Applied Health Economics and Health Policy

, Volume 12, Issue 3, pp 239–253 | Cite as

Modelling the Economics of Type 2 Diabetes Mellitus Prevention: A Literature Review of Methods

  • P. Watson
  • L. Preston
  • H. Squires
  • J. Chilcott
  • A. Brennan
Review Article


Our objective was to review modelling methods for type 2 diabetes mellitus prevention cost-effectiveness studies. The review was conducted to inform the design of a policy analysis model capable of assisting resource allocation decisions across a spectrum of prevention strategies. We identified recent systematic reviews of economic evaluations in diabetes prevention and management of obesity. We extracted studies from two existing systematic reviews of economic evaluations for the prevention of diabetes. We extracted studies evaluating interventions in a non-diabetic population with type 2 diabetes as a modelled outcome, from two systematic reviews of obesity intervention economic evaluations. Databases were searched for studies published between 2008 and 2013. For each study, we reviewed details of the model type, structure, and methods for predicting diabetes and cardiovascular disease. Our review identified 46 articles and found variation in modelling approaches for cost-effectiveness evaluations for the prevention of type 2 diabetes. Investigation of the variables used to estimate the risk of type 2 diabetes suggested that impaired glucose regulation, and body mass index were used as the primary risk factors for type 2 diabetes. A minority of cost-effectiveness models for diabetes prevention accounted for the multivariate impacts of interventions on risk factors for type 2 diabetes. Twenty-eight cost-effectiveness models included cardiovascular events in addition to type 2 diabetes. Few cost-effectiveness models have flexibility to evaluate different intervention types. We conclude that to compare a range of prevention interventions it is necessary to incorporate multiple risk factors for diabetes, diabetes-related complications and obesity-related co-morbidity outcomes.



The authors have no conflicts of interest that are relevant to the content of this article. This article desribes independent research funded by the National Institute for Health Research (NIHR)’s School for Public Health Research (SPHR). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Author Contributions

Dr Watson was the primary researcher, writer and compiler of this work. She is the guarantor for the overall content. Dr Squires assisted with the reviewing, conceptual framework of the review and edited the manuscript. Dr Preston designed and performed the literature search. Professors Brennan and Chilcott edited and contributed to the conceptual framework of the manuscript. All authors approved the final manuscript.

Supplementary material

40258_2014_91_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)


  1. 1.
    Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.PubMedCrossRefGoogle Scholar
  2. 2.
    World Health Organisation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia. World Health Organisation. 2006.
  3. 3.
    Gray LJ, Davies MJ, Hiles S, Taub NA, Webb DR, Srinivasan BT, et al. Detection of impaired glucose regulation and/or type 2 diabetes mellitus, using primary care electronic data, in a multiethnic UK community setting. Diabetologia. 2012;55(4):959–66.PubMedCrossRefGoogle Scholar
  4. 4.
    National Institute for Health and Care Excellence. PH35: Preventing type 2 diabetes: population and community-level interventions. National Institute for Health and Care Excellence. 2011. NICE public health guidance 35.
  5. 5.
    PH38 Preventing type 2 diabetes: risk identification and interventions for individuals at high risk: guidance. National Institute for Health and Care Excellence. 2012. NICE public health guidance 38.
  6. 6.
    Gillett M, Royle P, Snaith A, Scotland G, Poobalan A, Imamura M, et al. Non-pharmacological interventions to reduce the risk of diabetes in people with impaired glucose regulation: a systematic review and economic evaluation. Health Technol Assess. 2012;16(33):1–iv.Google Scholar
  7. 7.
    Lehnert T, Sonntag D, Konnopka A, Riedel-Heller S, Konig HH. The long-term cost-effectiveness of obesity prevention interventions: systematic literature review. Obes Rev. 2012;13(6):537–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Waugh N, Scotland G, McNamee P, Gillett M, Brennan A, Goyder E, et al. Screening for type 2 diabetes: literature review and economic modelling. Health Technol Assess. 2007;11(17):iii–xi, 1.Google Scholar
  9. 9.
