American Journal of Clinical Dermatology

, Volume 17, Issue 5, pp 425–443 | Cite as

Immunologic Targets in Atopic Dermatitis and Emerging Therapies: An Update

  • Diane Wang
  • Lisa A. Beck
Leading Article


Atopic dermatitis is one of the most common chronic inflammatory skin diseases. It usually begins in childhood, has a considerable impact on patients’ quality of life, and incurs substantial healthcare costs. The standard-of-care treatments for patients with moderate to severe disease are very limited and have variable and typically insufficient efficacy and many side effects, some of which are quite serious. However, over the last decade, considerable advances in our understanding of the pathogenesis of atopic dermatitis have paved the way for a number of new treatments. Most notable are the drugs that target the Th2-polarized immune system, which is thought to play a key role in many of the signs and symptoms characteristic of this disease. In this article, we briefly review the pathophysiology of atopic dermatitis, while noting that each patient’s disease phenotype is likely due to a unique interplay of several disease-specific dysregulated pathways. Lastly, we cover emerging therapies for atopic dermatitis, focusing on those that target specific components of the immune system, which are altered in atopic dermatitis. The hope is that these new biologics or small-molecule antagonists, which have high specificity for their target molecules, will decrease the undesirable side effects caused by off-target effects commonly observed with current immunosuppressive agents that are characterized by broad biological actions.


Atopic Dermatitis Omalizumab Ustekinumab Eosinophilic Esophagitis Tofacitinib 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with Ethical Standards

Conflict of interest

Lisa A. Beck, MD, has acted as a consultant for Abbvie, Array BioPharma, Celgene, Genentech, Janssen, Medimmune, Novartis, Regeneron, Sanofi, Stiefel/GSK, and Unilever and owns Pfizer and Medtronic stock. She is Principal Investigator for clinical trials from Genentech and Regeneron and Co-Investigator for clinical trial from Xoma. Diane Wang, MD, is Co-Investigator for clinical trials from Genentech, Regeneron and Xoma.


Lisa A. Beck, MD received funding from NIH R21 grant (AR062357). Diane Wang, MD has no funding to declare.


  1. 1.
    Boguniewicz M, Leung DY. Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol Rev. 2011;242(1):233–46.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Guttman-Yassky E, Nograles KE, Krueger JG. Contrasting pathogenesis of atopic dermatitis and psoriasis–part II: immune cell subsets and therapeutic concepts. J Allergy Clin Immunol. 2011;127(6):1420–32.PubMedCrossRefGoogle Scholar
  3. 3.
    Baker BS. The role of microorganisms in atopic dermatitis. Clin Exp Immunol. 2006;144(1):1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Silverberg JI, Hanifin J, Simpson EL. Climatic factors are associated with childhood eczema prevalence in the United States. J Invest Dermatol. 2013;133(7):1752–9.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Finlay AY. Quality of life in atopic dermatitis. J Am Acad Dermatol. 2001;45(1 Suppl):S64–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Ellis CN, Drake LA, Prendergast MM, Abramovits W, Boguniewicz M, Daniel CR, et al. Cost of atopic dermatitis and eczema in the United States. J Am Acad Dermatol. 2002;46(3):361–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Eichenfield LF, Tom WL, Berger TG, Krol A, Paller AS, Schwarzenberger K, et al. Guidelines of care for the management of atopic dermatitis: section 2. management and treatment of atopic dermatitis with topical therapies. J Am Acad Dermatol. 2014;71(1):116–32.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Mansouri Y, Guttman-Yassky E. Immune pathways in atopic dermatitis, and definition of biomarkers through broad and targeted therapeutics. J Clin Med. 2015;4(5):858–73.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Sidbury R, Davis DM, Cohen DE, Cordoro KM, Berger TG, Bergman JN, et al. Guidelines of care for the management of atopic dermatitis: section 3. management and treatment with phototherapy and systemic agents. J Am Acad Dermatol. 2014;71(2):327–49.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Roekevisch E, Spuls PI, Kuester D, Limpens J, Schmitt J. Efficacy and safety of systemic treatments for moderate-to-severe atopic dermatitis: a systematic review. J Allergy Clin Immunol. 2014;133(2):429–38.PubMedCrossRefGoogle Scholar
  11. 11.
    Bae JM, Choi YY, Park CO, Chung KY, Lee KH. Efficacy of allergen-specific immunotherapy for atopic dermatitis: a systematic review and meta-analysis of randomized controlled trials. J Allergy Clin Immunol. 2013;132(1):110–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Elias PM, Steinhoff M. “Outside-to-inside” (and now back to “outside”) pathogenic mechanisms in atopic dermatitis. J Invest Dermatol. 2008;128(5):1067–70.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Hvid M, Vestergaard C, Kemp K, Christensen GB, Deleuran B, Deleuran M. IL-25 in atopic dermatitis: a possible link between inflammation and skin barrier dysfunction? J Invest Dermatol. 2011;131(1):150–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Oyoshi MK, He R, Kumar L, Yoon J, Geha RS. Cellular and molecular mechanisms in atopic dermatitis. Adv Immunol. 2009;102:135–226.PubMedCrossRefGoogle Scholar
  15. 15.
