Advertisement

American Journal of Clinical Dermatology

, Volume 20, Issue 6, pp 749–761 | Cite as

The Microbiome and Atopic Dermatitis: A Review

  • Anna PothmannEmail author
  • Tanja Illing
  • Cornelia Wiegand
  • Albert A. Hartmann
  • Peter Elsner
Leading Article

Abstract

The microbiome is defined as the sum of microbes, their genomes, and interactions in a given ecological niche. Atopic dermatitis is a multifactorial chronic inflammatory skin disease leading to dryness and itchiness of the skin. It is often associated with comorbidities such as allergic rhinoconjunctivitis and asthma. Today, culture-free techniques have been established to define microbes and their genomes that may be both detrimental and beneficial for their host. There are signs that microbes, both on skin and in the gut, may influence the course of atopic dermatitis. Antiseptic treatment has been used for decades, however now, with the help of traditional culture-based methods and modern metagenomics, we are beginning to understand that targeted treatment of dysbiosis may possibly become part of an integrated therapy plan in the future.

Notes

Compliance with ethical standards

Funding

No funding was received for the preparation of this manuscript.

Conflict of Interest

A. Pothmann, T. Illing, C. Wiegand, A. Hartmann and P. Elsner declare that they have no conflict of interest.

References

  1. 1.
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett C, Knight R, Gordon JI. The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature. 2007;449(7164):804–10.  https://doi.org/10.1038/nature06244.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gensollen T, Blumberg RS. Correlation between early-life regulation of the immune system by microbiota and allergy development. J Allergy Clin Immunol. 2017;139(4):1084–91.  https://doi.org/10.1016/j.jaci.2017.02.011.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Oh J, Byrd AL, Park M, Program NCS, Kong HH, Segre JA. Temporal stability of the human skin microbiome. Cell. 2016;165(4):854–66.  https://doi.org/10.1016/j.cell.2016.04.008.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Moissl-Eichinger C, Probst AJ, Birarda G, Auerbach A, Koskinen K, Wolf P, et al. Human age and skin physiology shape diversity and abundance of Archaea on skin. Sci Rep. 2017;7(1):4039.  https://doi.org/10.1038/s41598-017-04197-4.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Furue M, Iida K, Imaji M, Nakahara T. Microbiome analysis of forehead skin in patients with atopic dermatitis and healthy subjects: implication of Staphylococcus and Corynebacterium. J Dermatol. 2018;45(7):876–7.  https://doi.org/10.1111/1346-8138.14486.CrossRefPubMedGoogle Scholar
  6. 6.
    Francuzik W, Franke K, Schumann RR, Heine G, Worm M. Propionibacterium acnes abundance correlates inversely with Staphylococcus aureus: data from atopic dermatitis skin microbiome. Acta Derm Venereol. 2018;98(5):490–5.  https://doi.org/10.2340/00015555-2896.CrossRefPubMedGoogle Scholar
  7. 7.
    Spergel JM, Paller AS. Atopic dermatitis and the atopic march. J Allergy Clin Immunol. 2003;112(6, Supplement):S118–S27.  https://doi.org/10.1016/j.jaci.2003.09.033.PubMedCrossRefGoogle Scholar
  8. 8.
    Alduraywish SA, Lodge CJ, Campbell B, Allen KJ, Erbas B, Lowe AJ, et al. The march from early life food sensitization to allergic disease: a systematic review and meta-analyses of birth cohort studies. Allergy. 2016;71(1):77–89.  https://doi.org/10.1111/all.12784.CrossRefPubMedGoogle Scholar
  9. 9.
    Asher MI, Montefort S, Björkstén B, Lai CKW, Strachan DP, Weiland SK, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet. 2006;368(9537):733–43.  https://doi.org/10.1016/S0140-6736(06)69283-0.CrossRefPubMedGoogle Scholar
  10. 10.
    Shaw TE, Currie GP, Koudelka CW, Simpson EL. Eczema prevalence in the United States: data from the 2003 National Survey of Children’s Health. J Investig Dermatol. 2011;131(1):67–73.PubMedCrossRefGoogle Scholar
  11. 11.
    Eichenfield LF, Tom WL, Chamlin SL, Feldman SR, Hanifin JM, Simpson EL, et al. Guidelines of care for the management of atopic dermatitis: section 1. Diagnosis and assessment of atopic dermatitis. J Am Acad Dermatol. 2014;70(2):338–51.  https://doi.org/10.1016/j.jaad.2013.10.010.PubMedCrossRefGoogle Scholar
  12. 12.
    Lyons JJ, Milner JD, Stone KD. Atopic dermatitis in children: clinical features, pathophysiology, and treatment. Immunol Allergy Clin N Am. 2015;35(1):161–83.  https://doi.org/10.1016/j.iac.2014.09.008.CrossRefGoogle Scholar
  13. 13.
    Akiyama M. Corneocyte lipid envelope (CLE), the key structure for skin barrier function and ichthyosis pathogenesis. J Dermatol Sci. 2017;88(1):3–9.  https://doi.org/10.1016/j.jdermsci.2017.06.002.CrossRefPubMedGoogle Scholar