    Anderson R. Systematic reviews of economic evaluations: utility or futility? Health Econ. 2010;19(3):350–64.PubMedCrossRefGoogle Scholar
  10. 10.
    Squires H. A methodological framework for developing the structure of public health economic models. PhD Thesis. UK: University of Sheffield; 2014.Google Scholar
  11. 11.
    Griffiths UK, Anigbogu B, Nanchahal K. Economic evaluations of adult weight management interventions: a systematic literature review focusing on methods used for determining health impacts. Appl Health Econ Health Policy. 2012;10(3):145–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Hippisley-Cox J, Coupland C, Robson J, Sheikh A, Brindle P. Predicting risk of type 2 diabetes in England and Wales: prospective derivation and validation of QDScore. BMJ. 2009;338:b880. doi: 10.1136/bmj.b880.:b880.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    NHS Quality Improvement Scotland Filter. National Health Service. 2005.
  14. 14.
    Ara R, Brennan A. The cost-effectiveness of sibutramine in non-diabetic obese patients: evidence from four Western countries. Obes Rev. 2007;8(4):363–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Warren E, Brennan A, Akehurst R. Cost-effectiveness of sibutramine in the treatment of obesity. Med Decis Making. 2004;24(1):9–19.PubMedCrossRefGoogle Scholar
  16. 16.
    Ackermann RT, Marrero DG, Hicks KA, Hoerger TJ, Sorensen S, Zhang P, et al. An evaluation of cost sharing to finance a diet and physical activity intervention to prevent diabetes. Diabetes Care. 2006;29(6):1237–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Herman WH, Hoerger TJ, Brandle M, Hicks K, Sorensen S, Zhang P, et al. The cost-effectiveness of lifestyle modification or metformin in preventing type 2 diabetes in adults with impaired glucose tolerance. Ann Intern Med. 2005;142(5):323–32.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    School of Population Health University of Queensland. 2013.
  19. 19.
    National Institute for Public Health and the Environment. 2013.
  20. 20.
    Bertram MY, Lim SS, Barendregt JJ, Vos T, Bertram MY, Lim SS, et al. Assessing the cost-effectiveness of drug and lifestyle intervention following opportunistic screening for pre-diabetes in primary care. Diabetologia. 2010;53(5):875–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Caro JJ, Getsios D, Caro I, Klittich WS, O’Brien JA. Economic evaluation of therapeutic interventions to prevent type 2 diabetes in Canada. Diabet Med. 2004;21(11):1229–36.PubMedCrossRefGoogle Scholar
  22. 22.
    Colagiuri S, Walker AE, Colagiuri S, Walker AE. Using an economic model of diabetes to evaluate prevention and care strategies in Australia. Health Affairs. 2008;27(1):256–68.PubMedCrossRefGoogle Scholar
  23. 23.
    Dalziel K, Segal L, Dalziel K, Segal L. Time to give nutrition interventions a higher profile: cost-effectiveness of 10 nutrition interventions (review) (54 refs). Health Promot Int. 2007;22(4):271–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Gillies CL, Lambert PC, Abrams KR, Sutton AJ, Cooper NJ, Hsu RT, et al. Different strategies for screening and prevention of type 2 diabetes in adults: cost effectiveness analysis. BMJ. 2008;336(7654):1180–5.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Hoerger TJ, Hicks KA, Sorensen SW, Herman WH, Ratner RE, Ackermann RT, et al. Cost-effectiveness of screening for pre-diabetes among overweight and obese U.S. adults. Diabetes Care. 2007;30(11):2874–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Icks A, Rathmann W, Haastert B, Gandjour A, Holle R, John J, et al. Clinical and cost-effectiveness of primary prevention of type 2 diabetes in a ‘real world’ routine healthcare setting: model based on the KORA Survey 2000. Diabetic Med. 2007;24(5):473–80.PubMedCrossRefGoogle Scholar
  27. 27.
