American Journal of Clinical Dermatology

, Volume 19, Issue 3, pp 345–361 | Cite as

Dermatologic Reactions to Immune Checkpoint Inhibitors

Skin Toxicities and Immunotherapy
  • Vincent SibaudEmail author
Review Article


The development of immune checkpoint inhibitors [monoclonal antibodies targeting cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1) or programmed death ligand 1 (PD-L1)] represents a major breakthrough in cancer therapy. Although they present a favorable risk/benefit ratio, immune checkpoint blockade therapies have a very specific safety profile. Due to their unique mechanism of action, they entail a new spectrum of adverse events that are mostly immune related [immune-related adverse events (irAEs)], notably mediated by the triggering of cytotoxic CD4+/CD8+ T cell activation. Cutaneous toxicities appear to be one of the most prevalent irAEs, both with anti-PD-1 and anti-CTLA-4 agents or with the newly developed anti-PD-L1 agents, which corresponds to a class effect. They are observed in more than one-third of the treated patients, mainly in the form of a maculopapular rash (eczema-like spongiotic dermatitis) and pruritus. A wide range of other dermatologic manifestations can also occur, including lichenoid reactions, psoriasis, acneiform rashes, vitiligo-like lesions, autoimmune skin diseases (e.g., bullous pemphigoid, dermatomyositis, alopecia areata), sarcoidosis or nail and oral mucosal changes. In addition, the use of anti-CTLA-4 and anti-PD-1 therapies in combination is associated with the development of more frequent, more severe and earlier cutaneous irAEs compared to single agents. In most cases, these dysimmune dermatologic adverse events remain self-limiting and readily manageable. Early recognition and adequate management, however, are critical to prevent exacerbation of the lesions, to limit treatment interruption and to minimize quality of life impairment. This review describes the variable clinical and histopathologic aspects of dermatologic irAEs induced by immune checkpoint inhibitors. Appropriate treatment and counseling are also proposed, with a step-by-step approach for optimized management by both practicing oncologists and dermatologists.



I thank Dr. Emilie Tournier and Prof. Laurence Lamant (Pathology Department, Cancer University Institute) for providing histopathology figures.

Compliance with Ethical Standards



Conflict of interest

The author has received consulting fees or honorarium from pharmaceutical companies (Bristol-Myers-Squibb, Pierre Fabre, Novartis, Roche, GSK).


  1. 1.
    Rapoport BL, van Eeden R, Sibaud V, Epstein JB, Klastersky J, Aapro M, et al. Supportive care for patients undergoing immunotherapy. Support Care Cancer. 2017. (Epub ahead of print).CrossRefPubMedGoogle Scholar
  2. 2.
    Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33:1974–82.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26:2375–91.PubMedGoogle Scholar
  4. 4.
    Weber JS, Hodi FS, Wolchok JD, Topalian SL, Schadendorf D, Larkin J, et al. Safety profile of nivolumab monotherapy: a pooled analysis with advanced melanoma. J Clin Oncol. 2017;35:785–92.PubMedCrossRefGoogle Scholar
  5. 5.
    Weber JS, Kähler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30:2691–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Hassel JC, Heinzerling L, Aberle J, Bähr O, Eigentler TK, Grimm MO, et al. Combined immune checkpoint blockade (anti-PD-1/anti-CTLA-4): evaluation and management of adverse drug reactions. Cancer Treat Rev. 2017;57:36–49.PubMedCrossRefGoogle Scholar
  7. 7.
    Haanen JBAG, Carbonnel F, Robert C, Kerr KM, Peters S, Larkin J, et al. Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28:iv119–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Champiat S, Lambotte O, Barreau E, Belkhir R, Berdelou A, Carbonnel F, et al. Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper. Ann Oncol. 2016;27:559–74.PubMedCrossRefGoogle Scholar
  9. 9.
    Sibaud V, Meyer N, Lamant L, Vigarios E, Mazieres J, Delord JP. Dermatologic complications of anti-PD-1/PD-L1 immune checkpoint antibodies. Curr Opin Oncol. 2016;28:254–63.PubMedCrossRefGoogle Scholar
  10. 10.