  14. 14.
    Castro BM, Prieto M, Silva LC. Ceramide: a simple sphingolipid with unique biophysical properties. Prog Lipid Res. 2014;54:53–67.  https://doi.org/10.1016/j.plipres.2014.01.004.CrossRefPubMedGoogle Scholar
  15. 15.
    Vyumvuhore R, Michael-Jubeli R, Verzeaux L, Boudier D, Le Guillou M, Bordes S, et al. Lipid organization in xerosis: the key of the problem? Int J Cosmet Sci. 2018.  https://doi.org/10.1111/ics.12496.CrossRefPubMedGoogle Scholar
  16. 16.
    Smith FJD, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y, et al. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet. 2006;38:337.  https://doi.org/10.1038/ng1743.CrossRefPubMedGoogle Scholar
  17. 17.
    McAleer MA, Irvine AD. The multifunctional role of filaggrin in allergic skin disease. J Allergy Clin Immunol. 2013;131(2):280–91.  https://doi.org/10.1016/j.jaci.2012.12.668.CrossRefPubMedGoogle Scholar
  18. 18.
    Rawlings AV, Harding CR. Moisturization and skin barrier function. Dermatol Ther. 2004;17(Suppl 1):43–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kezic S, Kemperman PMJH, Koster ES, de Jongh CM, Thio HB, Campbell LE, et al. Loss-of-function mutations in the filaggrin gene lead to reduced level of natural moisturizing factor in the stratum corneum. J Investig Dermatol. 2008;128(8):2117–9.  https://doi.org/10.1038/jid.2008.29.CrossRefPubMedGoogle Scholar
  20. 20.
    Howell MD, Boguniewicz M, Pastore S, Novak N, Bieber T, Girolomoni G, et al. Mechanism of HBD-3 deficiency in atopic dermatitis. Clin Immunol. 2006;121(3):332–8.  https://doi.org/10.1016/j.clim.2006.08.008.CrossRefPubMedGoogle Scholar
  21. 21.
    Leung DY, Harbeck R, Bina P, Reiser RF, Yang E, Norris DA et al. Presence of IgE antibodies to staphylococcal exotoxins on the skin of patients with atopic dermatitis. Evidence for a new group of allergens. J Clin Invest. 1993;92(3):1374–80.  https://doi.org/10.1172/jci116711.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Brandwein M, Bentwich Z, Steinberg D. Endogenous antimicrobial peptide expression in response to bacterial epidermal colonization. Front Immunol. 2017;8:1637.  https://doi.org/10.3389/fimmu.2017.01637.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nakatsuji T, Chen TH, Two AM, Chun KA, Narala S, Geha RS, et al. Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. J Invest Dermatol. 2016;136(11):2192–200.  https://doi.org/10.1016/j.jid.2016.05.127.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Furue M, Chiba T, Tsuji G, Ulzii D, Kido-Nakahara M, Nakahara T, et al. Atopic dermatitis: immune deviation, barrier dysfunction, IgE autoreactivity and new therapies. Allergol Int. 2017;66(3):398–403.  https://doi.org/10.1016/j.alit.2016.12.002.CrossRefPubMedGoogle Scholar
  25. 25.
    Flohr C, Johansson SG, Wahlgren CF, Williams H. How atopic is atopic dermatitis? J Allergy Clin Immunol. 2004;114(1):150–8.  https://doi.org/10.1016/j.jaci.2004.04.027.CrossRefPubMedGoogle Scholar
  26. 26.
    Sun Y-G, Zhao Z-Q, Meng X-L, Yin J, Liu X-Y, Chen Z-F. Cellular basis of itch sensation. Science (New York, NY). 2009;325(5947):1531–4.  https://doi.org/10.1126/science.1174868.CrossRefGoogle Scholar
  27. 27.
    Boguniewicz M, Leung DYM. Recent insights into atopic dermatitis and implications for management of infectious complications. J Allergy Clin Immunol. 2010;125(1):4–13.  https://doi.org/10.1016/j.jaci.2009.11.027.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pillsbury DM, Nichols AC. Bacterial flora of the normal and infected skin: an evaluation of various methods of performing skin cultures1. J Investig Dermatol. 1946;7(6):365–73.  https://doi.org/10.1038/jid.1946.43.CrossRefPubMedGoogle Scholar
  29. 29.
    Lederberg J. Infectious history. Science (New York, NY). 2000;288(5464):287–93.PubMedCrossRefGoogle Scholar
  30. 30.
    Dreno B, Araviiskaia E, Berardesca E, Gontijo G, Sanchez Viera M, Xiang LF, et al. Microbiome in healthy skin, update for dermatologists. JEADV. 2016;30(12):2038–47.  https://doi.org/10.1111/jdv.13965.CrossRefPubMedGoogle Scholar
  31. 31.
    Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70(Suppl 1):S38–44.  https://doi.org/10.1111/j.1753-4887.2012.00493.x.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Glendinning L, Free A. Supra-organismal interactions in the human intestine. Frontiers in cellular and infection microbiology. 2014;4:47.  https://doi.org/10.3389/fcimb.2014.00047.
  33. 33.
    Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science (New York, NY). 2009;324(5931):1190–2.  https://doi.org/10.1126/science.1171700.CrossRefGoogle Scholar
  34. 34.