    Lindgren P, Lindstrom J, Tuomilehto J, Uusitupa M, Peltonen M, Jonsson B, et al. Lifestyle intervention to prevent diabetes in men and women with impaired glucose tolerance is cost-effective. Int J Technol Assess Health Care. 2007;23(2):177–83.PubMedCrossRefGoogle Scholar
  28. 28.
    Palmer AJ, Roze S, Valentine WJ, Spinas GA, Shaw JE, Zimmet PZ. Intensive lifestyle changes or metformin in patients with impaired glucose tolerance: modeling the long-term health economic implications of the diabetes prevention program in Australia, France, Germany, Switzerland, and the United Kingdom. Clin Ther. 2004;26(2):304–21.PubMedCrossRefGoogle Scholar
  29. 29.
    Palmer AJ, Tucker DM, Palmer AJ, Tucker DMD. Cost and clinical implications of diabetes prevention in an Australian setting: a long-term modeling analysis. Primary Care Diabetes. 2012;6(2):109–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Schaufler TM, Wolff M, Schaufler TM, Wolff M. Cost effectiveness of preventive screening programmes for type 2 diabetes mellitus in Germany. Appl Health Econ Health Policy. 2010;8(3):191–202.PubMedCrossRefGoogle Scholar
  31. 31.
    Segal L, Dalton A, Richardson J. Cost-effectiveness of the primary prevention of non-insulin dependent diabetes mellitus. Health Promot Int. 1998;13(3):197–209.CrossRefGoogle Scholar
  32. 32.
    Smith KJ, Hsu HE, Roberts MS, Kramer MK, Orchard TJ, Piatt GA, et al. Cost-effectiveness analysis of efforts to reduce risk of type 2 diabetes and cardiovascular disease in southwestern Pennsylvania, 2005-2007. Prevent Chronic Dis. 2010;7(5):A109.Google Scholar
  33. 33.
    Sullivan SD, Garrison LP Jr, Rinde H, Kolberg J, Moler EJ, Sullivan SD, et al. Cost-effectiveness of risk stratification for preventing type 2 diabetes using a multi-marker diabetes risk score. J Med Econ. 2011;14(5):609–16.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhuo X, Zhang P, Selvin E, Hoerger TJ, Ackermann RT, Li R, et al. Alternative HbA1c cutoffs to identify high-risk adults for diabetes prevention: a cost-effectiveness perspective. Am J Prevent Med. 2012;42(4):374–81.CrossRefGoogle Scholar
  35. 35.
    Clegg A, Colquitt J, Sidhu M, Royle P, Walker A. Clinical and cost effectiveness of surgery for morbid obesity: a systematic review and economic evaluation. Int J Obes Relat Metab Disord. 2003;27(10):1167–77.PubMedCrossRefGoogle Scholar
  36. 36.
    Galani C, Schneider H, Rutten FF, Galani C, Schneider H, Rutten FFH. Modelling the lifetime costs and health effects of lifestyle intervention in the prevention and treatment of obesity in Switzerland. Int J Public Health. 2007;52(6):372–82.PubMedCrossRefGoogle Scholar
  37. 37.
    Gillett M, Chilcott J, Goyder L, Payne N, Thokala P, Freeman C, et al. Prevention of type 2 diabetes: risk identification and interventions for individuals at high risk. NICE Centre for Public Health Excellence. 2011.
  38. 38.
    Hampp C, Hartzema AG, Kauf TL. Cost-utility analysis of rimonabant in the treatment of obesity. Value Health. 2008;11(3):389–99.PubMedCrossRefGoogle Scholar
  39. 39.
    Hertzman P. The cost effectiveness of orlistat in a 1-year weight-management programme for treating overweight and obese patients in Sweden: a treatment responder approach. Pharmacoeconomics. 2005;23(10):1007–20.PubMedCrossRefGoogle Scholar
  40. 40.
    Iannazzo S, Zaniolo O, Pradelli L. Economic evaluation of treatment with orlistat in Italian obese patients. Curr Med Res Opin. 2008;24(1):63–74.PubMedCrossRefGoogle Scholar
  41. 41.
