiovasc Surg. 2012;143(4):832–43.  https://doi.org/10.1016/j.jtcvs.2012.01.055.CrossRefPubMedGoogle Scholar
  4. 4.
    Adams DH, Popma JJ, Reardon MJ. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med. 2014;371(10):967–8.  https://doi.org/10.1056/nejmc1408396.CrossRefPubMedGoogle Scholar
  5. 5.
    Fairbairn TA, Meads DM, Hulme C, Mather AN, Plein S, Blackman DJ, Greenwood JP. The cost-effectiveness of transcatheter aortic valve implantation versus surgical aortic valve replacement in patients with severe aortic stenosis at high operative risk. Heart. 2013;99(13):914–20.  https://doi.org/10.1136/heartjnl-2013-303722.CrossRefGoogle Scholar
  6. 6.
    Indraratna P, Ang SC, Gada H, Yan TD, Manganas C, Bannon P, Cao C. Systematic review of the cost-effectiveness of transcatheter aortic valve implantation. J Thorac Cardiovasc Surg. 2014;148(2):509–14.  https://doi.org/10.1016/j.jtcvs.2013.10.023.CrossRefPubMedGoogle Scholar
  7. 7.
    Mollmann H, Bestehorn K, Bestehorn M, Papoutsis K, Fleck E, Ertl G, Kuck KH, Hamm C. In-hospital outcome of transcatheter vs. surgical aortic valve replacement in patients with aortic valve stenosis: complete dataset of patients treated in 2013 in Germany. Clin Res Cardiol. 2016;105(6):553–9.  https://doi.org/10.1007/s00392-016-0962-4.CrossRefPubMedGoogle Scholar
  8. 8.
    Schindel R. Qualitätsaspekte der kathetergestützten Aortenklappenimplantation. Welt der Krankenversicherung. 2012;6/2012:192–4.Google Scholar
  9. 9.
    Roeder N, Bunzemeier H, Heumann M. Das KHSG und seine potenziellen Auswirkungen auf die Leistungsvergütung der Krankenhäuser. Das Krankenhaus. 2015;7.2015:626–35.Google Scholar
  10. 10.
    Horwitz JR. Making profits and providing care: comparing nonprofit, for-profit, and government hospitals. Health Aff (Millwood). 2005;24(3):790–801.  https://doi.org/10.1377/hlthaff.24.3.790.CrossRefGoogle Scholar
  11. 11.
    Bayindir EE. Hospital ownership type and treatment choices. J Health Econ. 2012;31(2):359–70.  https://doi.org/10.1016/j.jhealeco.2012.01.003.CrossRefPubMedGoogle Scholar
  12. 12.
    Sloan FA. Not-for-profit ownership and hospital behavior. In: Culyer AJ, Newhouse JP, editors. Handbook of health economics, vol. 1B. Amsterdam [u.a.]: Elsevier [u.a.]; 2000. p. 1141–74.Google Scholar
  13. 13.
    Barros PP, Siciliani L. Public and private sector interface. In: Pauly MV, Mcguire TG, Barros PP, editors. Handbook of health economics 2, vol. 2012. Amsterdam: Elsevier, North Holland; 2011. p. 927–1001.Google Scholar
  14. 14.
    Horwitz JR, Hsuan C, Nichols A. The role of hospital and market characteristics in invasive cardiac service diffusion. Rev Ind Organ. 2018.  https://doi.org/10.1007/s11151-018-9625-0 (First online 23 Mar 2018).Google Scholar
  15. 15.
    Horwitz JR, Nichols A. Hospital ownership and medical services: market mix, spillover effects, and nonprofit objectives. J Health Econ. 2009;28(5):924–37.  https://doi.org/10.1016/j.jhealeco.2009.06.008.CrossRefPubMedGoogle Scholar
  16. 16.