    Chapman MD, Wunschmann S, Pomes A. Proteases as Th2 adjuvants. Curr Allergy Asthma Rep. 2007;7(5):363–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Hammad H, Lambrecht BN. Barrier epithelial cells and the control of type 2 immunity. Immunity. 2015;43(1):29–40.PubMedCrossRefGoogle Scholar
  17. 17.
    Leung DY, Guttman-Yassky E. Deciphering the complexities of atopic dermatitis: shifting paradigms in treatment approaches. J Allergy Clin Immunol. 2014;134(4):769–79.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Eigenmann PA, Sicherer SH, Borkowski TA, Cohen BA, Sampson HA. Prevalence of IgE-mediated food allergy among children with atopic dermatitis. Pediatrics. 1998;101(3):E8.PubMedCrossRefGoogle Scholar
  19. 19.
    Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Irvine AD, McLean WH, Leung DY. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med. 2011;365(14):1315–27.PubMedCrossRefGoogle Scholar
  21. 21.
    Winge MC, Bilcha KD, Lieden A, Shibeshi D, Sandilands A, Wahlgren CF, et al. Novel filaggrin mutation but no other loss-of-function variants found in Ethiopian patients with atopic dermatitis. Br J Dermatol. 2011;165(5):1074–80.PubMedCrossRefGoogle Scholar
  22. 22.
    Margolis DJ, Gupta J, Apter AJ, Hoffstad O, Papadopoulos M, Rebbeck TR, et al. Exome sequencing of filaggrin and related genes in African-American children with atopic dermatitis. J Invest Dermatol. 2014;134(8):2272–4.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Henderson J, Northstone K, Lee SP, Liao H, Zhao Y, Pembrey M, et al. The burden of disease associated with filaggrin mutations: a population-based, longitudinal birth cohort study. J Allergy Clin Immunol. 2008;121(4):872–7 e9.Google Scholar
  24. 24.
    Tokura Y. Extrinsic and intrinsic types of atopic dermatitis. J Dermatol Sci. 2010;58(1):1–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Akdis CA, Akdis M. Immunological differences between intrinsic and extrinsic types of atopic dermatitis. Clin Exp Allergy. 2003;33(12):1618–21.PubMedCrossRefGoogle Scholar
  26. 26.
    Suarez-Farinas M, Dhingra N, Gittler J, Shemer A, Cardinale I, de Guzman Strong C, et al. Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis. J Allergy Clin Immunol. 2013;132(2):361–70.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kabashima-Kubo R, Nakamura M, Sakabe J, Sugita K, Hino R, Mori T, et al. A group of atopic dermatitis without IgE elevation or barrier impairment shows a high Th1 frequency: possible immunological state of the intrinsic type. J Dermatol Sci. 2012;67(1):37–43.PubMedCrossRefGoogle Scholar
  28. 28.
    Kuo IH, Yoshida T, De Benedetto A, Beck LA. The cutaneous innate immune response in patients with atopic dermatitis. J Allergy Clin Immunol. 2013;131(2):266–78.PubMedCrossRefGoogle Scholar
  29. 29.
    Leyden JJ, Marples RR, Kligman AM. Staphylococcus aureus in the lesions of atopic dermatitis. Br J Dermatol. 1974;90(5):525–30.PubMedCrossRefGoogle Scholar
  30. 30.
    Hasannejad H, Takahashi R, Kimishima M, Hayakawa K, Shiohara T. Selective impairment of Toll-like receptor 2-mediated proinflammatory cytokine production by monocytes from patients with atopic dermatitis. J Allergy Clin Immunol. 2007;120(1):69–75.PubMedCrossRefGoogle Scholar
  31. 31.
    Niebuhr M, Langnickel J, Sigel S, Werfel T. Dysregulation of CD36 upon TLR-2 stimulation in monocytes from patients with atopic dermatitis and the TLR2 R753Q polymorphism. Exp Dermatol. 2010;19(8):e296–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Mrabet-Dahbi S, Dalpke AH, Niebuhr M, Frey M, Draing C, Brand S, et al. The Toll-like receptor 2 R753Q mutation modifies cytokine production and Toll-like receptor expression in atopic dermatitis. J Allergy Clin Immunol. 2008;121(4):1013–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Ahmad-Nejad P, Mrabet-Dahbi S, Breuer K, Klotz M, Werfel T, Herz U, et al. The toll-like receptor 2 R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype. The J Allergy Clin Immunol. 2004;113(3):565–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Oh DY, Schumann RR, Hamann L, Neumann K, Worm M, Heine G. Association of the toll-like receptor 2 A-16934T promoter polymorphism with severe atopic dermatitis. Allergy. 2009;64(11):1608–15.PubMedCrossRefGoogle Scholar
  35. 35.
