American Journal of Clinical Dermatology

, Volume 17, Issue 3, pp 225–237 | Cite as

Cutaneous T-Cell Lymphoma: A Review with a Focus on Targeted Agents

Review Article

Abstract

Cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of extranodal lymphomas involving the skin. Diagnosis of the two main subtypes of CTCL—mycosis fungoides (MF) and Sézary syndrome (SS)—is based on the International Society for Cutaneous Lymphomas/European Organization for Research and Treatment of Cancer (ISCL/EORTC) classification system, which utilizes clinical, histopathological, molecular biologic, and immunopathologic features. Risk stratification, based on TNMB (tumor, node, metastasis, and blood) staging, provides prognostic information, with limited-stage disease conferring the longest median overall survival. Skin-directed therapies are preferred in the management of limited-stage disease, whereas advanced-stage disease requires systemic therapies. As the mechanisms of CTCL pathogenesis are increasingly understood, new monoclonal antibodies, checkpoint inhibitors, immunomodulatory agents, and small molecules are under investigation and may provide additional therapeutic options for those with advanced CTCL. This review examines the current landscape of targeted therapies in the treatment of CTCLs.

References

  1. 1.
    Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105(10):3768–85.PubMedCrossRefGoogle Scholar
  2. 2.
    Bradford PT, Devesa SS, Anderson WF, Toro JR. Cutaneous lymphoma incidence patterns in the United States: a population-based study of 3884 cases. Blood. 2009;113(21):5064–73.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Criscione VD, Weinstock MA. Incidence of cutaneous T-cell lymphoma in the United States, 1973-2002. Arch Dermatol. 2007;143(7):854–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Foss FM, Edelson RL, Wilson LD. Cutaneous lymphomas. In: DeVita Jr VT, Lawrence TS, Rosenberg SE, editors. Cancer: principles and practice of oncology. Philadelphia: Lippincott Williams & Wilkins; 2011. p. 1894–907.Google Scholar
  5. 5.
    Korgavkar K, Xiong M, Weinstock M. Changing incidence trends of cutaneous T-cell lymphoma. JAMA Dermatol. 2013;149(11):1295–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Litvinov IV, Tetzlaff MT, Rahme E, Habel Y, Risser DR, Gangar P, et al. Identification of geographic clustering and regions spared by cutaneous T-cell lymphoma in Texas using 2 distinct cancer registries. Cancer. 2015;121(12):1993–2003.PubMedCrossRefGoogle Scholar
  7. 7.
    Litvinov IV, Tetzlaff MT, Rahme E, Jennings MA, Risser DR, Gangar P, et al. Demographic patterns of cutaneous T-cell lymphoma incidence in Texas based on two different cancer registries. Cancer Med. 2015;4(9):1440–7.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Moreau JF, Buchanich JM, Geskin JZ, Akilov OE, Geskin LJ. Non-random geographic distribution of patients with cutaneous T-cell lymphoma in the Greater Pittsburgh Area. Dermatol Online J. 2014;20(7). http://escholarship.org/uc/item/4nw7592w.
  9. 9.
    Whittemore AS, Holly EA, Lee IM, Abel EA, Adams RM, Nickoloff BJ, et al. Mycosis fungoides in relation to environmental exposures and immune response: a case-control study. J Natl Cancer Inst. 1989;81(20):1560–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Magro CM, Crowson AN, Kovatich AJ, Burns F. Drug-induced reversible lymphoid dyscrasia: a clonal lymphomatoid dermatitis of memory and activated T cells. Hum Pathol. 2003;34(2):119–29.PubMedCrossRefGoogle Scholar
  11. 11.
    Jahan-Tigh RR, Huen AO, Lee GL, Pozadzides JV, Liu P, Duvic M. Hydrochlorothiazide and cutaneous T cell lymphoma: prospective analysis and case series. Cancer. 2013;119(4):825–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Choi J, Goh G, Walradt T, Hong BS, Bunick CG, Chen K, et al. Genomic landscape of cutaneous T cell lymphoma. Nat Genet. 2015;47(9):1011–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Reiss Y, Proudfoot AE, Power CA, Campbell JJ, Butcher EC. CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med. 2001;194(10):1541–7.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Salgado R, Servitje O, Gallardo F, Vermeer MH, Ortiz-Romero PL, Karpova MB, et al. Oligonucleotide array-CGH identifies genomic subgroups and prognostic markers for tumor stage mycosis fungoides. J Invest Dermatol. 2010;130(4):1126–35.PubMedCrossRefGoogle Scholar
  15. 15.