    Hartmann AA, Pietzsch C, Elsner P, Lange T, Hackel H, Fischer P et al. Antibacterial efficacy of Fabry’s tinctura on the resident flora of the skin at the forehead. Study of bacterial population dynamics in stratum cormeum and infundibulum after single and repeated applications. Zentralblatt für Bakteriologie und Hygiene, I Abt Orig B. 1986;182:499–514.Google Scholar
  35. 35.
    Hartmann AA. The influence of various factors on the human resident skin flora. Semin Dermatol. 1990;9(4):305–8.PubMedGoogle Scholar
  36. 36.
    Chen YE, Fischbach MA, Belkaid Y. Skin microbiota-host interactions. Nature. 2018;553(7689):427–36.  https://doi.org/10.1038/nature25177.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16:143.  https://doi.org/10.1038/nrmicro.2017.157.CrossRefPubMedGoogle Scholar
  38. 38.
    Hartmann AA. A comparison of the effect of povidone-iodine and 60% n-propanol on the resident flora using a new test method. J Hosp Infect. 1985;6(Suppl A):73–80.Google Scholar
  39. 39.
    Hartmann A. Ein neues Verfahren zur Prüfung der antimikrobiellen Wirksamkeit und Sicherheit präoperativ beim Menschen anzuwendender Hautdesinfektionsmittel. Hyg Med. 1984;9:465–7.Google Scholar
  40. 40.
    Hartmann A, Hornschuh B. The vertical penetration of alcoholic skin disinfectants into the human skin. Z Hautkr. 1991;67:316–22.Google Scholar
  41. 41.
    Hartmann A, Solden A. On the vertical penetration of aqueous polyvidon-iodine skin desinfectants into the human skin. Zeitschrift Fur Hautkrankheiten. 1992;67:1085.Google Scholar
  42. 42.
    Hartmann AA. Zur in vitro-und in vivo-Untersuchung der Wirkung von Hautreinigungsmitteln auf die Residentflora der Haut des Menschen. 1981.Google Scholar
  43. 43.
    SanMiguel AJ, Meisel JS, Horwinski J, Zheng Q, Bradley CW, Grice EA. Antiseptic agents elicit short-term, personalized, and body site-specific shifts in resident skin bacterial communities. J Investig Dermatol. 2018;138(10):2234–43.  https://doi.org/10.1016/j.jid.2018.04.022.CrossRefPubMedGoogle Scholar
  44. 44.
    Hartmann AA. A comparative investigation of methods for sampling skin flora. Arch Dermatol Res. 1982;274(3–4):381–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Mathieu A, Vogel TM, Simonet P. The future of skin metagenomics. Res Microbiol. 2014;165(2):69–76.  https://doi.org/10.1016/j.resmic.2013.12.002.CrossRefPubMedGoogle Scholar
  46. 46.
    Emerson JB, Adams RI, Roman CMB, Brooks B, Coil DA, Dahlhausen K, et al. Schrodinger’s microbes: tools for distinguishing the living from the dead in microbial ecosystems. Microbiome. 2017;5(1):86.  https://doi.org/10.1186/s40168-017-0285-3.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kondori N, Tehrani PA, Strömbeck L, Faergemann J. Comparison of dermatophyte PCR kit with conventional methods for detection of dermatophytes in skin specimens. Mycopathologia. 2013;176(3):237–41.  https://doi.org/10.1007/s11046-013-9691-7.CrossRefPubMedGoogle Scholar
  48. 48.
    Stalder JF, Fluhr JW, Foster T, Glatz M, Proksch E. The emerging role of skin microbiome in atopic dermatitis and its clinical implication. J Dermatol Treat. 2018.  https://doi.org/10.1080/09546634.2018.1516030.PubMedCrossRefGoogle Scholar
  49. 49.
    Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA. 2008;105(6):2117–22.  https://doi.org/10.1073/pnas.0712038105.CrossRefPubMedGoogle Scholar
  50. 50.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.  https://doi.org/10.1038/nature05414.CrossRefPubMedGoogle Scholar
  51. 51.
    Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14.  https://doi.org/10.1186/s40168-016-0222-x.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhu J, Liao M, Yao Z, Liang W, Li Q, Liu J, et al. Breast cancer in postmenopausal women is associated with an altered gut metagenome. Microbiome. 2018;6:136.  https://doi.org/10.1186/s40168-018-0515-3.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM et al. Gut dysbiosis is linked to hypertension. Hypertension (Dallas, Tex: 1979). 2015;65(6):1331–40.  https://doi.org/10.1161/hypertensionaha.115.05315.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Yan Q, Gu Y, Li X, Yang W, Jia L, Chen C, et al. Alterations of the gut microbiome in hypertension. Front Cell Infect Microbiol. 2017;7:381.  https://doi.org/10.3389/fcimb.2017.00381.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TG, Ortiz-Lopez A, et al. Mining the human gut microbiota for immunomodulatory organisms. Cell. 2017;168(5):928-43.e11.  https://doi.org/10.1016/j.cell.2017.01.022.CrossRefGoogle Scholar
  56. 56.
    Artis D, Spits H. The biology of innate lymphoid cells. Nature. 2015;517:293.  https://doi.org/10.1038/nature14189.CrossRefPubMedGoogle Scholar
  57. 57.
    Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci. 2008;105(52):20858.  https://doi.org/10.1073/pnas.0808723105.CrossRefPubMedGoogle Scholar
  58. 58.