    Potaczek DP, Nastalek M, Okumura K, Wojas-Pelc A, Undas A, Nishiyama C. An association of TLR2-16934A>T polymorphism and severity/phenotype of atopic dermatitis. J Eur Acad Dermatol Venereol. 2011;25(6):715–21.PubMedCrossRefGoogle Scholar
  36. 36.
    Sumikawa Y, Asada H, Hoshino K, Azukizawa H, Katayama I, Akira S, et al. Induction of beta-defensin 3 in keratinocytes stimulated by bacterial lipopeptides through toll-like receptor 2. Microbes Infect. 2006;8(6):1513–21.PubMedCrossRefGoogle Scholar
  37. 37.
    Baroni A, Orlando M, Donnarumma G, Farro P, Iovene MR, Tufano MA, et al. Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur. Arch Dermatol Res. 2006;297(7):280–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Yuki T, Yoshida H, Akazawa Y, Komiya A, Sugiyama Y, Inoue S. Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes. J Immunol. 2011;187(6):3230–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Kuo IH, Carpenter-Mendini A, Yoshida T, McGirt LY, Ivanov AI, Barnes KC, et al. Activation of epidermal toll-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair. J Invest Dermatol. 2013;133(4):988–98.PubMedCrossRefGoogle Scholar
  40. 40.
    Le TA, Takai T, Vu AT, Kinoshita H, Chen X, Ikeda S, et al. Flagellin induces the expression of thymic stromal lymphopoietin in human keratinocytes via toll-like receptor 5. Int Arch Allergy Immunol. 2011;155(1):31–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Vu AT, Baba T, Chen X, Le TA, Kinoshita H, Xie Y, et al. Staphylococcus aureus membrane and diacylated lipopeptide induce thymic stromal lymphopoietin in keratinocytes through the Toll-like receptor 2-Toll-like receptor 6 pathway. J Allergy Clin Immunol. 2010;126(5):985–93, 93 e1–3.Google Scholar
  42. 42.
    Kinoshita H, Takai T, Le TA, Kamijo S, Wang XL, Ushio H, et al. Cytokine milieu modulates release of thymic stromal lymphopoietin from human keratinocytes stimulated with double-stranded RNA. J Allergy Clin Immunol. 2009;123(1):179–86.PubMedCrossRefGoogle Scholar
  43. 43.
    Koyasu S, Moro K. Type 2 innate immune responses and the natural helper cell. Immunology. 2011;132(4):475–81.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lee GR, Flavell RA. Transgenic mice which overproduce Th2 cytokines develop spontaneous atopic dermatitis and asthma. Int Immunol. 2004;16(8):1155–60.PubMedCrossRefGoogle Scholar
  45. 45.
    Dillon SR, Sprecher C, Hammond A, Bilsborough J, Rosenfeld-Franklin M, Presnell SR, et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol. 2004;5(7):752–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Gittler JK, Shemer A, Suarez-Farinas M, Fuentes-Duculan J, Gulewicz KJ, Wang CQ, et al. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol. 2012;130(6):1344–54.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Jeong CW, Ahn KS, Rho NK, Park YD, Lee DY, Lee JH, et al. Differential in vivo cytokine mRNA expression in lesional skin of intrinsic vs. extrinsic atopic dermatitis patients using semiquantitative RT-PCR. Clin Exp Allergy. 2003;33(12):1717–24.PubMedCrossRefGoogle Scholar
  48. 48.
    Sonkoly E, Muller A, Lauerma AI, Pivarcsi A, Soto H, Kemeny L, et al. IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol. 2006;117(2):411–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Bilsborough J, Leung DY, Maurer M, Howell M, Boguniewicz M, Yao L, et al. IL-31 is associated with cutaneous lymphocyte antigen-positive skin homing T cells in patients with atopic dermatitis. J Allergy Clin Immunol. 2006;117(2):418–25.PubMedCrossRefGoogle Scholar
  50. 50.
    Lund S, Walford HH, Doherty TA. Type 2 innate lymphoid cells in allergic disease. Curr Immunol Rev. 2013;9(4):214–21.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wynn TA. Type 2 cytokines: mechanisms and therapeutic strategies. Nat Rev Immunol. 2015;15(5):271–82.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang Y, Zhou B. Functions of thymic stromal lymphopoietin in immunity and disease. Immunol Res. 2012;52(3):211–23.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Gandhi NA, Bennett BL, Graham NM, Pirozzi G, Stahl N, Yancopoulos GD. Targeting key proximal drivers of type 2 inflammation in disease. Nat Rev Drug Discov. 2016;15(1):35–50.PubMedCrossRefGoogle Scholar
  54. 54.
    Bao L, Zhang H, Chan LS. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis. JAKSTAT. 2013;2(3):e24137.PubMedPubMedCentralGoogle Scholar
  55. 55.
    McKenzie GJ, Fallon PG, Emson CL, Grencis RK, McKenzie AN. Simultaneous disruption of interleukin (IL)-4 and IL-13 defines individual roles in T helper cell type 2-mediated responses. J Exp Med. 1999;189(10):1565–72.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Bacharier LB, Geha RS. Molecular mechanisms of IgE regulation. J Allergy Clin Immunol. 2000;105(2 Pt 2):S547–58.PubMedCrossRefGoogle Scholar
  57. 57.
    Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, DeBenedetto A, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol. 2009;124(3 Suppl 2):R7–12.PubMedCrossRefGoogle Scholar
  58. 58.
    Kim BE, Leung DY, Boguniewicz M, Howell MD. Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6. Clin Immunol. 2008;126(3):332–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Albanesi C, Fairchild HR, Madonna S, Scarponi C, De Pita O, Leung DY, et al. IL-4 and IL-13 negatively regulate TNF-alpha- and IFN-gamma-induced beta-defensin expression through STAT-6, suppressor of cytokine signaling (SOCS)-1, and SOCS-3. J Immunol. 2007;179(2):984–92.PubMedCrossRefGoogle Scholar
  60. 60.
    Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol. 2003;171(6):3262–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347(15):1151–60.PubMedCrossRefGoogle Scholar
  62. 62.
    Howell MD, Wollenberg A, Gallo RL, Flaig M, Streib JE, Wong C, et al. Cathelicidin deficiency predisposes to eczema herpeticum. J Allergy Clin Immunol. 2006;117(4):836–41.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Brauweiler AM, Goleva E, Leung DY. Th2 cytokines increase Staphylococcus aureus alpha toxin-induced keratinocyte death through the signal transducer and activator of transcription 6 (STAT6). J Invest Dermatol. 2014;134(8):2114–21.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kouro T, Takatsu K. IL-5- and eosinophil-mediated inflammation: from discovery to therapy. Int Immunol. 2009;21(12):1303–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhang Q, Putheti P, Zhou Q, Liu Q, Gao W. Structures and biological functions of IL-31 and IL-31 receptors. Cytokine Growth Factor Rev. 2008;19(5–6):347–56.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lee CH, Hong CH, Yu WT, Chuang HY, Huang SK, Chen GS, et al. Mechanistic correlations between two itch biomarkers, cytokine interleukin-31 and neuropeptide beta-endorphin, via STAT3/calcium axis in atopic dermatitis. Br J Dermatol. 2012;167(4):794–803.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Raap U, Wichmann K, Bruder M, Stander S, Wedi B, Kapp A, et al. Correlation of IL-31 serum levels with severity of atopic dermatitis. J Allergy Clin Immunol. 2008;122(2):421–3.PubMedCrossRefGoogle Scholar
  68. 68.
    Toda M, Leung DY, Molet S, Boguniewicz M, Taha R, Christodoulopoulos P, et al. Polarized in vivo expression of IL-11 and IL-17 between acute and chronic skin lesions. J Allergy Clin Immunol. 2003;111(4):875–81.PubMedCrossRefGoogle Scholar
  69. 69.
    Guttman-Yassky E, Lowes MA, Fuentes-Duculan J, Zaba LC, Cardinale I, Nograles KE, et al. Low expression of the IL-23/Th17 pathway in atopic dermatitis compared to psoriasis. J Immunol. 2008;181(10):7420–7.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Hamid Q, Boguniewicz M, Leung DY. Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest. 1994;94(2):870–6.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Werfel T, Morita A, Grewe M, Renz H, Wahn U, Krutmann J, et al. Allergen specificity of skin-infiltrating T cells is not restricted to a type-2 cytokine pattern in chronic skin lesions of atopic dermatitis. J Invest Dermatol. 1996;107(6):871–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Spergel JM, Mizoguchi E, Oettgen H, Bhan AK, Geha RS. Roles of TH1 and TH2 cytokines in a murine model of allergic dermatitis. J Clin Invest. 1999;103(8):1103–11.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Nograles KE, Zaba LC, Shemer A, Fuentes-Duculan J, Cardinale I, Kikuchi T, et al. IL-22-producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J Allergy Clin Immunol. 2009;123(6):1244–52 e2.Google Scholar
  74. 74.
    Czarnowicki T, Gonzalez J, Shemer A, Malajian D, Xu H, Zheng X, et al. Severe atopic dermatitis is characterized by selective expansion of circulating TH2/TC2 and TH22/TC22, but not TH17/TC17, cells within the skin-homing T-cell population. J Allergy Clin Immunol. 2015;136(1):104–15 e7.Google Scholar
  75. 75.
    Koga C, Kabashima K, Shiraishi N, Kobayashi M, Tokura Y. Possible pathogenic role of Th17 cells for atopic dermatitis. J Invest Dermatol. 2008;128(11):2625–30.PubMedCrossRefGoogle Scholar
  76. 76.
