American Journal of Clinical Dermatology

, Volume 19, Issue 3, pp 303–317 | Cite as

Advanced Melanoma: Current Treatment Options, Biomarkers, and Future Perspectives

  • Elisa A. Rozeman
  • Tim J. A. Dekker
  • John B. A. G. Haanen
  • Christian U. BlankEmail author
Review Article


Malignant melanoma accounts for the highest number of deaths from skin cancer, and the prognosis of patients with stage IV disease has historically been poor. Novel insights into both mutations driving tumorigenesis and immune escape mechanisms of these tumors have led to effective treatment options that have revolutionized the treatment of this disease. Targeting the MAPK kinase pathway (with BRAF and MEK inhibitors), as well as targeting checkpoints, such as cytotoxic T-lymphocyte associated protein 4 (CTLA-4) or programmed death 1 (PD-1), have improved overall survival in patients with late-stage melanoma, and biomarker research for personalized therapy is ongoing for each of these treatment modalities. In this review, we will discuss current first-line treatment options, discuss biomarkers supporting treatment decisions, and give an outlook on (combination) therapies we expect to become relevant in the near future.


Compliance with Ethical Standards


No funding has been received for the preparation of this manuscript.

Conflict of interest

Elisa A. Rozeman and Tim J.A. Dekker declare that they have no conflicts of interest. John B.A.G. Haanen has received compensation for advisory roles from BMS, Merck, Roche, Ipsen, NEON and Pfizer, and has received grants from Novartis, BMS and Merck. Christian U. Blank received compensation for advisory roles from BMS, MSD, GSK, Roche, Novartis, Lilly and Pfizer, and has received research grants from Novartis and BMS.


  1. 1.
    Cancer Facts and Figures. The American Cancer Society; 2016. Accessed 5 Apr 2017.
  2. 2.
    Jemal A, Saraiya M, Patel P, et al. Recent trends in cutaneous melanoma incidence and death rates in the United States, 1992–2006. J Am Acad Dermatol. 2011;65:S17–25.e11–13.Google Scholar
  3. 3.
    Reed KB, Brewer JD, Lohse CM, et al. Increasing incidence of melanoma among young adults: an epidemiological study in Olmsted County, Minnesota. Mayo Clin Proc. 2012;87:328–34.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Armstrong BK, Kricker A. How much melanoma is caused by sun exposure? Melanoma Res. 1993;3:395–401.PubMedCrossRefGoogle Scholar
  5. 5.
    Guy GP, Ekwueme DU. Years of potential life lost and indirect costs of melanoma and non-melanoma skin cancer: a systematic review of the literature. Pharmacoeconomics. 2011;29:863–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Shain AH, Yeh I, Kovalyshyn I, et al. The genetic evolution of melanoma from precursor lesions. N Engl J Med. 2015;373:1926–36.PubMedCrossRefGoogle Scholar
  7. 7.
    Shain AH, Bastian BC. From melanocytes to melanomas. Nat Rev Cancer. 2016;16:345–58.PubMedCrossRefGoogle Scholar
  8. 8.
    Hodis E, Watson IR, Kryukov GV, et al. A landscape of driver mutations in melanoma. Cell. 2012;150:251–63.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353:2135–47.PubMedCrossRefGoogle Scholar
  10. 10.
    Dennis LK, Vanbeek MJ, Beane Freeman LE, et al. Sunburns and risk of cutaneous melanoma: does age matter? A comprehensive meta-analysis. Ann Epidemiol. 2008;18:614–27.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ting W, Schultz K, Cac NN, et al. Tanning bed exposure increases the risk of malignant melanoma. Int J Dermatol. 2007;46:1253–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Thomas NE, Edmiston SN, Alexander A, et al. Number of nevi and early-life ambient UV exposure are associated with BRAF-mutant melanoma. Cancer Epidemiol Biomark Prev. 2007;16:991–7.CrossRefGoogle Scholar
  13. 13.
    Ransohoff KJ, Jaju PD, Tang JY, et al. Familial skin cancer syndromes. J Am Acad Dermatol. 2016;74:423–34.PubMedCrossRefGoogle Scholar
  14. 14.
    Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Pleasance ED, Cheetham RK, Stephens PJ, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 2010;463:191–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11:3887–95.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Taube JM, Anders RA, Young GD, et al. Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4:127ra137.Google Scholar
  19. 19.
    Hino R, Kabashima K, Kato Y, et al. Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer. 2010;116:1757–66.PubMedCrossRefGoogle Scholar
  20. 20.
    Gadiot J, Hooijkaas AI, Kaiser AD, et al. Overall survival and PD-L1 expression in metastasized malignant melanoma. Cancer. 2011;117:2192–201.PubMedCrossRefGoogle Scholar
  21. 21.
    Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Korn EL, Liu PY, Lee SJ, et al. Meta-analysis of phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future phase II trials. J Clin Oncol. 2008;26:527–34.PubMedCrossRefGoogle Scholar
  23. 23.
    Svedman FC, Pillas D, Taylor A, et al. Stage-specific survival and recurrence in patients with cutaneous malignant melanoma in Europe: a systematic review of the literature. Clin Epidemiol. 2016;8:109–22.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27:6199–206.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Green AC, Baade P, Coory M, et al. Population-based 20-year survival among people diagnosed with thin melanomas in Queensland, Australia. J Clin Oncol. 2012;30:1462–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Garbe C, Eigentler TK, Keilholz U, et al. Systematic review of medical treatment in melanoma: current status and future prospects. Oncologist. 2011;16:5–24.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Eggermont AMM, Schadendorf D. Melanoma and Immunotherapy. Hematol Oncol Clin N Am. 2009;23:547–64.CrossRefGoogle Scholar
  28. 28.
    Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.PubMedCrossRefGoogle Scholar
  30. 30.
    Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33:1889–94.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wolchok JD, Hoos A, O’Day S, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15:7412–20.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ascierto PA, Del Vecchio M, Robert C, et al. Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma: a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncology. 2017;18(5):611–22.PubMedCrossRefGoogle Scholar
  33. 33.
    Kvistborg P, Philips D, Kelderman S, et al. Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci Transl Med. 2014;6:254ra128.Google Scholar
  34. 34.
    Robert L, Tsoi J, Wang X, et al. CTLA4 blockade broadens the peripheral T-cell receptor repertoire. Clin Cancer Res. 2014;20:2424–32.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Keir ME, Sharpe AH. The B7/CD28 costimulatory family in autoimmunity. Immunol Rev. 2005;204:128–43.PubMedCrossRefGoogle Scholar
  36. 36.
    Blank C, Brown I, Peterson AC, et al. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res. 2004;64:1140–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Hamid O, Robert C, Daud A, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134–44.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32:1020–30.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Atkinson V, Ascierto PA, Long GV, et al. Two-year survival and safety update in patients (pts) with treatment-naïve advanced melanoma (MEL) receiving nivolumab (NIVO) or dacarbazine (DTIC) in CheckMate-066. In: Presented at the Society for Melanoma Research 2015 Congress; 18–21 November 2015: San Francisco.Google Scholar
  40. 40.
    Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.PubMedCrossRefGoogle Scholar
  41. 41.
    Schachter J, Ribas A, Long GV, et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet. 2017. doi: 10.1016/S0140-6736(17)31601-X (Epub 16 Aug 2017).
  42. 42.
    Robert C, Long GV, Schachter J, et al. Long-term outcomes in patients (pts) with ipilimumab (ipi)-naive advanced melanoma in the phase 3 KEYNOTE-006 study who completed pembrolizumab (pembro) treatment. J Clin Oncol. 2017;35:9504.CrossRefGoogle Scholar
  43. 43.
    Ribas A, Puzanov I, Dummer R, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16:908–18.PubMedCrossRefGoogle Scholar
  44. 44.
    Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16:375–84.PubMedCrossRefGoogle Scholar
  45. 45.
    Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Jansen Y, Rozeman EA, Foppen MG, et al. Real life outcome of advanced melanoma patients who discontinue pembrolizumab (PEMBRO) in the absence of disease progression. J Clin Oncol. 2017;35:9539.CrossRefGoogle Scholar
  47. 47.