    Ungewickell A, Bhaduri A, Rios E, Reuter J, Lee CS, Mah A, et al. Genomic analysis of mycosis fungoides and Sezary syndrome identifies recurrent alterations in TNFR2. Nat Genet. 2015;47(9):1056–60.PubMedCrossRefGoogle Scholar
  16. 16.
    Vaque JP, Gomez-Lopez G, Monsalvez V, Varela I, Martinez N, Perez C, et al. PLCG1 mutations in cutaneous T-cell lymphomas. Blood. 2014;123(13):2034–43.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang L, Ni X, Covington KR, Yang BY, Shiu J, Zhang X, et al. Genomic profiling of Sezary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat Genet. 2015;47(12):1426–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Wilcox RA. Cutaneous T-cell lymphoma: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol. 2014;89(8):837–51.PubMedCrossRefGoogle Scholar
  19. 19.
    Pimpinelli N, Olsen EA, Santucci M, Vonderheid E, Haeffner AC, Stevens S, et al. Defining early mycosis fungoides. J Am Acad Dermatol. 2005;53(6):1053–63.PubMedCrossRefGoogle Scholar
  20. 20.
    El-Shabrawi-Caelen L, Cerroni L, Medeiros LJ, McCalmont TH. Hypopigmented mycosis fungoides: frequent expression of a CD8+ T-cell phenotype. Am J Surg Pathol. 2002;26(4):450–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Alessi E, Coggi A, Venegoni L, Merlo V, Gianotti R. The usefulness of clonality for the detection of cases clinically and/or histopathologically not recognized as cutaneous T-cell lymphoma. Br J Dermatol. 2005;153(2):368–71.PubMedCrossRefGoogle Scholar
  22. 22.
    Bergman R. How useful are T-cell receptor gene rearrangement studies as an adjunct to the histopathologic diagnosis of mycosis fungoides? Am J Dermatopathol. 1999;21(5):498–502.PubMedCrossRefGoogle Scholar
  23. 23.
    Bergman R, Faclieru D, Sahar D, Sander CA, Kerner H, Ben-Aryeh Y, et al. Immunophenotyping and T-cell receptor gamma gene rearrangement analysis as an adjunct to the histopathologic diagnosis of mycosis fungoides. J Am Acad Dermatol. 1998;39(4 Pt 1):554–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Tok J, Szabolcs MJ, Silvers DN, Zhong J, Matsushima AY. Detection of clonal T-cell receptor gamma chain gene rearrangements by polymerase chain reaction and denaturing gradient gel electrophoresis (PCR/DGGE) in archival specimens from patients with early cutaneous T-cell lymphoma: correlation of histologic findings with PCR/DGGE. J Am Acad Dermatol. 1998;38(3):453–60.PubMedCrossRefGoogle Scholar
  25. 25.
    Vandergriff T, Nezafati KA, Susa J, Karai L, Sanguinetti A, Hynan LS, et al. Defining early mycosis fungoides: validation of a diagnostic algorithm proposed by the International Society for Cutaneous Lymphomas. J Cutan Pathol. 2015;42(5):318–28.PubMedCrossRefGoogle Scholar
  26. 26.
    Xu C, Wan C, Wang L, Yang HJ, Tang Y, Liu WP. Diagnostic significance of TCR gene clonal rearrangement analysis in early mycosis fungoides. Chin J Cancer. 2011;30(4):264–72.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kirsch IR, Watanabe R, O’Malley JT, Williamson DW, Scott LL, Elco CP, et al. TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL. Sci Transl Med. 2015;7(308):308ra158.Google Scholar
  28. 28.
    Weng WK, Armstrong R, Arai S, Desmarais C, Hoppe R, Kim YH. Minimal residual disease monitoring with high-throughput sequencing of T cell receptors in cutaneous T cell lymphoma. Sci Transl Med. 2013;5(214):214ra171.Google Scholar
  29. 29.
    Steffen C. The man behind the eponym dermatology in historical perspective: Albert Sezary and the Sezary syndrome. Am J Dermatopathol. 2006;28(4):357–67.PubMedCrossRefGoogle Scholar
  30. 30.
    Wieselthier JS, Koh HK. Sezary syndrome: diagnosis, prognosis, and critical review of treatment options. J Am Acad Dermatol. 1990;22(3):381–401.PubMedCrossRefGoogle Scholar
  31. 31.
    Jawed SI, Myskowski PL, Horwitz S, Moskowitz A, Querfeld C. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sezary syndrome): part I. Diagnosis: clinical and histopathologic features and new molecular and biologic markers. J Am Acad Dermatol. 2014;70(2):205.e1–16 (quiz 21–2).Google Scholar
  32. 32.