    Burke DE, Wang BB, Wan TT, Diana ML. Exploring hospitals’ adoption of information technology. J Med Syst. 2002;26(4):349–55.CrossRefPubMedGoogle Scholar
  17. 17.
    Lin SC, Everson J, Adler-Milstein J. Technology, incentives, or both? Factors related to level of hospital health information exchange. J Med Syst. 2018;26:349–55.  https://doi.org/10.1111/1475-6773.12838.Google Scholar
  18. 18.
    Tiemann O, Schreyögg J, Busse R. Hospital ownership and efficiency: a review of studies with particular focus on Germany. Health Policy. 2012;104:163–71.  https://doi.org/10.1016/j.healthpol.2011.11.010.CrossRefPubMedGoogle Scholar
  19. 19.
    Karmann A, Roesel F. Hospital policy and productivity—evidence from German states. Health Econ. 2017;26(12):1548–65.  https://doi.org/10.1002/hec.3447.CrossRefPubMedGoogle Scholar
  20. 20.
    Schmid A, Ulrich V. Consolidation and concentration in the German hospital market: the two sides of the coin. Health Policy. 2013;109(3):301–10.  https://doi.org/10.1016/j.healthpol.2012.08.012.CrossRefPubMedGoogle Scholar
  21. 21.
    Clark MA, Arnold SV, Duhay FG, Thompson AK, Keyes MJ, Svensson LG, Bonow RO, Stockwell BT, Cohen DJ. Five-year clinical and economic outcomes among patients with medically managed severe aortic stenosis: results from a Medicare claims analysis. Circ Cardiovasc Qual Outcomes. 2012;5(5):697–704.  https://doi.org/10.1161/circoutcomes.112.966002.CrossRefPubMedGoogle Scholar
  22. 22.
    Abildstrøm SZ, Hvelplund A, Rasmussen S, Nielsen PH, Mortensen PE, Kruse M. Prognostic information in administrative co-morbidity data following coronary artery bypass grafting. Eur J Cardiothorac Surg Off J Eur Assoc Cardiothorac Surg. 2010;38(5):573–6.  https://doi.org/10.1016/j.ejcts.2010.03.007.CrossRefGoogle Scholar
  23. 23.
    Guo G, Zhao H. Multilevel modelling for binary data. Am Rev Sociol. 2000;26:441–62.CrossRefGoogle Scholar
  24. 24.
    Schabenberger O. Introducing the GLIMMIX procedure for generalized linear mixed models. In: Proceedings of the 30th annual SAS users groupGoogle Scholar
  25. 25.
    Dai J, Li Z, Rocke D. Hierarchical logistic regression modeling with SAS GLIMMIX. Davis: University of California; 2006.Google Scholar
  26. 26.
    Zhu M. Analyzing multilevel models with the GLIMMIX procedure. Paper SAS026-2014. Cary, NC: SAS Institute Inc; 2014.Google Scholar
  27. 27.
    Gemeinsamer Bundesausschuss: Beschluss des Gemeinsamen Bundesausschusses über eine Richtlinie zu minimalinvasiven Herzklappeninterventionen: Erstfassung. Bundesanzeiger BAnz AT 24.07.2015 B6; 2015.Google Scholar
  28. 28.
    Neubauer S, Kreis K, Klora M, Zeidler J. Access, use, and challenges of claims data analyses in Germany. Eur J Health Econ. 2017;18:533–6.  https://doi.org/10.1007/s10198-016-0849-3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Udo Schneider
    • 1
  • Andreas Schmid
    • 2
  • Roland Linder
    • 1
  • Dirk Horenkamp-Sonntag
    • 1
  • Frank Verheyen
    • 3
  1. 1.WINEG-Scientific Institute of TK for Benefit and Efficiency in Health CareHamburgGermany
  2. 2.Department of Law and Economics, JP Health Care ManagementUniversity of BayreuthBayreuthGermany
  3. 3.Techniker KrankenkasseHamburgGermany

Personalised recommendations