    Postow MA, Chesney J, Pavlick AC, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372:2006–17.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hodi FS, Chesney J, Pavlick AC, et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016;17:1558–68.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. doi: 10.1056/NEJMoa1709684 (Epub 11 Sep 2017).
  51. 51.
    Schadendorf D, et al. Efficacy and quality of life outcomes in patients with advanced melanoma (MEL) who discontinued treatment with nivolumab (NIVO) plus ipilimumab (IPI) due to toxicity in a phase III trial (CheckMate 067). In: 12th Congress of the European association of dermato-oncology; 31 August–3 September 2016: Vienna.Google Scholar
  52. 52.
    Weber JS, Gibney G, Sullivan RJ, et al. Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial. Lancet Oncol. 2016;17:943–55.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Long GV, Atkinson V, Cebon JS, et al. Standard-dose pembrolizumab in combination with reduced-dose ipilimumab for patients with advanced melanoma (KEYNOTE-029): an open-label, phase 1b trial. Lancet Oncol. 2017; 18: 1202–1210.Google Scholar
  54. 54.
    Meerveld-Eggink A, Rozeman EA, Lalezari F, et al. Short-term CTLA-4 blockade directly followed by PD-1 blockade in advanced melanoma patients: a single-center experience. Ann Oncol. 2017;28:862–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Daud AI, Wolchok JD, Robert C, et al. Programmed death-ligand 1 expression and response to the anti-programmed death 1 antibody pembrolizumab in melanoma. J Clin Oncol. 2016;34:4102–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wolchok J, Chiarion Sileni V, Gonzalez R, et al. Updated results from a phase III trial of nivolumab (NIVO) combined with ipilimumab (IPI) in treatment-naive patients (pts) with advanced melanoma (MEL) (CheckMate 067). J Clin Oncol. 2016;34:abstr 9505.Google Scholar
  57. 57.
    Larkin J, Chiarion Sileni V, Gonzalez R, et al. Overall survival results from a phase III trial of nivolumab combined with ipilimumab in treatment-naïve patients with advanced melanoma (CheckMate-067) [abstract no. CT075]. In: American Association for Cancer Research (AACR) annual meeting 2017; 1–5 April 2017: Washington, DCGoogle Scholar
  58. 58.
    Diggs LP, Hsueh EC. Utility of PD-L1 immunohistochemistry assays for predicting PD-1/PD-L1 inhibitor response. Biomark Res. 2017;5:12.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Obeid JM, Erdag G, Smolkin ME, et al. PD-L1, PD-L2 and PD-1 expression in metastatic melanoma: correlation with tumor-infiltrating immune cells and clinical outcome. Oncoimmunology. 2016;5:e1235107.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    McLaughlin J, Han G, Schalper KA, et al. Quantitative assessment of the heterogeneity of PD-L1 expression in non-small-cell lung cancer. JAMA Oncol. 2016;2:46–54.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16:275–87.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kelderman S, Heemskerk B, van Tinteren H, et al. Lactate dehydrogenase as a selection criterion for ipilimumab treatment in metastatic melanoma. Cancer Immunol Immunother. 2014;63:449–58.PubMedGoogle Scholar
  64. 64.
    Larkin J, Ferrucci PF, Gonzalez R, et al. Efficacy of nivolumab (NIVO) plus ipilimumab (IPI) combination in patients with advanced melanoma (MEL) and elevated serum lactate dehydrogenase (LDH): a pooled analysis. In: Society for melanoma research 2016 congress, 6–9 November 2016, Boston.Google Scholar
  65. 65.
    Blank CU, Ribas A, Long GV, et al. Impact of baseline serum lactate dehydrogenase (LDH) concentration on efficacy in the KEYNOTE-006 study of pembrolizumab vs ipilimumab. In: Society for melanoma research 2016 congress, 6–9 November 2016, Boston.Google Scholar
  66. 66.
    Ribas A, Li XN, Daud A, et al. Elevated baseline serum lactate dehydrogenase (LDH) does not preclude durable responses with pembrolizumab. In: Society for melanoma research 2016 congress, 6–9 November 2016, Boston.Google Scholar
  67. 67.