    Wang M, Karlsson C, Olsson C, Adlerberth I, Wold AE, Strachan DP, et al. Reduced diversity in the early fecal microbiota of infants with atopic eczema. J Allergy Clin Immunol. 2008;121(1):129–34.  https://doi.org/10.1016/j.jaci.2007.09.011.CrossRefPubMedGoogle Scholar
  59. 59.
    Kaikiri H, Miyamoto J, Kawakami T, Park SB, Kitamura N, Kishino S, et al. Supplemental feeding of a gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, alleviates spontaneous atopic dermatitis and modulates intestinal microbiota in NC/nga mice. Int J Food Sci Nutr. 2017;68(8):941–51.  https://doi.org/10.1080/09637486.2017.1318116.CrossRefPubMedGoogle Scholar
  60. 60.
    Lee SY, Lee E, Park YM, Hong SJ. Microbiome in the gut-skin axis in atopic dermatitis. Allergy Asthma Immunol Res. 2018;10(4):354–62.  https://doi.org/10.4168/aair.2018.10.4.354.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Dodd D, Spitzer MH, Van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551(7682):648–52.  https://doi.org/10.1038/nature24661.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Lee E, Lee SY, Kang MJ, Kim K, Won S, Kim BJ, et al. Clostridia in the gut and onset of atopic dermatitis via eosinophilic inflammation. Ann Allergy Asthma Immunol. 2016;117(1):91-2.e1.  https://doi.org/10.1016/j.anai.2016.04.019.CrossRefGoogle Scholar
  63. 63.
    Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr. 1999;69(5):1035s–45s.  https://doi.org/10.1093/ajcn/69.5.1035s.CrossRefPubMedGoogle Scholar
  64. 64.
    Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107(26):11971–5.  https://doi.org/10.1073/pnas.1002601107.CrossRefPubMedGoogle Scholar
  65. 65.
    Jimenez E, Fernandez L, Marin ML, Martin R, Odriozola JM, Nueno-Palop C, et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol. 2005;51(4):270–4.  https://doi.org/10.1007/s00284-005-0020-3.CrossRefPubMedGoogle Scholar
  66. 66.
    Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta paediatrica (Oslo, Norway: 1992). 2009;98(2):229–38.  https://doi.org/10.1111/j.1651-2227.2008.01060.x.PubMedCrossRefGoogle Scholar
  67. 67.
    Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012;129(2):434-40.e2.  https://doi.org/10.1016/j.jaci.2011.10.025.CrossRefGoogle Scholar
  68. 68.
    Moles L, Gómez M, Heilig H, Bustos G, Fuentes S, de Vos W, et al. Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS One. 2013;8(6):e66986.  https://doi.org/10.1371/journal.pone.0066986.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703.  https://doi.org/10.1016/j.chom.2015.04.004.CrossRefPubMedGoogle Scholar
  70. 70.
    Shin H, Pei Z, Martinez KA, Rivera-Vinas JI, Mendez K, Cavallin H, et al. The first microbial environment of infants born by C-section: the operating room microbes. Microbiome. 2015;3:59.  https://doi.org/10.1186/s40168-015-0126-1.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Martin R, Makino H, Cetinyurek Yavuz A, Ben-Amor K, Roelofs M, Ishikawa E, et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS One. 2016;11(6):e0158498.  https://doi.org/10.1371/journal.pone.0158498.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Mueller NT, Shin H, Pizoni A, Werlang IC, Matte U, Goldani MZ, et al. Delivery mode and the transition of pioneering gut-microbiota structure, composition and predicted metabolic function. Genes. 2017;8(12):364.  https://doi.org/10.3390/genes8120364.CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Papathoma E, Triga M, Fouzas S, Dimitriou G. Cesarean section delivery and development of food allergy and atopic dermatitis in early childhood. Pediatr Allergy Immunol. 2016;27(4):419–24.  https://doi.org/10.1111/pai.12552.CrossRefPubMedGoogle Scholar
  74. 74.
    Bezirtzoglou E, Tsiotsias A, Welling GW. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe. 2011;17(6):478–82.  https://doi.org/10.1016/j.anaerobe.2011.03.009.CrossRefPubMedGoogle Scholar
  75. 75.
    Martı́n Ro, Langa S, Reviriego C, Jiménez E, Marı́n MaL, Olivares M et al. The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends Food Sci Technol. 2004;15(3):121–7.  https://doi.org/10.1016/j.tifs.2003.09.010.CrossRefGoogle Scholar
  76. 76.
    Wright S, Bolton C. Breast milk fatty acids in mothers of children with atopic eczema. Br J Nutr. 1989;62(3):693–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Yu G, Duchen K, Bjorksten B. Fatty acid composition in colostrum and mature milk from non-atopic and atopic mothers during the first 6 months of lactation. Acta Paediatr (Oslo, Norway: 1992). 1998;87(7):729–36.Google Scholar
  78. 78.
    Businco L, Ioppi M, Morse NL, Nisini R, Wright S. Breast milk from mothers of children with newly developed atopic eczema has low levels of long chain polyunsaturated fatty acids. J Allergy Clin Immunol. 1993;91(6):1134–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Hartmann A, Feil W, Helling A. Allergieprävention in Schwangerschaft und Stillzeit. Erfahrungsheilkunde. 2008;57(02):77–83.CrossRefGoogle Scholar