    Lacey LA, Wolf A, O’Shea D, Erny S, Ruof J. Cost-effectiveness of orlistat for the treatment of overweight and obese patients in Ireland. Int J Obes (Lond). 2005;29(8):975–82.CrossRefGoogle Scholar
  42. 42.
    Michaud P-C, Goldman D. The value of medical and pharmaceutical interventions for reducing obesity. J Health Econ. 2012;31(4):630–43.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Picot J, Jones J, Colquitt JL, Gospodarevskaya E, Loveman E, Baxter L, et al. The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation. Health Technol Assess. 2009;13(41):1–357, iii.Google Scholar
  44. 44.
    Roux L, Kuntz KM, Donaldson C, Goldie SJ. Economic evaluation of weight loss interventions in overweight and obese women. Obesity (Silver Spring). 2006;14(6):1093–106.CrossRefGoogle Scholar
  45. 45.
    Trueman P, Haynes SM, Felicity LG, Louise ME, McQuigg MS, Mongia S, et al. Long-term cost-effectiveness of weight management in primary care. Int J Clin Pract. 2010;64(6):775–83.PubMedCrossRefGoogle Scholar
  46. 46.
    Forster M, Veerman JL, Barendregt JJ, Vos T, Forster M, Veerman JL, et al. Cost-effectiveness of diet and exercise interventions to reduce overweight and obesity. Int J Obesity. 2011;35(8):1071–8.CrossRefGoogle Scholar
  47. 47.
    Sacks G, Veerman JL, Moodie M, Swinburn B, Sacks G, Veerman JL, et al. ‘Traffic-light’ nutrition labelling and ‘junk-food’ tax: a modelled comparison of cost-effectiveness for obesity prevention. Int J Obesity. 2011;35(7):1001–9.CrossRefGoogle Scholar
  48. 48.
    Veerman JL, Barendregt JJ, Forster M, Vos T, Veerman JL, Barendregt JJ, et al. Cost-effectiveness of pharmacotherapy to reduce obesity. PLoS ONE. 2011;6(10):e26051.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Cobiac LJ, Vos T, Barendregt JJ. Cost-effectiveness of interventions to promote physical activity: a modelling study. PLoS Med. 2009;6(7):e1000110.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Lohse N, Marseille E, Kahn JG. Development of a model to assess the cost-effectiveness of gestational diabetes mellitus screening and lifestyle change for the prevention of type 2 diabetes mellitus. Int J Gynaecol Obstet. 2011;115(Suppl 1):S20–5. doi: 10.1016/S0020-7292(11)60007-6.):-6.PubMedCrossRefGoogle Scholar
  51. 51.
    Roux L, Pratt M, Tengs TO, Yore MM, Yanagawa TL, Van Den Bos J, et al. Cost effectiveness of community-based physical activity interventions. Am J Prev Med. 2008;35(6):578–88.PubMedCrossRefGoogle Scholar
  52. 52.
    Johansson P, Ostenson CG, Hilding AM, Andersson C, Rehnberg C, Tillgren P, et al. A cost-effectiveness analysis of a community-based diabetes prevention program in Sweden. Int J Technol Assess Health Care. 2009;25(3):350–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Van Baal PH, van den Berg M, Hoogenveen RT, Vijgen SM, Engelfriet PM, Van Baal PHM, et al. Cost-effectiveness of a low-calorie diet and orlistat for obese persons: modeling long-term health gains through prevention of obesity-related chronic diseases. Value Health. 2008;11(7):1033–40.PubMedCrossRefGoogle Scholar
  54. 54.
    Cobiac L, Vos T, Veerman L. Cost-effectiveness of weight watchers and the lighten up to a healthy lifestyle program. Aust N Z J Public Health. 2010;34(3):240–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Caro J, Stillman IO. Cost effectiveness of rimonabant use in patients at increased cardiometabolic risk: estimates from a Markov model. J Med Econ. 2007;10:239–64.CrossRefGoogle Scholar
  56. 56.