    Weide B, Martens A, Hassel JC, et al. Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin Cancer Res. 2016;22(22):5487–96.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Jansen Y, Rozeman EA, Højberg L, et al. Correlation between baseline characteristics and clinical outcome of patients with advanced melanoma treated with pembrolizumab (PEMBRO). Ann Oncol. 2016;27:1127P.CrossRefGoogle Scholar
  69. 69.
    Blank CU, Haanen JB, Ribas A, Schumacher TN. Cancer Immunology. The “cancer immunogram”. Science. 2016;352:658–60.PubMedCrossRefGoogle Scholar
  70. 70.
    Network Cancer Genome Atlas. Genomic classification of cutaneous melanoma. Cell. 2015;161:1681–96.CrossRefGoogle Scholar
  71. 71.
    Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.PubMedCrossRefGoogle Scholar
  72. 72.
    Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    McArthur GA, Chapman PB, Robert C, et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014;15:323–32.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65.PubMedCrossRefGoogle Scholar
  75. 75.
    Haarberg HE, Smalley KS. Resistance to Raf inhibition in cancer. Drug Discov Today Technol. 2014;11:27–32.PubMedCrossRefGoogle Scholar
  76. 76.
    Rizos H, Menzies AM, Pupo GM, et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clin Cancer Res. 2014;20:1965–77.PubMedCrossRefGoogle Scholar
  77. 77.
    Poulikakos PI, Zhang C, Bollag G, et al. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010;464:427–30.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Hatzivassiliou G, Song K, Yen I, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010;464:431–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Su F, Viros A, Milagre C, et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med. 2012;366:207–15.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Paraiso KH, Fedorenko IV, Cantini LP, et al. Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br J Cancer. 2010;102:1724–30.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Long GV, Stroyakovskiy D, Gogas H, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. 2014;371:1877–88.PubMedCrossRefGoogle Scholar
  82. 82.
    Robert C, Karaszewska B, Schachter J, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Larkin J, Ascierto PA, Dreno B, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371:1867–76.PubMedCrossRefGoogle Scholar
  84. 84.
    Robert C, Karaszewska B, Schachter J, et al. Three-year estimate of overall survival in COMBI-v, a randomized phase 3 study evaluating first-line dabrafenib (D) + trametinib (T) in patients (pts) with unresectable or metastatic BRAF V600E/K-mutant cutaneous melanoma. Ann Oncol. 2016;27:LBA40–LBA40.Google Scholar
  85. 85.
    Long GV, Stroyakovskiy D, Gogas H, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015;386:444–51.PubMedCrossRefGoogle Scholar
  86. 86.
    Long GV, Flaherty KT, Stroyakovskiy D, et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann Oncol 2017; 28: 1631–1639.Google Scholar
  87. 87.
    McArthur G, Dreno B, Atkinson V, et al. Efficacy of long-term cobimetinib (C) plus vemurafenib (V) in advanced BRAF V600-mutated melanoma: 3-year follow-up of the phase 3 coBRIM study and 4-year follow-up of the phase 1b BRIM7 study. Society for melanoma research 2016 congress, 6–9 November 2016, Boston.Google Scholar
  88. 88.
    Dummer R, Ascierto PA, Gogas HJ, et al. Results of COLUMBUS part 1: a phase 3 trial of encorafenib (ENCO) plus binimetinib (BINI) versus vemurafenib (VEM) or ENCO in BRAF-mutant melanoma. In: Society for melanoma research 2016 congress; 6–9 November 2016: Boston.Google Scholar
  89. 89.
    Daud A, Gill J, Kamra S, et al. Indirect treatment comparison of dabrafenib plus trametinib versus vemurafenib plus cobimetinib in previously untreated metastatic melanoma patients. J Hematol Oncol. 2017;10:3.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Long GV, Grob JJ, Nathan P, et al. Factors predictive of response, disease progression, and overall survival after dabrafenib and trametinib combination treatment: a pooled analysis of individual patient data from randomised trials. Lancet Oncol. 2016;17:1743–54.PubMedCrossRefGoogle Scholar
  91. 91.