    Vonderheid EC, Bernengo MG, Burg G, Duvic M, Heald P, Laroche L, et al. Update on erythrodermic cutaneous T-cell lymphoma: report of the International Society for Cutaneous Lymphomas. J Am Acad Dermatol. 2002;46(1):95–106.PubMedCrossRefGoogle Scholar
  33. 33.
    Hristov AC, Vonderheid EC, Borowitz MJ. Simplified flow cytometric assessment in mycosis fungoides and Sezary syndrome. Am J Clin Pathol. 2011;136(6):944–53.PubMedCrossRefGoogle Scholar
  34. 34.
    Guenova E, Ignatova D, Chang YT, Contassot E, Mehra T, Saulite I, et al. Expression of CD164 on malignant T cells in Sezary syndrome. Acta Derm Venereol. Epub 2 Nov 2015. doi:10.2340/00015555-2264.
  35. 35.
    Wysocka M, Kossenkov AV, Benoit BM, Troxel AB, Singer E, Schaffer A, et al. CD164 and FCRL3 are highly expressed on CD4+ CD26− T cells in Sezary syndrome patients. J Invest Dermatol. 2014;134(1):229–36.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Olsen E, Vonderheid E, Pimpinelli N, Willemze R, Kim Y, Knobler R, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007;110(6):1713–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Agar NS, Wedgeworth E, Crichton S, Mitchell TJ, Cox M, Ferreira S, et al. Survival outcomes and prognostic factors in mycosis fungoides/Sezary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J Clin Oncol. 2010;28(31):4730–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Kim YH, Liu HL, Mraz-Gernhard S, Varghese A, Hoppe RT. Long-term outcome of 525 patients with mycosis fungoides and Sezary syndrome: clinical prognostic factors and risk for disease progression. Arch Dermatol. 2003;139(7):857–66.PubMedCrossRefGoogle Scholar
  39. 39.
    Talpur R, Singh L, Daulat S, Liu P, Seyfer S, Trynosky T, et al. Long-term outcomes of 1,263 patients with mycosis fungoides and Sezary syndrome from 1982 to 2009. Clin Cancer Res. 2012;18(18):5051–60.PubMedCrossRefGoogle Scholar
  40. 40.
    van Doorn R, Van Haselen CW, van Voorst Vader PC, Geerts ML, Heule F, de Rie M, et al. Mycosis fungoides: disease evolution and prognosis of 309 Dutch patients. Arch Dermatol. 2000;136(4):504–10.PubMedGoogle Scholar
  41. 41.
    Benton EC, Crichton S, Talpur R, Agar NS, Fields PA, Wedgeworth E, et al. A cutaneous lymphoma international prognostic index (CLIPi) for mycosis fungoides and Sezary syndrome. Eur J Cancer. 2013;49(13):2859–68.PubMedCrossRefGoogle Scholar
  42. 42.
    Scarisbrick JJ, Prince HM, Vermeer MH, Quaglino P, Horwitz S, Porcu P, et al. Cutaneous Lymphoma International Consortium Study of Outcome in Advanced Stages of Mycosis Fungoides and Sezary Syndrome: effect of specific prognostic markers on survival and development of a prognostic model. J Clin Oncol. 2015;33(32):3766–73.PubMedCrossRefGoogle Scholar
  43. 43.
    Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, Dowgiert RK, et al. The vast majority of CLA+ T cells are resident in normal skin. J Immunol. 2006;176(7):4431–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Laharanne E, Oumouhou N, Bonnet F, Carlotti M, Gentil C, Chevret E, et al. Genome-wide analysis of cutaneous T-cell lymphomas identifies three clinically relevant classes. J Invest Dermatol. 2010;130(6):1707–18.PubMedCrossRefGoogle Scholar
  45. 45.
    van Doorn R, van Kester MS, Dijkman R, Vermeer MH, Mulder AA, Szuhai K, et al. Oncogenomic analysis of mycosis fungoides reveals major differences with Sezary syndrome. Blood. 2009;113(1):127–36.PubMedCrossRefGoogle Scholar
  46. 46.
    Caprini E, Cristofoletti C, Arcelli D, Fadda P, Citterich MH, Sampogna F, et al. Identification of key regions and genes important in the pathogenesis of sezary syndrome by combining genomic and expression microarrays. Cancer Res. 2009;69(21):8438–46.PubMedCrossRefGoogle Scholar
  47. 47.