    Jacobs-van der Bruggen MA, Bos G, Bemelmans WJ, Hoogenveen RT, Vijgen SM, Baan CA, et al. Lifestyle interventions are cost-effective in people with different levels of diabetes risk: results from a modeling study. Diabetes Care. 2007;30(1):128–134.Google Scholar
  57. 57.
    Cecchini M, Sassi F, Lauer JA, Lee YY, Guajardo-Barron V, Chisholm D. Tackling of unhealthy diets, physical inactivity, and obesity: health effects and cost-effectiveness. Lancet. 2010;376(9754):1775–84.PubMedCrossRefGoogle Scholar
  58. 58.
    Feenstra TL, van Baal PM, Jacobs-van der Bruggen MO, Hoogenveen RT, Kommer GJ, Baan CA. Targeted versus universal prevention: a resource allocation model to prioritize cardiovascular prevention. Cost Eff Resour Alloc. 2011;9(1):14–19.Google Scholar
  59. 59.
    Bemelmans W, van BP, Wendel-Vos W, Schuit J, Feskens E, Ament A, et al. The costs, effects and cost-effectiveness of counteracting overweight on a population level: a scientific base for policy targets for the Dutch national plan for action. Prevent Med. 2008;46(2):127–32.Google Scholar
  60. 60.
    Schlessinger L, Eddy DM. Archimedes: a new model for simulating health care systems: the mathematical formulation. J Biomed Inform. 2002;35(1):37–50.PubMedCrossRefGoogle Scholar
  61. 61.
    Stern MP, Williams K, Haffner SM. Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test? Ann Intern Med. 2002;136(8):575–81.PubMedCrossRefGoogle Scholar
  62. 62.
    Anderson KM, Wilson PW, Odell PM, Kannel WB. An updated coronary risk profile: a statement for health professionals. Circulation. 1991;83(1):356–62.PubMedCrossRefGoogle Scholar
  63. 63.
    Kothari V, Stevens RJ, Adler AI, Stratton IM, Manley SE, Neil HA, et al. UKPDS 60: risk of stroke in type 2 diabetes estimated by the UK Prospective Diabetes Study risk engine. Stroke. 2002;33(7):1776–81.PubMedCrossRefGoogle Scholar
  64. 64.
    Stevens RJ, Kothari V, Adler AI, Stratton IM. The UKPDS risk engine: a model for the risk of coronary heart disease in type II diabetes (UKPDS 56). Clin Sci (Lond). 2001;101(6):671–9.CrossRefGoogle Scholar
  65. 65.
    Eddy DM, Schlessinger L, Kahn R. Clinical outcomes and cost-effectiveness of strategies for managing people at high risk for diabetes. Ann Intern Med. 2005;143(4):251–64.PubMedCrossRefGoogle Scholar
  66. 66.
    van den Berg E, Biessels GJ, Stehouwer CD, Kappelle LJ, Heine RJ, Nijpels G, et al. Ten-year time course of risk factors for increased carotid intima-media thickness: the Hoorn Study. Eur J Cardiovasc Prev Rehabil. 2010;17(2):168–74.PubMedCrossRefGoogle Scholar
  67. 67.
    Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.PubMedCrossRefGoogle Scholar
  68. 68.
    Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.PubMedCrossRefGoogle Scholar
  69. 69.
    Field AE, Coakley EH, Must A, Spadano JL, Laird N, Dietz WH, et al. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch Intern Med. 2001;161(13):1581–6.PubMedCrossRefGoogle Scholar
  70. 70.
    de VF, Dekker JM, Jager A, Hienkens E, Kostense PJ, Stehouwer CD et al. Relation of impaired fasting and postload glucose with incident type 2 diabetes in a Dutch population: the Hoorn Study. JAMA. 2001;285(16):2109–13.Google Scholar
  71. 71.
    The Atherosclerosis Risk in Communities. (ARIC) Study: design and objectives. The ARIC investigators. Am J Epidemiol. 1989;129(4):687–702.Google Scholar
  72. 72.