    Freeman-Keller M, Kim Y, Cronin H, Richards A, Gibney G, Weber JS, et al. Nivolumab in resected and unresectable metastatic melanoma: characteristics of immune-related adverse events and association with outcomes. Clin Cancer Res. 2016;22:886–94.PubMedCrossRefGoogle Scholar
  11. 11.
    Curry JL, Tetzlaff MT, Nagarajan P, Drucker C, Diab A, Hymes SR. Diverse types of dermatologic toxicities from immune checkpoint blockade therapy. J Cutan Pathol. 2017;44:158–76.PubMedCrossRefGoogle Scholar
  12. 12.
    Belum VR, Benhuri B, Postow MA, Hellmann MD, Lesokhin AM, Segal NH, et al. Characterisation and management of dermatologic adverse events to agents targeting the PD-1 receptor. Eur J Cancer. 2016;60:12–25.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134–44.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Postow MA, Chesney J, Pavlick AC, Robert C, Grossman K, McDermott D, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372:2006–17.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Hofmann L, Forschner A, Loquai C, Goldinger SM, Zimmer L, Ugurel S, et al. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side effects of anti-PD-1 therapy. Eur J Cancer. 2016;60:190–209.PubMedCrossRefGoogle Scholar
  20. 20.
    Sanlorenzo M, Vujic I, Daud A, Algazi A, Gubens M, Luna SA, et al. Pembrolizumab cutaneous adverse events and their association with disease progression. JAMA Dermatol. 2015;151:1206–12.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Minkis K, Garden BC, Wu S, Pulitzer MP, Lacouture ME. The risk of rash associated with ipilimumab in patients with cancer: a systematic review of the literature and meta-analysis. J Am Acad Dermatol. 2013;69:e121–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Hua C, Boussemart L, Mateus C, Routier E, Boutros C, Cazenave H, et al. Association of vitiligo with tumor response in patients with metastatic melanoma treated with pembrolizumab. JAMA Dermatol. 2016;152:45–51.PubMedCrossRefGoogle Scholar
  23. 23.
    Hwang SJ, Carlos G, Wakade D, Byth K, Kong BY, Chou S, et al. Cutaneous adverse events (AEs) of anti-programmed cell death (PD)-1 therapy in patients with metastatic melanoma: a single-institution cohort. J Am Acad Dermatol. 2016;74:455–61.PubMedCrossRefGoogle Scholar
  24. 24.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Peters S, Gettinger S, Johnson ML, Jänne PA, Garassino MC, Christoph D, et al. Phase II trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1-selected advanced non-small-cell lung cancer (BIRCH). J Clin Oncol. 2017;35:2781–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet. 2017;389:67–76.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389:255–65.PubMedCrossRefGoogle Scholar
  28. 28.
    Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2017. (Epub ahead of print).PubMedCrossRefGoogle Scholar
  29. 29.
    Lacouture ME, Wolchok JD, Yosipovitch G, Kähler KC, Busam KJ, Hauschild A. Ipilimumab in patients with cancer and the management of dermatologic adverse events. J Am Acad Dermatol. 2014;71:161–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Shi VJ, Rodic N, Gettinger S, Leventhal JS, Neckman JP, Girardi M, et al. Clinical and histologic features of lichenoid mucocutaneous eruptions due to anti-programmed cell death 1 and anti-programmed cell death ligand 1 immunotherapy. JAMA dermatol. 2016;152:1128–36.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Goldinger SM, Stieger P, Meier B, Micaletto S, Contassot E, French LE, et al. Cytotoxic cutaneous adverse drug reactions during anti-PD-1 therapy. Clin Cancer Res. 2016;22:4023–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Chou S, Hwang SJ, Carlos G, Wakade D, Fernandez-Penas P. Histologic Assessment of lichenoid dermatitis observed in patients with advanced malignancies on antiprogramed cell death-1 (anti-PD-1) Therapy With or Without Ipilimumab. Am J Dermatopathol. 2017;39:23–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Perret RE, Josselin N, Knol AC, Khammari A, Cassecuel J, Peuvrel L, et al. Histopathological aspects of cutaneous erythematous-papular eruptions induced by immune checkpoint inhibitors for the treatment of metastatic melanoma. Int J Dermatol. 2017;56:527–33.PubMedCrossRefGoogle Scholar
  34. 34.