    Fischer TC, Gellrich S, Muche JM, Sherev T, Audring H, Neitzel H, et al. Genomic aberrations and survival in cutaneous T cell lymphomas. J Invest Dermatol. 2004;122(3):579–86.PubMedCrossRefGoogle Scholar
  48. 48.
    Kiel MSA, Velusamy T, et al. Integrated genome sequencing reveals frequent loss of function alterations of ARID1A and other epigenetic modifiers in Sezary syndrome. Blood. 2014;124(21):706.Google Scholar
  49. 49.
    Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004;351(21):2159–69.PubMedCrossRefGoogle Scholar
  50. 50.
    Kridel R, Steidl C, Gascoyne RD. Tumor-associated macrophages in diffuse large B-cell lymphoma. Haematologica. 2015;100(2):143–5.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H, et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med. 2008;359(22):2313–23.PubMedCrossRefGoogle Scholar
  52. 52.
    Scott DW, Gascoyne RD. The tumour microenvironment in B cell lymphomas. Nat Rev Cancer. 2014;14(8):517–34.PubMedCrossRefGoogle Scholar
  53. 53.
    Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362(10):875–85.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wilcox RA, Wada DA, Ziesmer SC, Elsawa SF, Comfere NI, Dietz AB, et al. Monocytes promote tumor cell survival in T-cell lymphoproliferative disorders and are impaired in their ability to differentiate into mature dendritic cells. Blood. 2009;114(14):2936–44.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Chong BF, Wilson AJ, Gibson HM, Hafner MS, Luo Y, Hedgcock CJ, et al. Immune function abnormalities in peripheral blood mononuclear cell cytokine expression differentiates stages of cutaneous T-cell lymphoma/mycosis fungoides. Clin Cancer Res. 2008;14(3):646–53.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Geskin LJ, Viragova S, Stolz DB, Fuschiotti P. Interleukin-13 is overexpressed in cutaneous T-cell lymphoma cells and regulates their proliferation. Blood. 2015;125(18):2798–805.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Guenova E, Watanabe R, Teague JE, Desimone JA, Jiang Y, Dowlatshahi M, et al. TH2 cytokines from malignant cells suppress TH1 responses and enforce a global TH2 bias in leukemic cutaneous T-cell lymphoma. Clin Cancer Res. 2013;19(14):3755–63.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lee BN, Duvic M, Tang CK, Bueso-Ramos C, Estrov Z, Reuben JM. Dysregulated synthesis of intracellular type 1 and type 2 cytokines by T cells of patients with cutaneous T-cell lymphoma. Clin Diagn Lab Immunol. 1999;6(1):79–84.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Ferenczi K, Fuhlbrigge RC, Pinkus J, Pinkus GS, Kupper TS. Increased CCR4 expression in cutaneous T cell lymphoma. J Invest Dermatol. 2002;119(6):1405–10.PubMedCrossRefGoogle Scholar
  60. 60.
    Hwang ST, Janik JE, Jaffe ES, Wilson WH. Mycosis fungoides and Sezary syndrome. Lancet. 2008;371(9616):945–57.PubMedCrossRefGoogle Scholar
  61. 61.
    Notohamiprodjo M, Segerer S, Huss R, Hildebrandt B, Soler D, Djafarzadeh R, et al. CCR10 is expressed in cutaneous T-cell lymphoma. Int J Cancer. 2005;115(4):641–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Wilcox RA. A three signal model of T-cell lymphoma pathogenesis. Am J Hematol. 2016;91(1):113–22.PubMedCrossRefGoogle Scholar
  63. 63.
    Izban KF, Ergin M, Qin JZ, Martinez RL, Pooley RJ, Saeed S, et al. Constitutive expression of NF-kappa B is a characteristic feature of mycosis fungoides: implications for apoptosis resistance and pathogenesis. Hum Pathol. 2000;31(12):1482–90.PubMedCrossRefGoogle Scholar
  64. 64.
    Sors A, Jean-Louis F, Pellet C, Laroche L, Dubertret L, Courtois G, et al. Down-regulating constitutive activation of the NF-kappaB canonical pathway overcomes the resistance of cutaneous T-cell lymphoma to apoptosis. Blood. 2006;107(6):2354–63.PubMedCrossRefGoogle Scholar
  65. 65.
    Dubovsky JA, Beckwith KA, Natarajan G, Woyach JA, Jaglowski S, Zhong Y, et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013;122(15):2539–49.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Horwitz SM, Porcu P, Flinn I, et al. Duvelisib (IPI-145), a phosphoinositide-3-kinase-δ, γ inhibitor, shows activity in patients with relapsed/refractory T-cell lymphoma. Blood. 2014;124(21):803.Google Scholar
  67. 67.