    Nakagami T, Tajima N, Oizumi T, Karasawa S, Wada K, Kameda W, et al. Hemoglobin A1c in predicting progression to diabetes. Diabetes Res Clin Pract. 2010;87(1):126–31.PubMedCrossRefGoogle Scholar
  73. 73.
    Dahlgren G, Whitehead M. Policies and strategies to promote social equity in health. Stockholm: Institute for Future Studies; 1991.Google Scholar
  74. 74.
    Johansen NB, Hansen AL, Mygind JT, Philipsen A, Rasmussen SS, Jorgensen ME, et al. Protocol for ADDITION-PRO: a longitudinal cohort study of the cardiovascular experience of individuals at high risk for diabetes recruited from Danish primary care. BMC Public Health. 2012;12(1):1078.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Eriksson KF, Lindgarde F. Prevention of type 2 (non-insulin-dependent) diabetes mellitus by diet and physical exercise: the 6-year Malmo feasibility study. Diabetologia. 1991;34(12):891–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Sjostrom CD, Peltonen M, Wedel H, Sjostrom L. Differentiated long-term effects of intentional weight loss on diabetes and hypertension. Hypertension. 2000;36(1):20–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002;359(9323):2072–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Turner R, Cull C, Holman R. United Kingdom Prospective Diabetes Study 17: a 9-year update of a randomized, controlled trial on the effect of improved metabolic control on complications in non-insulin-dependent diabetes mellitus. Ann Intern Med. 1996;124(1 Pt 2):136–45.PubMedCrossRefGoogle Scholar
  79. 79.
    Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 1995;122(7):481–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Sjostrom CD, Lissner L, Wedel H, Sjostrom L. Reduction in incidence of diabetes, hypertension and lipid disturbances after intentional weight loss induced by bariatric surgery: the SOS Intervention Study. Obes Res. 1999;7(5):477–84.PubMedCrossRefGoogle Scholar
  81. 81.
    Gorsky RD, Pamuk E, Williamson DF, Shaffer PA, Koplan JP. The 25-year health care costs of women who remain overweight after 40 years of age. Am J Prev Med. 1996;12(5):388–94.PubMedGoogle Scholar
  82. 82.
    Eriksson J, Lindstrom J, Valle T, Aunola S, Hamalainen H, Ilanne-Parikka P, et al. Prevention of type II diabetes in subjects with impaired glucose tolerance: the Diabetes Prevention Study (DPS) in Finland. Study design and 1-year interim report on the feasibility of the lifestyle intervention programme. Diabetologia. 1999;42(7):793–801.PubMedCrossRefGoogle Scholar
  83. 83.
    Hoogenveen R, Gijsen R, van Genugten MLL, Kommer GJ, Schouten JSAG, de Hollander AEM. Constructing a set of consistent data for chronic disease modelling. Bilthoven: National Institute of Public Health and the Environment (RIVM); 2000.Google Scholar
  84. 84.
    ABS National Health Survey 2001. Summary of results, Cat no. 4364.0. Canberra: ABS 2002; 2002.Google Scholar
  85. 85.
    ABS, National Health Survey 2004-5. Summary of results, Cat no. 4364.0. Canberra: ABS, 2006; 2006.Google Scholar
  86. 86.
    Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001;345(11):790–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Wannamethee SG, Shaper AG, Walker M. Overweight and obesity and weight change in middle aged men: impact on cardiovascular disease and diabetes. J Epidemiol Comm Health. 2005;59(2):134–9.CrossRefGoogle Scholar
  88. 88.
    Rexrode KM, Carey VJ, Hennekens CH, Walters EE, Colditz GA, Stampfer MJ, et al. Abdominal adiposity and coronary heart disease in women. JAMA. 1998;280(21):1843–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Rexrode KM, Buring JE, Manson JE. Abdominal and total adiposity and risk of coronary heart disease in men. Int J Obes Relat Metab Disord. 2001;25(7):1047–56.PubMedCrossRefGoogle Scholar
  90. 90.