    Schaberg KB, Novoa RA, Wakelee HA, Kim J, Cheung C, Srinivas S, et al. Immunohistochemical analysis of lichenoid reactions in patients treated with anti-PD-L1 and anti-PD-1 therapy. J Cutan Pathol. 2016;43:339–46.PubMedCrossRefGoogle Scholar
  35. 35.
    Joseph RW, Cappel M, Goedjen B, Gordon M, Kirsch B, Gilstrap C, et al. Lichenoid dermatitis in three patients with metastatic melanoma treated with anti-PD-1 therapy. Cancer Immunol Res. 2015;3:18–22.PubMedCrossRefGoogle Scholar
  36. 36.
    Tetzlaff MT, Nagarajan P, Chon S, Huen A, Diab A, Omar P, et al. Lichenoid dermatologic toxicity from immune checkpoint blockade therapy: a detailed examination of the clinicopathologic features. Am J Dermatopathol. 2017;39:121–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Guggina LM, Yanes DA, Choi JN. Inverse lichenoid drug eruption associated with nivolumab. JAAD Case Rep. 2016;3:7–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sibaud V, Eid C, Belum VR, Combemale P, Barres B, Lamant L, et al. Oral lichenoid reactions associated with anti-PD-1/PD-L1 therapies: clinicopathological findings. J Eur Acad Dermatol Venereol. 2017. (Epub ahead of print).PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Chia PL, John T. Severe psoriasis flare after anti-programmed death ligand 1 (PD-L1) therapy for metastatic non-small cell lung cancer (NSCLC). J Immunother. 2016;39:202–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Gutzmer R, Koop A, Meier F, Hassel JC, Terheyden P, Zimmer L, et al. Programmed cell death protein-1 (PD-1) inhibitor therapy in patients with advanced melanoma and preexisting autoimmunity or ipilimumab-triggered autoimmunity. Eur J Cancer. 2017;75:24–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Menzies AM, Johnson DB, Ramanujam S, Atkinson VG, Wong ANM, Park JJ, et al. Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann Oncol. 2017;28:368–76.PubMedCrossRefGoogle Scholar
  42. 42.
    Johnson DB, Sullivan RJ, Ott PA, Carlino MS, Khushalani NI, Ye F, et al. Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. JAMA Oncol. 2016;2:234–40.PubMedCrossRefGoogle Scholar
  43. 43.
    Bonigen J, Raynaud-Donzel C, Hureaux J, Kramkimel N, Blom A, Jeudy G, et al. Anti-PD1-induced psoriasis: a study of 21 patients. J Eur Acad Dermatol Venereol. 2017;31:e254–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Ruiz-Bañobre J, Abdulkader I, Anido U, León L, López-López R, García-González J. Development of de novo psoriasis during nivolumab therapy for metastatic renal cell carcinoma: immunohistochemical analyses and clinical outcome. APMIS. 2017;125:259–63.PubMedCrossRefGoogle Scholar
  45. 45.
    Tanaka R, Okiyama N, Okune M, Ishitsuka Y, Watanabe R, Furuta J, et al. Serum level of interleukin-6 is increased in nivolumab-associated psoriasiform dermatitis and tumor necrosis factor-α is a biomarker of nivolumab recativity. J Dermatol Sci. 2017;86:71–3.PubMedCrossRefGoogle Scholar
  46. 46.
    Totonchy MB, Ezaldein HH, Ko CJ, Choi JN. Inverse psoriasiform eruption during pembrolizumab therapy for metastatic melanoma. JAMA Dermatol. 2016;152:590–2.PubMedCrossRefGoogle Scholar
  47. 47.
    Dulos J, Carven GJ, van Boxtel SJ, Buddenkotte J, McDonald I, Aubert J, et al. PD-1 blockade augments Th1 and Th17 and suppresses Th2 responses in peripheral blood from patients with prostate and advanced melanoma cancer. J Immunother. 2012;35:169–78.PubMedCrossRefGoogle Scholar
  48. 48.