  80. 80.
    Gdalevich M, Mimouni D, Mimouni M. Breast-feeding and the risk of bronchial asthma in childhood: a systematic review with meta-analysis of prospective studies. J Pediatr. 2001;139(2):261–6.  https://doi.org/10.1067/mpd.2001.117006.CrossRefPubMedGoogle Scholar
  81. 81.
    Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23(3):314–26.  https://doi.org/10.1038/nm.4272.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Capone KA, Dowd SE, Stamatas GN, Nikolovski J. Diversity of the human skin microbiome early in life. J Invest Dermatol. 2011;131(10):2026–32.  https://doi.org/10.1038/jid.2011.168.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Fleury OM, McAleer MA, Feuillie C, Formosa-Dague C, Sansevere E, Bennett DE et al. Clumping factor B promotes adherence of Staphylococcus aureus to corneocytes in atopic dermatitis. Infect Immunity. 2017:IAI. 00994-16.Google Scholar
  84. 84.
    Cho S-H, Strickland I, Boguniewicz M, Leung DY. Fibronectin and fibrinogen contribute to the enhanced binding of Staphylococcus aureus to atopic skin. J Allergy Clin Immunol. 2001;108(2):269–74.PubMedCrossRefGoogle Scholar
  85. 85.
    Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, Yun T et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9(378).  https://doi.org/10.1126/scitranslmed.aah4680.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Belkaid Y, Tamoutounour S. The influence of skin microorganisms on cutaneous immunity. Nat Rev Immunol. 2016;16:353.  https://doi.org/10.1038/nri.2016.48.CrossRefPubMedGoogle Scholar
  87. 87.
    Elsner P, Hartmann AA, Lenz W, Brandis H. Screening of clinical S. aureus-isolates for the production of exfoliative toxin. A methodological study. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene Series A Med Microbiol Infect Dis Virol Parasitol. 1985;260(2):216–20.CrossRefGoogle Scholar
  88. 88.
    DeLeo FR, Chambers HF. Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Investig. 2009;119(9):2464–74.  https://doi.org/10.1172/JCI38226.CrossRefPubMedGoogle Scholar
  89. 89.
    Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2007;298(15):1763–71.  https://doi.org/10.1001/jama.298.15.1763.CrossRefPubMedGoogle Scholar
  90. 90.
    Foster TJ, Höök M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 1998;6(12):484–8.  https://doi.org/10.1016/S0966-842X(98)01400-0.CrossRefPubMedGoogle Scholar
  91. 91.
    Feuillie C, Vitry P, McAleer MA, Kezic S, Irvine AD, Geoghegan JA et al. Adhesion of Staphylococcus aureus to corneocytes from atopic dermatitis patients is controlled by natural moisturizing factor levels. mBio. 2018.  https://doi.org/10.1128/mbio.01184-18.
  92. 92.
    Spaulding AR, Salgado-Pabon W, Kohler PL, Horswill AR, Leung DY, Schlievert PM. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev. 2013;26(3):422–47.  https://doi.org/10.1128/cmr.00104-12.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Ott H, Weissmantel S, Kennes LN, Merk HF, Baron JM, Folster-Holst R. Molecular microarray analysis reveals allergen- and exotoxin-specific IgE repertoires in children with atopic dermatitis. JEADV. 2014;28(1):100–7.  https://doi.org/10.1111/jdv.12083.CrossRefPubMedGoogle Scholar
  94. 94.
    LEYDEN JJ, MARPLES RR, KLIGMAN AM. Staphylococcus aureus in the lesions of atopic dermatitis. Br J Dermatol. 1974;90(5):525.  https://doi.org/10.1111/j.1365-2133.1974.tb06447.x.PubMedCrossRefGoogle Scholar
  95. 95.
    Byrd AL, Deming C, Cassidy SKB, Harrison OJ, Ng W-I, Conlan S et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9(397):eaal4651.  https://doi.org/10.1126/scitranslmed.aal4651.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Cho S-H, Strickland I, Tomkinson A, Fehringer AP, Gelfand EW, Leung DYM. Preferential binding of Staphylococcus aureus to skin sites of Th2-mediated inflammation in a murine model. J Investig Dermatol. 2001;116(5):658–63.  https://doi.org/10.1046/j.0022-202x.2001.01331.x.CrossRefPubMedGoogle Scholar
  97. 97.
    Noble WC, Valkenburg HA, Wolters CH. Carriage of Staphylococcus aureus in random samples of a normal population. J Hyg. 1967;65(4):567–73.PubMedGoogle Scholar
  98. 98.
    Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850–9.  https://doi.org/10.1101/gr.131029.111.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    van Belkum A, de Vogel Corné P, Boelens Hélène A, Verbrugh Henri A, Nouwen Jan L, Verveer J, et al. Reclassification of Staphylococcus aureus nasal carriage types. J Infect Dis. 2009;199(12):1820–6.  https://doi.org/10.1086/599119.CrossRefPubMedGoogle Scholar
  100. 100.