    Long GV, Grob JJ, Davies M, et al. Three-year pooled analysis of baseline and postbaseline factors associated with clinical benefit with combination dabrafenib and trametinib (D + T) across phase 3 trials. In: Society for melanoma research 2016 congress; 6–9 November 2016: Boston.Google Scholar
  92. 92.
    Flaherty K, Davies MA, Grob JJ, et al. Genomic analysis and 3-y efficacy and safety update of COMBI-d: A phase 3 study of dabrafenib (D) + trametinib (T) vs D monotherapy in patients (pts) with unresectable or metastatic BRAF V600E/K-mutant cutaneous melanoma. J Clin Oncol 2016; 34: abstr 9502.Google Scholar
  93. 93.
    Dummer R, Hauschild A, Lindenblatt N, et al. Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2015;26:v126–32.PubMedCrossRefGoogle Scholar
  94. 94.
    National Comprehensive Cancer Network. NCCN CLinical Practice Guidelines in Oncology (NCCN Guidelines), Melanoma, Version I. 2017–November 10, 2016.Google Scholar
  95. 95.
    Park JJ, Parakh S, Mendis S, et al. Efficacy of anti-PD-1 therapy in patients with melanoma brain metastases. Ann Oncol. 2016;27:1114PD.Google Scholar
  96. 96.
    Joseph RW, Elassaiss-Schaap J, Wolchok J, et al. Baseline tumor size as an independent prognostic factor for overall survival in patients with metastatic melanoma treated with the anti-PD-1 monoclonal antibody MK-3475 [abstract no. 3015]. J Clin Oncol. 2014; 32 Suppl.Google Scholar
  97. 97.
    Ascierto PA, McArthur GA, Dreno B, et al. Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol. 2016;17:1248–60.PubMedCrossRefGoogle Scholar
  98. 98.
    Robert C, Ribas A, Hamid O, et al. Three-year overall survival for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001 [abstract no. 9503]. J Clin Oncol. 2016; 34.Google Scholar
  99. 99.
    Atkinson VG, Ladwa R. Complete responders to anti-PD1 antibodies. What happens when we stop? Ann Oncol. 2016;27:1116P.CrossRefGoogle Scholar
  100. 100.
    Frederick DT, Piris A, Cogdill AP, et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res. 2013;19:1225–31.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Wilmott JS, Long GV, Howle JR, et al. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res. 2012;18:1386–94.PubMedCrossRefGoogle Scholar
  102. 102.
    Ribas A, Hodi FS, Lawrence D, et al. KEYNOTE-022 update: phase 1 study of first-line pembrolizumab (pembro) plus dabrafenib (D) and trametinib (T) for BRAF-mutant advanced melanoma. In: ESMO 2017 congress, 8–12 September 2017, Madrid.Google Scholar
  103. 103.
    Hwu P, Hamid O, Gonzalez R, et al. Preliminary safety and clinical activity of atezolizumab combined with cobimetinib and vemurafenib in BRAF V600-mutant metastatic melanoma. Ann Oncol. 2016;27:1109PD.Google Scholar
  104. 104.
    Kakavand H, Wilmott JS, Menzies AM, et al. PD-L1 expression and tumor-infiltrating lymphocytes define different subsets of MAPK inhibitor-treated melanoma patients. Clin Cancer Res. 2015;21:3140–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Deken MA, Gadiot J, Jordanova ES, et al. Targeting the MAPK and PI3K pathways in combination with PD1 blockade in melanoma. Oncoimmunology. 2016;5:e1238557.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Donia M, Kimper-Karl ML, Hoyer KL, et al. The majority of patients with metastatic melanoma are not represented in pivotal phase III immunotherapy trials. Eur J Cancer. 2017;74:89–95.PubMedCrossRefGoogle Scholar
  107. 107.
    Davies MA, Liu P, McIntyre S, et al. Prognostic factors for survival in melanoma patients with brain metastases. Cancer. 2011;117:1687–96.PubMedCrossRefGoogle Scholar
  108. 108.