    Teraki Y, Sakurai A, Izaki S. IL-13/IL-22-coproducing T cells, a novel subset, are increased in atopic dermatitis. J Allergy Clin Immunol. 2013;132(4):971–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 2013;210(13):2939–50.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Oldhoff JM, Darsow U, Werfel T, Katzer K, Wulf A, Laifaoui J, et al. Anti-IL-5 recombinant humanized monoclonal antibody (mepolizumab) for the treatment of atopic dermatitis. Allergy. 2005;60(5):693–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Oldhoff JM, Darsow U, Werfel T, Bihari IC, Katzer K, Laifaoui J, et al. No effect of anti-interleukin-5 therapy (mepolizumab) on the atopy patch test in atopic dermatitis patients. Int Arch Allergy Immunol. 2006;141(3):290–4.PubMedCrossRefGoogle Scholar
  80. 80.
    Thompson CA. Mepolizumab approved as add-on long-term therapy for severe asthma. Am J Health Syst Pharm. 2015;72(24):2125.PubMedCrossRefGoogle Scholar
  81. 81.
    Borish LC, Nelson HS, Lanz MJ, Claussen L, Whitmore JB, Agosti JM, et al. Interleukin-4 receptor in moderate atopic asthma. A phase I/II randomized, placebo-controlled trial. Am J Respir Crit Care Med. 1999;160(6):1816–23.PubMedCrossRefGoogle Scholar
  82. 82.
    Borish LC, Nelson HS, Corren J, Bensch G, Busse WW, Whitmore JB, et al. Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J Allergy Clin Immunol. 2001;107(6):963–70.PubMedCrossRefGoogle Scholar
  83. 83.
    Hart TK, Blackburn MN, Brigham-Burke M, Dede K, Al-Mahdi N, Zia-Amirhosseini P, et al. Preclinical efficacy and safety of pascolizumab (SB 240683): a humanized anti-interleukin-4 antibody with therapeutic potential in asthma. Clin Exp Immunol. 2002;130(1):93–100.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Gauvreau GM, Boulet LP, Cockcroft DW, Fitzgerald JM, Carlsten C, Davis BE, et al. Effects of interleukin-13 blockade on allergen-induced airway responses in mild atopic asthma. Am J Respir Crit Care Med. 2011;183(8):1007–14.PubMedCrossRefGoogle Scholar
  85. 85.
    Corren J, Busse W, Meltzer EO, Mansfield L, Bensch G, Fahrenholz J, et al. A randomized, controlled, phase 2 study of AMG 317, an IL-4Ralpha antagonist, in patients with asthma. Am J Respir Crit Care Med. 2010;181(8):788–96.PubMedCrossRefGoogle Scholar
  86. 86.
    Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet. 2007;370(9596):1422–31.PubMedCrossRefGoogle Scholar
  87. 87.
    Groves RW, Wilbraham D, Fuller R, Longphre M. Inhibition of IL-4 and IL-13 with an IL-4 mutein (Aeroderm) protects against flares in atopic eczema. J Invest Dermatol. 2007;127:S54.Google Scholar
  88. 88.
    Thaci D, Simpson EL, Beck LA, Bieber T, Blauvelt A, Papp K, et al. Efficacy and safety of dupilumab in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical treatments: a randomised, placebo-controlled, dose-ranging phase 2b trial. Lancet. 2016;387(10013):40–52. doi: 10.1016/S0140-6736(15)00388-8.
  89. 89.
    Beck LA, Thaci D, Hamilton JD, Graham NM, Bieber T, Rocklin R, et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med. 2014;371(2):130–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Hamilton JD, Suarez-Farinas M, Dhingra N, Cardinale I, Li X, Kostic A, et al. Dupilumab improves the molecular signature in skin of patients with moderate-to-severe atopic dermatitis. J Allergy Clin Immunol. 2014;134(6):1293–300.PubMedCrossRefGoogle Scholar
  91. 91.
    Wenzel S, Ford L, Pearlman D, Spector S, Sher L, Skobieranda F, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med. 2013;368(26):2455–66.PubMedCrossRefGoogle Scholar
  92. 92.
    Pauwels B, Jonstam K, Bachert C. Emerging biologics for the treatment of chronic rhinosinusitis. Expert Rev Clin Immunol. 2015;11(3):349–61.PubMedCrossRefGoogle Scholar
  93. 93.
    Tavakolpour S, Tavakolpour V. Interleukin 4 inhibition as a potential therapeutic in pemphigus. Cytokine. 2016;77:189–95.PubMedCrossRefGoogle Scholar
  94. 94.
    Hanania NA, Noonan M, Corren J, Korenblat P, Zheng Y, Fischer SK, et al. Lebrikizumab in moderate-to-severe asthma: pooled data from two randomised placebo-controlled studies. Thorax. 2015;70(8):748–56.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Herrick CA, MacLeod H, Glusac E, Tigelaar RE, Bottomly K. Th2 responses induced by epicutaneous or inhalational protein exposure are differentially dependent on IL-4. J Clin Invest. 2000;105(6):765–75.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Brightling CE, Chanez P, Leigh R, O’Byrne PM, Korn S, She D, et al. Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med. 2015;3(9):692–701.PubMedCrossRefGoogle Scholar
  97. 97.