    Torgerson JS, Hauptman J, Boldrin MN, Sjostrom L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care. 2004;27(1):155–61.PubMedCrossRefGoogle Scholar
  91. 91.
    CDC. National diabetes surveillance system: incidence of diabetes. 2013.
  92. 92.
    Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837–47.PubMedCrossRefGoogle Scholar
  93. 93.
    Wolfe CD, Rudd AG, Howard R, Coshall C, Stewart J, Lawrence E, et al. Incidence and case fatality rates of stroke subtypes in a multiethnic population: the South London Stroke Register. J Neurol Neurosurg Psychiatry. 2002;72(2):211–6.PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Ni MC, Parag V, Nakamura M, Patel A, Rodgers A, Lam TH. Body mass index and risk of diabetes mellitus in the Asia-Pacific region. Asia Pac J Clin Nutr. 2006;15(2):127–33.Google Scholar
  95. 95.
    Dunstan DW, Zimmet PZ, Welborn TA, Cameron AJ, Shaw J, de Court et al. The Australian Diabetes, Obesity and Lifestyle Study (AusDiab): methods and response rates. Diabetes Res Clin Pract. 2002;57(2):119–29.Google Scholar
  96. 96.
    Barendregt JJ, Van Oortmarssen GJ, Vos T, Murray CJ. A generic model for the assessment of disease epidemiology: the computational basis of DisMod II. Popul Health Metr. 2003;1(1):4.PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Rathmann W, Haastert B, Icks A, Lowel H, Meisinger C, Holle R, et al. High prevalence of undiagnosed diabetes mellitus in Southern Germany: target populations for efficient screening. The KORA survey 2000. Diabetologia. 2003;46(2):182–9.PubMedGoogle Scholar
  98. 98.
    Liebl A, Neiss A, Spannheimer A, Reitberger U, Wieseler B, Stammer H, et al. Complications, co-morbidity, and blood glucose control in type 2 diabetes mellitus patients in Germany: results from the CODE-2 study. Exp Clin Endocrinol Diabetes. 2002;110(1):10–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Fox CS, Pencina MJ, Meigs JB, Vasan RS, Levitzky YS, D’Agostino RB Sr. Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s: the Framingham Heart Study. Circulation. 2006;113(25):2914–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Gregg EW, Cadwell BL, Cheng YJ, Cowie CC, Williams DE, Geiss L, et al. Trends in the prevalence and ratio of diagnosed to undiagnosed diabetes according to obesity levels in the U.S. Diabetes Care. 2004;27(12):2806–12.PubMedCrossRefGoogle Scholar
  101. 101.
    Brindle P, Emberson J, Lampe F, Walker M, Whincup P, Fahey T, et al. Predictive accuracy of the Framingham coronary risk score in British men: prospective cohort study. BMJ. 2003;327(7426):1267.PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Ratner RE, Christophi CA, Metzger BE, Dabelea D, Bennett PH, Pi-Sunyer X, et al. Prevention of diabetes in women with a history of gestational diabetes: effects of metformin and lifestyle interventions. J Clin Endocrinol Metab. 2008;93(12):4774–9.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, Minhas R, Sheikh A, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ. 2008;336(7659):1475–82.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Kolberg JA, Jorgensen T, Gerwien RW, Hamren S, McKenna MP, Moler E, et al. Development of a type 2 diabetes risk model from a panel of serum biomarkers from the Inter99 cohort. Diabetes Care. 2009;32(7):1207–12.PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ, Brenneman AT, et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009;374(9702):1677–86.PubMedCrossRefGoogle Scholar
  106. 106.
    Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33): UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998; 352(9131):837–853.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • P. Watson
    • 1
  • L. Preston
    • 1
  • H. Squires
    • 1
  • J. Chilcott
    • 1
  • A. Brennan
    • 1
  1. 1.School of Health and Related ResearchUniversity of SheffieldSheffieldUK

Personalised recommendations