    Eigentler TK, Figl A, Krex D, et al. Number of metastases, serum lactate dehydrogenase level, and type of treatment are prognostic factors in patients with brain metastases of malignant melanoma. Cancer. 2011;117:1697–703.PubMedCrossRefGoogle Scholar
  109. 109.
    Fife KM, Colman MH, Stevens GN, et al. Determinants of outcome in melanoma patients with cerebral metastases. J Clin Oncol. 2004;22:1293–300.PubMedCrossRefGoogle Scholar
  110. 110.
    Long GV, Trefzer U, Davies MA, et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13:1087–95.PubMedCrossRefGoogle Scholar
  111. 111.
    McArthur GA, Maio M, Arance A, et al. Vemurafenib in metastatic melanoma patients with brain metastases: an open-label, single-arm, phase 2, multicentre study. Ann Oncol. 2017;28:634–41.PubMedCrossRefGoogle Scholar
  112. 112.
    Davies MA, Saiag P, Robert C, et al. Dabrafenib plus trametinib in patients with BRAFV600-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol. 2017;18:863–73.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Goldberg SB, Gettinger SN, Mahajan A, et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016;17:976–83.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Long GV, Atkinson V, Menzies AM, et al. A randomized phase 2 study of nivolumab and nivolumab combined with ipilimumab in patients (pts) with melanoma brain metastases: The Anti-PD1 Brain Collaboration (ABC Study). J Clin Oncol. 2016;34:TPS9591.Google Scholar
  115. 115.
    Tawbi HA-H, Forsyth PAJ, Algazi AP, et al. Efficacy and safety of nivolumab (NIVO) plus ipilimumab (IPI) in patients with melanoma (MEL) metastatic to the brain: Results of the phase II study CheckMate 204. J Clin Oncol. 2017;35:9507.Google Scholar
  116. 116.
    Margolin K, Ernstoff MS, Hamid O, et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 2012;13:459–65.PubMedCrossRefGoogle Scholar
  117. 117.
    Patrick RJ, Fenske NA, Messina JL. Primary mucosal melanoma. J Am Acad Dermatol. 2007;56:828–34.PubMedCrossRefGoogle Scholar
  118. 118.
    Furney SJ, Turajlic S, Stamp G, et al. Genome sequencing of mucosal melanomas reveals that they are driven by distinct mechanisms from cutaneous melanoma. J Pathol. 2013;230:261–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Cosgarea I, Ugurel S, Sucker A, et al. Targeted next generation sequencing of mucosal melanomas identifies frequent NF1 and RAS mutations. Oncotarget. 2017;8(25):40683–92.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Postow MA, Luke JJ, Bluth MJ, et al. Ipilimumab for patients with advanced mucosal melanoma. Oncologist. 2013;18:726–32.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Shoushtari AN, Munhoz RR, Kuk D, et al. The efficacy of anti-PD-1 agents in acral and mucosal melanoma. Cancer. 2016;122:3354–62.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Van Raamsdonk CD, Griewank KG, Crosby MB, et al. Mutations in GNA11 in uveal melanoma. N Engl J Med. 2010;363:2191–9.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Eskelin S, Pyrhonen S, Hahka-Kemppinen M, et al. A prognostic model and staging for metastatic uveal melanoma. Cancer. 2003;97:465–75.PubMedCrossRefGoogle Scholar
  124. 124.
    Carvajal RD, Sosman JA, Quevedo JF, et al. Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: a randomized clinical trial. JAMA. 2014;311:2397–405.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Krauthammer M, Kong Y, Ha BH, et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 2012;44:1006–14.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Maio M, Danielli R, Chiarion-Sileni V, et al. Efficacy and safety of ipilimumab in patients with pre-treated, uveal melanoma. Ann Oncol. 2013;24:2911–5.PubMedCrossRefGoogle Scholar
  127. 127.