    Deinhardt-Emmer S, Sachse S, Geraci J, Fischer C, Kwetkat A, Dawczynski K, et al. Virulence patterns of Staphylococcus aureus strains from nasopharyngeal colonization. J Hosp Infect. 2018;100(3):309–15.  https://doi.org/10.1016/j.jhin.2017.12.011.CrossRefPubMedGoogle Scholar
  101. 101.
    Becker K, Kriegeskorte A, Sunderkötter C, Löffler B, von Eiff C. Chronisch rezidivierende Infektionen der Haut und Weichgewebe durch Staphylococcus aureus. Der Hautarzt. 2014;65(1):15–25.CrossRefGoogle Scholar
  102. 102.
    Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347(15):1151–60.  https://doi.org/10.1056/NEJMoa021481.CrossRefGoogle Scholar
  103. 103.
    Williams MR, Nakatsuji T, Sanford JA, Vrbanac AF, Gallo RL. Staphylococcus aureus induces increased serine protease activity in keratinocytes. J Invest Dermatol. 2017;137(2):377–84.  https://doi.org/10.1016/j.jid.2016.10.008.CrossRefPubMedGoogle Scholar
  104. 104.
    Fischer J, Meyer-Hoffert U. Regulation of kallikrein-related peptidases in the skin—from physiology to diseases to therapeutic options. Thromb Haemost. 2013;110(03):442–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Nakagawa S, Matsumoto M, Katayama Y, Oguma R, Wakabayashi S, Nygaard T et al. Staphylococcus aureus virulent PSMα peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation. Cell Host Microbe. 2017;22(5):667-77.e5.CrossRefGoogle Scholar
  106. 106.
    Allen HB, Vaze ND, Choi C, Hailu T, Tulbert BH, Cusack CA, et al. The presence and impact of biofilm-producing staphylococci in atopic dermatitis. JAMA Dermatol. 2014;150(3):260–5.  https://doi.org/10.1001/jamadermatol.2013.8627.CrossRefPubMedGoogle Scholar
  107. 107.
    Tankersley A, Frank MB, Bebak M, Brennan R. Early effects of Staphylococcus aureus biofilm secreted products on inflammatory responses of human epithelial keratinocytes. J Inflamm. 2014;11(1):17.CrossRefGoogle Scholar
  108. 108.
    Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, et al. Compartmentalized control of skin immunity by resident commensals. Science (New York, NY). 2012;337(6098):1115–9.  https://doi.org/10.1126/science.1225152.CrossRefPubMedCentralPubMedGoogle Scholar
  109. 109.
    Sims JE, Smith DE. The IL-1 family: regulators of immunity. Nat Rev Immunol. 2010;10:89.  https://doi.org/10.1038/nri2691.CrossRefPubMedGoogle Scholar
  110. 110.
    Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med. 2009;15(12):1377–82.  https://doi.org/10.1038/nm.2062.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Naik S, Bouladoux N, Linehan JL, Han S-J, Harrison OJ, Wilhelm C, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature. 2015;520(7545):104–8.  https://doi.org/10.1038/nature14052.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Linehan JL, Harrison OJ, Han SJ, Byrd AL, Vujkovic-Cvijin I, Villarino AV, et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell. 2018;172(4):784-96.e18.  https://doi.org/10.1016/j.cell.2017.12.033.CrossRefGoogle Scholar
  113. 113.
    Chen TA, Hill PB. The biology of Malassezia organisms and their ability to induce immune responses and skin disease. Vet Dermatol. 2005;16(1):4–26.PubMedCrossRefGoogle Scholar
  114. 114.
    Faergemann J. Atopic dermatitis and fungi. Clin Microbiol Rev. 2002;15(4):545–63.  https://doi.org/10.1128/cmr.15.4.545-563.2002.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Gupta AK, Batra R, Bluhm R, Boekhout T, Dawson TL Jr. Skin diseases associated with Malassezia species. J Am Acad Dermatol. 2004;51(5):785–98.  https://doi.org/10.1016/j.jaad.2003.12.034.CrossRefPubMedGoogle Scholar
  116. 116.
    Gupta A, Kohli Y, Summerbell R, Faergemann J. Quantitative culture of Malassezia species from different body sites of individuals with or without dermatoses. Med Mycol. 2001;39(3):243–51.PubMedCrossRefGoogle Scholar
  117. 117.
    Sandstrom Falk MH, Tengvall Linder M, Johansson C, Bartosik J, Back O, Sarnhult T, et al. The prevalence of Malassezia yeasts in patients with atopic dermatitis, seborrhoeic dermatitis and healthy controls. Acta Derm Venereol. 2005;85(1):17–23.  https://doi.org/10.1080/00015550410022276.CrossRefPubMedGoogle Scholar
  118. 118.
    Jagielski T, Rup E, Ziolkowska A, Roeske K, Macura AB, Bielecki J. Distribution of Malassezia species on the skin of patients with atopic dermatitis, psoriasis, and healthy volunteers assessed by conventional and molecular identification methods. BMC Dermatol. 2014;14:3.  https://doi.org/10.1186/1471-5945-14-3.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Broberg A, Faergemann J. Topical antimycotic treatment of atopic dermatitis in the head/neck area. A double-blind randomised study. Acta Dermato-venereol. 1995;75(1):46–9.Google Scholar
  120. 120.