    Danese S, Rudzinski J, Brandt W, Dupas JL, Peyrin-Biroulet L, Bouhnik Y, et al. Tralokinumab for moderate-to-severe UC: a randomised, double-blind, placebo-controlled, phase IIa study. Gut. 2015;64(2):243–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Walsh GM. Tralokinumab, an anti-IL-13 mAb for the potential treatment of asthma and COPD. Curr Opin Investig Drugs. 2010;11(11):1305–12.PubMedGoogle Scholar
  99. 99.
    Murray LA, Zhang H, Oak SR, Coelho AL, Herath A, Flaherty KR, et al. Targeting interleukin-13 with tralokinumab attenuates lung fibrosis and epithelial damage in a humanized SCID idiopathic pulmonary fibrosis model. Am J Respir Cell Mol Biol. 2014;50(5):985–94.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Roman M, Madkan VK, Chiu MW. Profile of secukinumab in the treatment of psoriasis: current perspectives. Ther Clin Risk Manag. 2015;11:1767–77.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Ling Y, Puel A. IL-17 and infections. Actas Dermosifiliogr. 2014;105(Suppl 1):34–40.PubMedCrossRefGoogle Scholar
  102. 102.
    Burmester GR, Durez P, Shestakova G, Genovese MC, Schulze-Koops H, Li Y, et al. Association of HLA-DRB1 alleles with clinical responses to the anti-interleukin-17A monoclonal antibody secukinumab in active rheumatoid arthritis. Rheumatology (Oxford). 2016;55(1):49–55.CrossRefGoogle Scholar
  103. 103.
    Baeten D, Sieper J, Braun J, Baraliakos X, Dougados M, Emery P, et al. Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. N Engl J Med. 2015;373(26):2534–48.PubMedCrossRefGoogle Scholar
  104. 104.
    Letko E, Yeh S, Foster CS, Pleyer U, Brigell M, Grosskreutz CL, et al. Efficacy and safety of intravenous secukinumab in noninfectious uveitis requiring steroid-sparing immunosuppressive therapy. Ophthalmology. 2015;122(5):939–48.PubMedCrossRefGoogle Scholar
  105. 105.
    Mease PJ, McInnes IB, Kirkham B, Kavanaugh A, Rahman P, van der Heijde D, et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N Engl J Med. 2015;373(14):1329–39.PubMedCrossRefGoogle Scholar
  106. 106.
    Fernandez O, Arnal-Garcia C, Arroyo-Gonzalez R, Brieva L, Calles-Hernandez MC, Casanova-Estruch B, et al. Review of the novelties presented at the 28th Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) (III). Rev Neurol. 2013;57(7):317–29.PubMedGoogle Scholar
  107. 107.
    MacGlashan D. Loss of receptors and IgE in vivo during treatment with anti-IgE antibody. J Allergy Clin Immunol. 2004;114(6):1472–4.PubMedCrossRefGoogle Scholar
  108. 108.
    Heil PM, Maurer D, Klein B, Hultsch T, Stingl G. Omalizumab therapy in atopic dermatitis: depletion of IgE does not improve the clinical course—a randomized, placebo-controlled and double blind pilot study. J Dtsch Dermatol Ges. 2010;8(12):990–8.PubMedGoogle Scholar
  109. 109.
    Krathen RA, Hsu S. Failure of omalizumab for treatment of severe adult atopic dermatitis. J Am Acad Dermatol. 2005;53(2):338–40.PubMedCrossRefGoogle Scholar
  110. 110.
    Vigo PG, Girgis KR, Pfuetze BL, Critchlow ME, Fisher J, Hussain I. Efficacy of anti-IgE therapy in patients with atopic dermatitis. J Am Acad Dermatol. 2006;55(1):168–70.PubMedCrossRefGoogle Scholar
  111. 111.
    Kim DH, Park KY, Kim BJ, Kim MN, Mun SK. Anti-immunoglobulin E in the treatment of refractory atopic dermatitis. Clin Exp Dermatol. 2013;38(5):496–500.PubMedCrossRefGoogle Scholar
  112. 112.
    Lane JE, Cheyney JM, Lane TN, Kent DE, Cohen DJ. Treatment of recalcitrant atopic dermatitis with omalizumab. J Am Acad Dermatol. 2006;54(1):68–72.PubMedCrossRefGoogle Scholar
  113. 113.
    Arm JP, Bottoli I, Skerjanec A, Floch D, Groenewegen A, Maahs S, et al. Pharmacokinetics, pharmacodynamics and safety of QGE031 (ligelizumab), a novel high-affinity anti-IgE antibody, in atopic subjects. Clin Exp Allergy. 2014;44(11):1371–85.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Chu SY, Horton HM, Pong E, Leung IW, Chen H, Nguyen DH, et al. Reduction of total IgE by targeted coengagement of IgE B-cell receptor and FcgammaRIIb with Fc-engineered antibody. J Allergy Clin Immunol. 2012;129(4):1102–15.PubMedCrossRefGoogle Scholar
  115. 115.
    O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–28.PubMedCrossRefGoogle Scholar
  116. 116.