    Law-Ping-Man S, Martin A, Briens E, Tisseau L, Safa G. Psoriasis and psoriatic arthritis induced by nivolumab in a patient with advanced lung cancer. Rheumatology. 2016;55:2087–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Ruiz-Bañobre J, Pérez-Pampín E, García-González J, Gómez-Caamaño A, Barón-Duarte FJ, López-López R, et al. Development of psoriatic arthritis during nivolumab therapy for metastatic non-small cell lung cancer, clinical outcome analysis and review of the literature. Lung Cancer. 2017;108:217–21.PubMedCrossRefGoogle Scholar
  50. 50.
    Vivar KL, Deschaine M, Messina J, Divine JM, Rabionet A, Patel N, et al. Epidermal programmed cell death-ligand 1 expression in TEN associated with nivolumab therapy. J Cutan Pathol. 2017;44:381–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Saw S, Lee HY, Ng QS. Pembrolizumab-induced Stevens-Johnson syndrome in non-melanoma patients. Eur J Cancer. 2017;81:237–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Hwang SJ, Carlos G, Wakade D, Sharma R, Fernandez-Penas P. Ipilimumab-induced acute generalized exanthematous pustulosis in a patient with metastatic melanoma. Melanoma Res. 2016;26:417–20.PubMedCrossRefGoogle Scholar
  53. 53.
    Page B, Borradori L, Beltraminelli H, Yawalkar N, Hunger RE. Acute generalized exanthematous pustulosis associated with ipilimumab and nivolumab. J Eur Acad Dermatol Venereol. 2017. (Epub ahead of print).PubMedCrossRefGoogle Scholar
  54. 54.
    Voskens CJ, Goldinger SM, Loquai C, Robert C, Kaehler KC, Berking C, et al. The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network. PLoS One. 2013;8:e53745.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Jour G, Glitza IC, Ellis RM, Torres-Cabala CA, Tetzlaff MT, Li JY, et al. Autoimmune dermatologic toxicities from immune checkpoint blockade with anti-PD-1 antibody therapy: a report on bullous skin eruptions. J Cutan Pathol. 2016;43:688–96.PubMedCrossRefGoogle Scholar
  56. 56.
    Gulley JL, Rajan A, Spigel DR, Iannotti N, Chandler J, Wong DJL, et al. Avelumab for patients with previously treated metastatic or recurrent non-small-cell lung cancer (JAVELIN Solid Tumor): dose-expansion cohort of a multicentre, open-label, phase 1b trial. Lancet Oncol. 2017;18:599–610.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Heery CR, O’Sullivan-Coyne G, Madan RA, Cordes L, Rajan A, Rauckhorst M. Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): a phase 1a, multicohort, dose-escalation trial. Lancet Oncol. 2017;18:587–98.PubMedCrossRefGoogle Scholar
  58. 58.
    Munoz J, Guillot B, Girard C, Dereure O, Du-Thanh A. First report of ipilimumab-induced Grover disease. Br J Dermatol. 2014;171:1236–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Koelzer VH, Buser T, Willi N, Rothschild SI, Wicki A, Schiller P, et al. Grover’s-like drug eruption in a patient with metastatic melanoma under ipilimumab therapy. J Immunother Cancer. 2016;4:47.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Uemura M, Faisal F, Haymaker C, McQuail N, Sirmans E, Hudgens CW, et al. A case report of Grover’s disease from immunotherapy-a skin toxicity induced by inhibition of CTLA-4 but not PD-1. J Immunother Cancer. 2016;4:55.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ito J, Fujimoto D, Nakamura A, Nagano T, Uehara K, Imai Y, et al. Aprepitant for refractory nivolumab-induced pruritus. Lung Cancer. 2017;109:58–61.PubMedCrossRefGoogle Scholar
  62. 62.
    Yin ES, Totonchy MB, Leventhal JS. Nivolumab-associated vitiligo-like depigmentation in a patient with acute myeloid leukemia: A novel finding. JAAD Case Rep. 2017;3:90–2.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Uenami T, Hosono Y, Ishijima M, Kanazu M, Akazawa Y, Yano Y, et al. Vitiligo in a patient with lung adenocarcinoma treated with nivolumab: A case report. Lung Cancer. 2017;109:42–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Dai J, Belum VR, Wu S, Sibaud V, Lacouture ME. Pigmentary changes in patients treated with targeted anticancer agents: a systematic review and meta-analysis. J Am Acad Dermatol. 2017. Scholar
  65. 65.