    Luke JJ, Callahan MK, Postow MA, et al. Clinical activity of ipilimumab for metastatic uveal melanoma: a retrospective review of the Dana-Farber Cancer Institute, Massachusetts General Hospital, Memorial Sloan-Kettering Cancer Center, and University Hospital of Lausanne experience. Cancer. 2013;119:3687–95.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Algazi AP, Tsai KK, Shoushtari AN, et al. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies. Cancer. 2016;122:3344–53.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    van der Kooij MK, Joosse A, Speetjens FM, et al. Anti-PD1 treatment in metastatic uveal melanoma in the Netherlands. Acta Oncol. 2017;56:101–3.PubMedCrossRefGoogle Scholar
  130. 130.
    Schadendorf D, Ascierto PA, Haanen JBAG, et al. Efficacy and safety of nivolumab (NIVO) in patients with advanced melanoma (MEL) and poor prognostic factors who progressed on or after ipilimumab (IPI): Results from a phase II study (CheckMate 172). J Clin Oncol. 2017;35:9524.CrossRefGoogle Scholar
  131. 131.
    Chandran SS, Somerville RP, Yang JC, et al. Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: a single-centre, two-stage, single-arm, phase 2 study. Lancet Oncol. 2017;18(6):792–802.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Sato T, Nathan PD, Hernandez-Aya LF, et al. Intra-patient escalation dosing strategy with IMCgp100 results in mitigation of T-cell based toxicity and preliminary efficacy in advanced uveal melanoma. J Clin Oncol. 2017;35:9531.CrossRefGoogle Scholar
  133. 133.
    Amirouchene-Angelozzi N, Frisch-Dit-Leitz E, Carita G, et al. The mTOR inhibitor everolimus synergizes with the PI3K inhibitor GDC0941 to enhance anti-tumor efficacy in uveal melanoma. Oncotarget. 2016;7:23633–46.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Carita G, Frisch-Dit-Leitz E, Dahmani A, et al. Dual inhibition of protein kinase C and p53-MDM2 or PKC and mTORC1 are novel efficient therapeutic approaches for uveal melanoma. Oncotarget. 2016;7:33542–56.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Eggermont AM, Chiarion-Sileni V, Grob JJ, et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med. 2016;375:1845–55.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Weber J, Mandala M, Del Vecchio M, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. DOI: 10.1056/NEJMoa1709030 (Epub 10 Sep 2017). Google Scholar
  137. 137.
    Long GV, Hauschild A, Santinami M, et al. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N Engl J Med. 2017. doi: 10.1056/NEJMoa1708539 (Epub 10 Sep 2017).
  138. 138.
    Blank C, van Akkooi A, Rozeman EA, et al. (Neo-)adjuvant ipilimumab + nivolumab (IPI + NIVO) in palpable stage 3 melanoma: initial data from the OpACIN trial. Ann Oncol. 2016;27:LBA39.Google Scholar
  139. 139.
    Infante J, Kim T, Friedmann J, et al. Safety and clinical activity of atezolizumab combined with cobimetinib in metastatic melanoma. In: Society for melanoma research 2016 congress; 6–9 November 2016: Boston.Google Scholar
  140. 140.
    Dummer R, Schadendorf D, Ascierto PA, et al. Binimetinib versus dacarbazine in patients with advanced NRAS mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017;18:435–45.PubMedCrossRefGoogle Scholar
  141. 141.
    Gangadhar TC, Hamid O, Smith DC, et al. Epacadostat plus pembrolizumab in patients with advanced melanoma and select solid tumors: updated phase 1 results from ECHO-202/KEYNOTE-037. Ann Oncol. 2016;27:1110PD.Google Scholar
  142. 142.
    Ascierto PA, Bono P, Bhatia S, et al. Efficacy of BMS-986016 (relatlimab), a monoclonal antibody that targets lymphocyte activation gene-3(LAG-3), in combination with nivolumab in patients with melanoma who progressed during prior anti-PD-1/PD-L1 therapy in all-comer and biomarker-enriched populations. In: ESMO 2017 congress; 8–12 September 2017: Madrid.Google Scholar
  143. 143.
    Eigentler TK, Caroli UM, Radny P, Garbe C. Palliative therapy of disseminated malignant melanoma: a systematic review of 41 randomised clinical trials. Lancet Oncol. 2003;4:748–59.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Medical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands

Personalised recommendations