    Glatz M, Bosshard PP, Hoetzenecker W, Schmid-Grendelmeier P. The role of Malassezia spp. atopic dermatitis. J Clin Med. 2015;4(6):1217–28.  https://doi.org/10.3390/jcm4061217.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Mittermann I, Wikberg G, Johansson C, Lupinek C, Lundeberg L, Crameri R, et al. IgE sensitization profiles differ between adult patients with severe and moderate atopic dermatitis. PLoS One. 2016;11(5):e0156077.  https://doi.org/10.1371/journal.pone.0156077.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Glatz M, Buchner M, von Bartenwerffer W, Schmid-Grendelmeier P, Worm M, Hedderich J et al. Malassezia spp.-specific immunoglobulin E level is a marker for severity of atopic dermatitis in adults. Acta Derm Venereol. 2015;95(2):191–6.  https://doi.org/10.2340/00015555-1864.PubMedCrossRefGoogle Scholar
  123. 123.
    Brodská P, Panzner P, Pizinger K, Schmid-Grendelmeier P. IgE-mediated sensitization to Malassezia in atopic dermatitis: more common in male patients and in head and neck type. Dermat Contact Atop Occup Drug. 2014;25(3):120–6.  https://doi.org/10.1097/der.0000000000000040.CrossRefGoogle Scholar
  124. 124.
    White TC, Findley K, Dawson TL, Jr., Scheynius A, Boekhout T, Cuomo CA et al. Fungi on the skin: dermatophytes and Malassezia. Cold Spring Harb Perspect Med. 2014.  https://doi.org/10.1101/cshperspect.a019802.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Samaranayake YH, Samaranayake LP. Experimental oral candidiasis in animal models. Clin Microbiol Rev. 2001;14(2):398–429.  https://doi.org/10.1128/cmr.14.2.398-429.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Savolainen J, Lintu P, Kosonen J, Kortekangas-Savolainen O, Viander M, Pene J, et al. Pityrosporum and Candida specific and non-specific humoral, cellular and cytokine responses in atopic dermatitis patients. Clin Exp Allergy. 2001;31(1):125–34.PubMedCrossRefGoogle Scholar
  127. 127.
    Kashem SW, Igyarto BZ, Gerami-Nejad M, Kumamoto Y, Mohammed JA, Jarrett E, et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity. 2015;42(2):356–66.  https://doi.org/10.1016/j.immuni.2015.01.008.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Kashem SW, Riedl MS, Yao C, Honda CN, Vulchanova L, Kaplan DH. Nociceptive sensory fibers drive interleukin-23 production from CD301b + Dermal dendritic cells and drive protective cutaneous immunity. Immunity. 2015;43(3):515–26.  https://doi.org/10.1016/j.immuni.2015.08.016.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Javad G, Taheri Sarvtin M, Hedayati MT, Hajheydari Z, Yazdani J, Shokohi T. Evaluation of Candida colonization and specific humoral responses against Candida albicans in patients with atopic dermatitis. BioMed Res Int. 2015;2015:849206.  https://doi.org/10.1155/2015/849206.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Arzumanyan VG, Magarshak OO, Semenov BF. Yeast fungi in patients with allergic diseases: species variety and sensitivity to antifungal drugs. Bull Exp Biol Med. 2000;129(6):601–4.PubMedCrossRefGoogle Scholar
  131. 131.
    Savolainen J, Lammintausta K, Kalimo K, Viander M. Candida albicans and atopic dermatitis. Clin Exp Allergy. 1993;23(4):332–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Svejgaard E, Faergeman J, Jemec G, Kieffer M, Ottevanger V. Recent investigations on the relationship between fungal skin diseases and atopic dermatitis. Acta Derm Venereol Suppl. 1989;144:140–2.Google Scholar
  133. 133.
    Whitley RJ, Roizman B. Herpes simplex virus infections. Lancet (London, England). 2001;357(9267):1513–8.  https://doi.org/10.1016/s0140-6736(00)04638-9.CrossRefGoogle Scholar
  134. 134.
    Kosann MK, Fogelman JP, Stern RL. Kaposi’s varicelliform eruption in a patient with Grover’s disease. J Am Acad Dermatol. 2003;49(5):914–5.  https://doi.org/10.1016/S0190-9622(03)00854-5.CrossRefPubMedGoogle Scholar
  135. 135.
    Kramer SC, Thomas CJ, Tyler WB, Elston DM. Kaposi’s varicelliform eruption: a case report and review of the literature. Cutis. 2004;73(2):115–22.PubMedGoogle Scholar
  136. 136.
    Blanter M, Vickers J, Russo M, Safai B. Eczema herpeticum: would you know it if you saw it? Pediatr Emerg Care. 2015;31(8):586–8.  https://doi.org/10.1097/pec.0000000000000516.CrossRefPubMedGoogle Scholar
  137. 137.
    David T, Longson M. Herpes simplex infections in atopic eczema. Arch Dis Child. 1985;60(4):338–43.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Wollenberg A. Eczema herpeticum. Chem Immunol Allergy. 2012;96:89–95.  https://doi.org/10.1159/000331892.CrossRefPubMedGoogle Scholar
  139. 139.
    Wollenberg A, Wetzel S, Burgdorf WHC, Haas J. Viral infections in atopic dermatitis: pathogenic aspects and clinical management. J Allergy Clin Immunol. 2003;112(4):667–74.  https://doi.org/10.1016/j.jaci.2003.07.001.CrossRefPubMedGoogle Scholar
  140. 140.