    Nakamura Y, Tanaka R, Asami Y, Teramoto Y, Imamura T, Sato S, et al. Correlation between vitiligo occurrence and clinical benefit in advanced melanoma patients treated with nivolumab: a multi-institutional retrospective study. J Dermatol. 2017;44:117–22.PubMedCrossRefGoogle Scholar
  66. 66.
    Larsabal M, Marti A, Jacquemin C, Rambert J, Thiolat D, Dousset L, et al. Vitiligo-like lesions occurring in patients receiving anti-programmed cell death-1 therapies are clinically and biologically distinct from vitiligo. J Am Acad Dermatol. 2017;76:863–70.PubMedCrossRefGoogle Scholar
  67. 67.
    Nakamura Y, Teramoto Y, Asami Y, Matsuya T, Adachi JI, Nishikawa R, Yamamoto A. Nivolumab therapy for treatment-related vitiligo in a patient with relapsed metastatic melanoma. JAMA Dermatol. 2017;153:942–4.PubMedCrossRefGoogle Scholar
  68. 68.
    Zamani MR, Aslani S, Salmaninejad A, Javan MR, Rezaei N. PD-1/PD-L and autoimmunity: a growing relationship. Cell Immunol. 2016;310:27–41.PubMedCrossRefGoogle Scholar
  69. 69.
    Naidoo J, Schindler K, Querfeld C, Busam K, Cunningham J, Page DB, et al. Autoimmune bullous skin disorders with immune checkpoint inhibitors targeting PD-1 and PD-L1. Cancer Immunol Res. 2016;4:383–9.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Kwon CW, Land AS, Smoller BR, Scott G, Beck LA, Mercurio MG. Bullous pemphigoid associated with nivolumab, a programmed cell death 1 protein inhibitor. J Eur Acad Dermatol Venereol. 2017. Scholar
  71. 71.
    Sowerby L, Dewan AK, Granter S, Gandhi L, LeBoeuf NR. Rituximab treatment of nivolumab-induced bullous pemphigoid. JAMA Dermatol. 2017. Scholar
  72. 72.
    Damsky W, Kole L, Tomayko MM. Development of bullous pemphigoid during nivolumab therapy. JAAD Case Rep. 2016;2:442–4.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Rofe O, Bar-Sela G, Keidar Z, Sezin T, Sadik CD, Bergman R. Severe bullous pemphigoid associated with pembrolizumab therapy for metastatic melanoma with complete regression. Clin Exp Dermatol. 2017;42:309–12.PubMedCrossRefGoogle Scholar
  74. 74.
    Russo I, Sacco G, Frega S, Polo V, Pasello G, Alaibac M. Immunotherapy-related skin toxicity: bullous pemphigoid in a lung adenocarcinoma patient treated with the anti-PDL1 antibody atezolizumab. Eur J Dermatol. 2017;27:205–8.PubMedGoogle Scholar
  75. 75.
    Beck KM, Dong J, Geskin LJ, Beltrani VP, Phelps RG, Carvajal RD, et al. Disease stabilization with pembrolizumab for metastatic acral melanoma in the setting of autoimmune bullous pemphigoid. J Immunother Cancer. 2016;4:20.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Brunet-Possenti F, Mignot S, Deschamps L, Descamps V. Antiepidermis autoantibodies induced by anti-PD-1 therapy in metastatic melanoma. Melanoma Res. 2016;26:540–3.PubMedCrossRefGoogle Scholar
  77. 77.
    Sheik S, Goddard AL, Luke JJ, Donahue H, Todd DJ, Werchniak A, et al. Drug-induced dermatomyositis following ipilimumab therapy. JAMA Dermatol. 2015;151:195–9.CrossRefGoogle Scholar
  78. 78.
    Yamaguchi Y, Abe R, Haga N, Shimizu H. A case of drug-associated dermatomyositis following ipilimumab therapy. Eur J dermatol. 2016;26:320–1.PubMedGoogle Scholar
  79. 79.