    Levy LL, Urban J, King BA. Treatment of recalcitrant atopic dermatitis with the oral Janus kinase inhibitor tofacitinib citrate. J Am Acad Dermatol. 2015;73(3):395–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Lee EB, Fleischmann R, Hall S, Wilkinson B, Bradley JD, Gruben D, et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med. 2014;370(25):2377–86.PubMedCrossRefGoogle Scholar
  118. 118.
    Keystone EC, Taylor PC, Drescher E, Schlichting DE, Beattie SD, Berclaz PY, et al. Safety and efficacy of baricitinib at 24 weeks in patients with rheumatoid arthritis who have had an inadequate response to methotrexate. Ann Rheum Dis. 2015;74(2):333–40.PubMedCrossRefGoogle Scholar
  119. 119.
    Jabbari A, Dai Z, Xing L, Cerise JE, Ramot Y, Berkun Y, et al. Reversal of alopecia areata following treatment with the JAK1/2 inhibitor baricitinib. EBioMedicine. 2015;2(4):351–5.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Agusti-Mejias A, Messeguer F, Garcia R, Febrer I. Severe refractory atopic dermatitis in an adolescent patient successfully treated with ustekinumab. Ann Dermatol. 2013;25(3):368–70.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Samorano LP, Hanifin JM, Simpson EL, Leshem YA. Inadequate response to ustekinumab in atopic dermatitis—a report of two patients. J Eur Acad Dermatol Venereol. 2016;30(3):522–3.PubMedCrossRefGoogle Scholar
  122. 122.
    Puya R, Alvarez-Lopez M, Velez A, Asuncion EC, Moreno JC. Treatment of severe refractory adult atopic dermatitis with ustekinumab. Int J Dermatol. 2012;51(1):115–6.PubMedCrossRefGoogle Scholar
  123. 123.
    Kalb RE, Fiorentino DF, Lebwohl MG, Toole J, Poulin Y, Cohen AD, et al. Risk of serious infection with biologic and systemic treatment of psoriasis: results from the psoriasis longitudinal assessment and registry (PSOLAR). JAMA Dermatol. 2015;151(9):961–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Cevikbas F, Wang X, Akiyama T, Kempkes C, Savinko T, Antal A, et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1. J Allergy Clin Immunol. 2014;133(2):448–60.PubMedCrossRefGoogle Scholar
  125. 125.
    Nobbe S, Dziunycz P, Muhleisen B, Bilsborough J, Dillon SR, French LE, et al. IL-31 expression by inflammatory cells is preferentially elevated in atopic dermatitis. Acta Derm Venereol. 2012;92(1):24–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Nemoto O, Furue M, Nakagawa H, Shiramoto M, Hanada R, Matsuki S, et al. The first trial of CIM331, a humanized anti-human IL-31 receptor A antibody, for healthy volunteers and patients with atopic dermatitis to evaluate safety, tolerability and pharmacokinetics of a single dose in a randomised, double-blind, placebo-controlled study. Br J Dermatol. 2016;174(2):296–304. doi: 10.1111/bjd.14207.
  127. 127.
    Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3(7):673–80.PubMedGoogle Scholar
  128. 128.
    Gauvreau GM, O’Byrne PM, Boulet LP, Wang Y, Cockcroft D, Bigler J, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med. 2014;370(22):2102–10.PubMedCrossRefGoogle Scholar
  129. 129.
    Kanhere A, Hertweck A, Bhatia U, Gokmen MR, Perucha E, Jackson I, et al. T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nat Commun. 2012;3:1268.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Grewe SR, Chan SC, Hanifin JM. Elevated leukocyte cyclic AMP-phosphodiesterase in atopic disease: a possible mechanism for cyclic AMP-agonist hyporesponsiveness. J Allergy Clin Immunol. 1982;70(6):452–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Gantner F, Tenor H, Gekeler V, Schudt C, Wendel A, Hatzelmann A. Phosphodiesterase profiles of highly purified human peripheral blood leukocyte populations from normal and atopic individuals: a comparative study. J Allergy Clin Immunol. 1997;100(4):527–35.PubMedCrossRefGoogle Scholar
  132. 132.
    Samrao A, Berry TM, Goreshi R, Simpson EL. A pilot study of an oral phosphodiesterase inhibitor (apremilast) for atopic dermatitis in adults. Arch Dermatol. 2012;148(8):890–7.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Volf EM, Au SC, Dumont N, Scheinman P, Gottlieb AB. A phase 2, open-label, investigator-initiated study to evaluate the safety and efficacy of apremilast in subjects with recalcitrant allergic contact or atopic dermatitis. J Drugs Dermatol. 2012;11(3):341–6.PubMedGoogle Scholar
  134. 134.