    Chen X, Anstey AV, Bugert JJ. Molluscum contagiosum virus infection. Lancet Infect Dis. 2013;13(10):877–88.  https://doi.org/10.1016/S1473-3099(13)70109-9.CrossRefPubMedGoogle Scholar
  141. 141.
    Flohr C, Mann J. New insights into the epidemiology of childhood atopic dermatitis. Allergy. 2014;69(1):3–16.  https://doi.org/10.1111/all.12270.CrossRefPubMedGoogle Scholar
  142. 142.
    de Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol. 2008;111:1–66.  https://doi.org/10.1007/10_2008_097.CrossRefPubMedGoogle Scholar
  143. 143.
    Ibanez MD, Rodriguez Del Rio P, Gonzalez-Segura Alsina D, Villegas Iglesias V. Effect of synbiotic supplementation on children with atopic dermatitis: an observational prospective study. Eur J Pediatr. 2018.  https://doi.org/10.1007/s00431-018-3253-4.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Li L, Han Z, Niu X, Zhang G, Jia Y, Zhang S, et al. Probiotic supplementation for prevention of atopic dermatitis in infants and children: a systematic review and meta-analysis. Am J Clin Dermatol. 2019;20(3):367–77.  https://doi.org/10.1007/s40257-018-0404-3.CrossRefPubMedGoogle Scholar
  145. 145.
    Weston S, Halbert A, Richmond P, Prescott SL. Effects of probiotics on atopic dermatitis: a randomised controlled trial. Arch Dis Child. 2005;90(9):892–7.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Kopp MV, Hennemuth I, Heinzmann A, Urbanek R. Randomized, double-blind, placebo-controlled trial of probiotics for primary prevention: no clinical effects of Lactobacillus GG supplementation. Pediatrics. 2008;121(4):e850–6.  https://doi.org/10.1542/peds.2007-1492.CrossRefPubMedGoogle Scholar
  147. 147.
    de Mello VD, Paananen J, Lindström J, Lankinen MA, Shi L, Kuusisto J, et al. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci Rep. 2017;7:46337.  https://doi.org/10.1038/srep46337.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Sidbury R, Davis DM, Cohen DE, Cordoro KM, Berger TG, Bergman JN et al. Guidelines of care for the management of atopic dermatitis: section 3. Management and treatment with phototherapy and systemic agents. J Am Acad Dermatol. 2014;71(2):327–49.  https://doi.org/10.1016/j.jaad.2014.03.030.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Sala-Cunill A, Lazaro M, Herraez L, Quinones MD, Moro-Moro M, Sanchez I. Basic skin care and topical therapies for atopic dermatitis: beyond essential approaches. J Investig Allergol Clin Immunol. 2018.  https://doi.org/10.18176/jiaci.0293.PubMedCrossRefGoogle Scholar
  150. 150.
    Tokudome Y, Uchida R, Yokote T, Todo H, Hada N, Kon T, et al. Effect of topically applied sphingomyelin-based liposomes on the ceramide level in a three-dimensional cultured human skin model. J Liposome Res. 2010;20(1):49–54.  https://doi.org/10.3109/08982100903062597.CrossRefPubMedGoogle Scholar
  151. 151.
    Tokudome Y, Endo M, Hashimoto F. Application of glucosylceramide-based liposomes increased the ceramide content in a three-dimensional cultured skin epidermis. Skin Pharmacol Physiol. 2014;27(1):18–24.  https://doi.org/10.1159/000351350.CrossRefPubMedGoogle Scholar
  152. 152.
    Jin M, Lee S, Choi Y-A, Jang H-J, Lee SW, Park P-H et al. Lactococcus lactis KR-050L extract suppresses house dust mite induced-atopic skin inflammation through inhibition of keratinocyte and mast cell activation. J Appl Microbiol.  https://doi.org/10.1111/jam.14116.PubMedCrossRefGoogle Scholar
  153. 153.
    Huang JT, Abrams M, Tlougan B, Rademaker A, Paller AS. Treatment of Staphylococcus aureus colonization in atopic dermatitis decreases disease severity. Pediatrics. 2009;123(5):e808–14.  https://doi.org/10.1542/peds.2008-2217.CrossRefPubMedGoogle Scholar
  154. 154.
    Silva SH, Guedes AC, Gontijo B, Ramos AM, Carmo LS, Farias LM, et al. Influence of narrow-band UVB phototherapy on cutaneous microbiota of children with atopic dermatitis. JEADV. 2006;20(9):1114–20.  https://doi.org/10.1111/j.1468-3083.2006.01748.x.CrossRefPubMedGoogle Scholar
  155. 155.
    Yoshimura M, Namura S, Akamatsu H, Horio T. Antimicrobial effects of phototherapy and photochemotherapy in vivo and in vitro. Br J Dermatol. 1996;135(4):528–32.PubMedCrossRefGoogle Scholar
  156. 156.
    Lunjani N, Satitsuksanoa P, Lukasik Z, Sokolowska M, Eiwegger T, O’Mahony L. Recent developments and highlights in mechanisms of allergic diseases: microbiome. Allergy. 2018.  https://doi.org/10.1111/all.13634.CrossRefPubMedGoogle Scholar
  157. 157.
    Lambers H, Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci. 2006;28(5):359–70.  https://doi.org/10.1111/j.1467-2494.2006.00344.x.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of DermatologyUniversity Hospital JenaJenaGermany
  2. 2.Private Dermatology PracticeErfurtGermany

Personalised recommendations