    Bilen MA, Subudhi SK, Gao J, Tannir NM, Tu SM, Sharma P. Acute rhabdomyolysis with severe polymyositis following ipilimumab-nivolumab treatment in a cancer patient with elevated anti-striated muscle antibody. J Immunother Cancer. 2016;4:36.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Le burel S, Champiat S, Routier E, Aspeslagh S, Albiges L, Szwebel TA, et al. Onset of connective tissue disease following anti-PD-1/PD-L1 cancer immunotherapy. Ann Rheum Dis. 2017;76:43–50.CrossRefGoogle Scholar
  81. 81.
    Gambichler T, Strutzmann S, Tannapfel A, Susok L. Paraneoplastic acral vascular syndrome in a patient with metastatic melanoma under immune checkpoint blockade. BMC Cancer. 2017;17:327.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Vigarios E, Epstein JB, Sibaud V. Oral mucosal changes induced by anticancer targeted therapies and immune checkpoint inhibitors. Support Care Cancer. 2017;25:1713–39.PubMedCrossRefGoogle Scholar
  83. 83.
    Cappelli LC, Gutierrez AK, Baer AN, Albayda J, Manno RL, Haque U, et al. Inflammatory arthritis and sicca syndrome induced by nivolumab and ipilimumab. Ann Rheum Dis. 2017;76:43–50.PubMedCrossRefGoogle Scholar
  84. 84.
    Cotliar J, Querfeld C, Boswell WJ, Raja N, Raz D, Chen R. Pembrolizumab-associated sarcoidosis. JAAD Case Rep. 2016;2:290–3.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Suozzi KC, Stahl M, Ko CJ, Chiang A, Gettinger SN, Siegel MD, Bunick CG. Immune-related sarcoidosis observed in combination ipilimumab and nivolumab therapy. JAAD Case Rep. 2016;2:264–8.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Berthod G, Lazor R, Letovanec I, Romano E, Noirez L, Mazza Stalder J, et al. Pulmonary sarcoid-like granulomatosis induced by ipilimumab. J Clin Oncol. 2012;30:e156–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Danlos FX, Pagès C, Baroudjian B, Vercellino L, Battistella M, Mimoun M, et al. Nivolumab-induced sarcoid-like granulomatous reaction in a patient with advanced melanoma. Chest. 2016;149:e133–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Kim C, Gao J, Shannon VR, Siefker-Radtke A. Systemic sarcoidosis first manifesting in a tattoo in the setting of immune checkpoint inhibition. BMJ Case Rep. 2016. Scholar
  89. 89.
    Martínez Leboráns L, Esteve Martínez A, Victoria Martínez AM, Alegre de Miquel V, Berrocal Jaime A. Cutaneous sarcoidosis in a melanoma patient under ipilimumab therapy. Dermatol Ther. 2016;29:306–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Reule RB, North JP. Cutaneous and pulmonary sarcoidosis-like reaction associated with ipilimumab. J Am Acad Dermatol. 2013;69:e272–3.PubMedCrossRefGoogle Scholar
  91. 91.
    Birnbaum MR, Ma MW, Fleisig S, Packer S, Amin BD, Jacobson M, McLellan B. Nivolumab-related cutaneous sarcoidosis in a patient with lung adenocarcinoma. JAAD Case Rep. 2017;3:208–11.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Lomax AJ, McGuire HM, McNeil C, Choi CJ, Hersey P, Karikios D. Immunotherapy-induced sarcoidosis in patients with melanoma treated with PD-1 checkpoint inhibitors: case series and immunophenotypic analysis. Int J Rheum Dis. 2017. (Epub ahead of print).PubMedCrossRefGoogle Scholar
  93. 93.
    Celada LJ, Rotsinger JE, Young A, Shaginurova G, Shelton D, Hawkins C, et al. Programmed death-1 inhibition of phosphatidylinositol 3-kinase/AKT/mechanistic target of rapamycin signaling impairs sarcoidosis CD4+ T cell proliferation. Am J Respir Cell Mol Biol. 2017;56:74–82.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Pintova S, Sidhu H, Friedlander PA, Holcombe RF. Sweet’s syndrome in a patient with metastatic melanoma after ipilimumab therapy. Melanoma Res. 2013;23:498–501.PubMedCrossRefGoogle Scholar
  95. 95.