    Schmidt BM, Kusma M, Feuring M, Timmer WE, Neuhauser M, Bethke T, et al. The phosphodiesterase 4 inhibitor roflumilast is effective in the treatment of allergic rhinitis. J Allergy Clin Immunol. 2001;108(4):530–6.PubMedCrossRefGoogle Scholar
  135. 135.
    van Schalkwyk E, Strydom K, Williams Z, Venter L, Leichtl S, Schmid-Wirlitsch C, et al. Roflumilast, an oral, once-daily phosphodiesterase 4 inhibitor, attenuates allergen-induced asthmatic reactions. J Allergy Clin Immunol. 2005;116(2):292–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Stein GLF, Spelman L, Spellman MC, Hughes MH, Zane LT. A phase 2, randomized, controlled, dose-ranging study evaluating crisaborole topical ointment, 0.5% and 2% in adolescents with mild to moderate atopic dermatitis. J Drugs Dermatol. 2015;14(12):1394–9.Google Scholar
  137. 137.
    Murrell DF, Gebauer K, Spelman L, Zane LT. Crisaborole topical ointment, 2% in adults with atopic dermatitis: a phase 2a, vehicle-controlled, proof-of-concept study. J Drugs Dermatol. 2015;14(10):1108–12.PubMedGoogle Scholar
  138. 138.
    Tom WL, Van Syoc M, Chanda S, Zane LT. pharmacokinetic profile, safety, and tolerability of crisaborole topical ointment, 2% in adolescents with atopic dermatitis: an open-label phase 2a study. Pediatr Dermatol. 2016;33(2):150–9.PubMedCrossRefGoogle Scholar
  139. 139.
    Zane LT, Kircik L, Call R, Tschen E, Draelos ZD, Chanda S, et al. Crisaborole topical ointment, 2% in patients ages 2 to 17 years with atopic dermatitis: a phase 1b, open-label, maximal-use systemic exposure study. Pediatr Dermatol. 2016. doi: 10.1111/pde.12872.
  140. 140.
    Draelos ZD, Stein GLF, Murrell DF, Hughes MH, Zane LT. Post hoc analyses of the effect of crisaborole topical ointment, 2% on atopic dermatitis: associated pruritus from phase 1 and 2 clinical studies. J Drugs Dermatol. 2016;15(2):172–6.PubMedGoogle Scholar
  141. 141.
    Anacor Pharmaceuticals. Anacor Pharmaceuticals announces positive top-line results from two phase 3 pivotal studies of crisaborole topical ointment, 2% in patients with mild-to-moderate atopic dermatitis [media release]. 2015 Jul 13 [online]. Accessed 10 Dec 2015.
  142. 142.
    Furue M, Kitahara Y, Akama H, Hojo S, Hayashi N, Nakagawa H, et al. Safety and efficacy of topical E6005, a phosphodiesterase 4 inhibitor, in Japanese adult patients with atopic dermatitis: results of a randomized, vehicle-controlled, multicenter clinical trial. J Dermatol. 2014;41(7):577–85.PubMedCrossRefGoogle Scholar
  143. 143.
    Ohba F, Nomoto M, Hojo S, Akama H. Safety, tolerability and pharmacokinetics of a novel phosphodiesterase inhibitor, E6005 ointment, in healthy volunteers and in patients with atopic dermatitis. J Dermatol Treat. 2016;27(3):241–6.CrossRefGoogle Scholar
  144. 144.
    Hanifin JM, Ellis CN, Frieden IG, Folster-Holst R, Stein Gold LF, Secci A, et al. OPA-15406, a novel, topical, nonsteroidal, selective phosphodiesterase-4 (PDE4) inhibitor, in the treatment of adult and adolescent patients with mild to moderate atopic dermatitis (AD): A phase-II randomized, double-blind, placebo-controlled study. J Am Acad Dermatol. 2016. doi: 10.1016/j.jaad.2016.04.001.
  145. 145.
    Pettipher R, Hansel TT, Armer R. Antagonism of the prostaglandin D2 receptors DP1 and CRTH2 as an approach to treat allergic diseases. Nat Rev Drug Discov. 2007;6(4):313–25.PubMedCrossRefGoogle Scholar
  146. 146.
    Bowton DL, Dmitrienko AA, Israel E, Zeiher BG, Sides GD. Impact of a soluble phospholipase A2 inhibitor on inhaled allergen challenge in subjects with asthma. J Asthma. 2005;42(1):65–71.PubMedCrossRefGoogle Scholar
  147. 147.
    Leaker BR, Barnes PJ, O’Connor BJ, Ali FY, Tam P, Neville J, et al. The effects of the novel SHIP1 activator AQX-1125 on allergen-induced responses in mild-to-moderate asthma. Clin Exp Allergy. 2014;44(9):1146–53.PubMedCrossRefGoogle Scholar
  148. 148.
    Slominski A, Pisarchik A, Zbytek B, Tobin DJ, Kauser S, Wortsman J. Functional activity of serotoninergic and melatoninergic systems expressed in the skin. J Cell Physiol. 2003;196(1):144–53.PubMedCrossRefGoogle Scholar
  149. 149.
    Genentech. Genentech provides update on two identical phase III studies of Lebrikizumab in people with severe asthma [media release]. 2016 Feb 28 [online]. Accessed 15 Apr 2016.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of DermatologyUniversity of Rochester Medical CenterRochesterUSA

Personalised recommendations