    Gormley R, Wanat K, Elenitsas R, Giles J, McGettigan S, Schuchter L, et al. Ipilimumab-associated Sweet syndrome in a melanoma patient. J Am Acad Dermatol. 2014;71:e211–3.PubMedCrossRefGoogle Scholar
  96. 96.
    Kyllo RL, Parker MK, Rosman I, Musiek AC. Ipilimumab-associated Sweet syndrome in a patient with high-risk melanoma. J Am Acad Dermatol. 2014;70:e85–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Abdel-Wahab N, Shah M, Suarez-Almazor ME. Adverse events associated with immune checkpoint blockade in patients with cancer: a systematic review of case reports. PLoS One. 2016;11:e0160221.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Dika E, Ravaioli GM, Fanti PA, Piraccini BM, Lambertini M, Chessa MA, et al. Cutaneous adverse effects during ipilimumab treatment for metastatic melanoma: a prospective study. Eur J Dermatol. 2017;27:266–70.PubMedGoogle Scholar
  99. 99.
    Garon EB, Rizvi NA, Hui R, Leighl N N, Balmanarkian AS, Eden JP, et al. Pembrolizumab for the treatment of non-small–cell lung cancer. N Engl J Med. 2015;372:2018–28.PubMedCrossRefGoogle Scholar
  100. 100.
    McDermott DF, Sosman JA, Sznol M, Massard C, Gordon MS, Hamid O, et al. Atelizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: long term safety, clinical activity, and immune correlates from a phase Ia study. J Clin Oncol. 2016;34:833–42.PubMedCrossRefGoogle Scholar
  101. 101.
    Bousquet E, Zarbo A, Tournier E, Chevreau C, Mazieres J, Lacouture ME, et al. Development of papulopustular rosacea during nivolumab therapy for metastatic cancer. Acta Derm Venereol. 2017;97:539–40.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Tetzlaff MT, Jazaeri AA, Torres-Cabala CA, Korivi BR, Landon GA, Nagarajan P, et al. Erythema-nodosum panniculitis mimicking disease recurrence: a novel toxicity from immune checkpoint blockade therapy. Report of two patients. J Cutan Pathol. 2017. (Epub ahead of print).CrossRefPubMedGoogle Scholar
  103. 103.
    Freites-Martinez A, Kwong BY, Rieger KE, Coit DG, Colevas AD, Lacouture ME. Eruptive keratoacanthomas associated with pembrolizumab therapy. JAMA Dermatol. 2017;153:694–7.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sibaud V, David I, Lamant L, Resseguier S, Radut R, Attal J, et al. Acute skin reaction suggestive of pembrolizumab-induced radiosensitization. Melanoma Res. 2015;25:555–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Zarbo A, Belum VR, Sibaud V, Oudard S, Postow MA, Hsieh JJ, et al. Immune-related alopecia (areata and universalis) in cancer patients receiving immune checkpoint inhibitors. Br J Dermatol. 2017;176:1649–52.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Rivera N, Boada A, Bielsa MI, Fernández-Figueras MT, Carcereny E, Moran MT, et al. Hair repigmentation during immunotherapy treatment with an anti-programmed cell death 1 and anti-programmed cell death ligand 1 agent for lung cancer. JAMA Dermatol. 2017. (Epub ahead of print).PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Shenoy N, Esplin B, Barbosa N, Wieland C, Thanarajasingam U, Markovic S. Pembrolizumab induced severe sclerodermoid reaction. Ann Oncol. 2017;28:432–3.PubMedCrossRefGoogle Scholar
  108. 108.
    Dasanu CA, Lippman SM, Plaxe SC. Persistently curly hair phenotype with the use of nivolumab for squamous cell lung cancer. J Oncol Pharm Pract. 2017;23:638–40.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.OncodermatologyInstitut Claudius REGAUD and Institut Universitaire du Cancer Toulouse OncopoleToulouse Cedex 9France

Personalised recommendations