    Witzig TE, Reeder C, Han JJ, LaPlant B, Stenson M, Tun HW, et al. The mTORC1 inhibitor everolimus has antitumor activity in vitro and produces tumor responses in patients with relapsed T-cell lymphoma. Blood. 2015;126(3):328–35.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Netchiporouk E, Litvinov IV, Moreau L, Gilbert M, Sasseville D, Duvic M. Deregulation in STAT signaling is important for cutaneous T-cell lymphoma (CTCL) pathogenesis and cancer progression. Cell Cycle. 2014;13(21):3331–5.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Sibbesen NA, Kopp KL, Litvinov IV, Jonson L, Willerslev-Olsen A, Fredholm S, et al. Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-cell lymphoma. Oncotarget. 2015;6(24):20555–69.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Willerslev-Olsen A, Litvinov IV, Fredholm SM, Petersen DL, Sibbesen NA, Gniadecki R, et al. IL-15 and IL-17F are differentially regulated and expressed in mycosis fungoides (MF). Cell Cycle. 2014;13(8):1306–12.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Kaye FJ, Bunn PA Jr, Steinberg SM, Stocker JL, Ihde DC, Fischmann AB, et al. A randomized trial comparing combination electron-beam radiation and chemotherapy with topical therapy in the initial treatment of mycosis fungoides. N Engl J Med. 1989;321(26):1784–90.PubMedCrossRefGoogle Scholar
  72. 72.
    Rook AH, Gelfand JC, Wysocka M, Troxel AB, Benoit B, Surber C, et al. Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma. Blood. 2015;126(12):1452–61.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kapser C, Herzinger T, Ruzicka T, Flaig M, Molin S. Treatment of cutaneous T-cell lymphoma with oral alitretinoin. J Eur Acad Dermatol Venereol. 2015;29(4):783–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Horwitz SM, Olsen EA, Duvic M, Porcu P, Kim YH. Review of the treatment of mycosis fungoides and sezary syndrome: a stage-based approach. J Natl Compr Cancer Netw. 2008;6(4):436–42.Google Scholar
  75. 75.
    Jawed SI, Myskowski PL, Horwitz S, Moskowitz A, Querfeld C. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sezary syndrome): part II. Prognosis, management, and future directions. J Am Acad Dermatol. 2014;70(2):223 e1–17 (quiz 40–2).Google Scholar
  76. 76.
    Jones GW, Kacinski BM, Wilson LD, Willemze R, Spittle M, Hohenberg G, et al. Total skin electron radiation in the management of mycosis fungoides: consensus of the European Organization for Research and Treatment of Cancer (EORTC) Cutaneous Lymphoma Project Group. J Am Acad Dermatol. 2002;47(3):364–70.PubMedCrossRefGoogle Scholar
  77. 77.
    Lansigan F, Foss FM. Current and emerging treatment strategies for cutaneous T-cell lymphoma. Drugs. 2010;70(3):273–86.PubMedCrossRefGoogle Scholar
  78. 78.
    Prince HM, Whittaker S, Hoppe RT. How I treat mycosis fungoides and Sezary syndrome. Blood. 2009;114(20):4337–53.PubMedCrossRefGoogle Scholar
  79. 79.
    Trautinger F, Knobler R, Willemze R, Peris K, Stadler R, Laroche L, et al. EORTC consensus recommendations for the treatment of mycosis fungoides/Sezary syndrome. Eur J Cancer. 2006;42(8):1014–30.PubMedCrossRefGoogle Scholar
  80. 80.
    Whittaker SJ, Marsden JR, Spittle M. Russell Jones R; British Association of Dermatologists; UK Cutaneous Lymphoma Group. Joint British Association of Dermatologists and UK Cutaneous Lymphoma Group guidelines for the management of primary cutaneous T-cell lymphomas. Br J Dermatol. 2003;149(6):1095–107.PubMedCrossRefGoogle Scholar
  81. 81.
    Wilcox RA. Cutaneous T-cell lymphoma: 2011 update on diagnosis, risk-stratification, and management. Am J Hematol. 2011;86(11):928–48.PubMedCrossRefGoogle Scholar
  82. 82.
    Bernard DS, Farr SL, Fang Z. National estimates of out-of-pocket health care expenditure burdens among nonelderly adults with cancer: 2001 to 2008. J Clin Oncol. 2011;29(20):2821–6.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Schnipper LE, Davidson NE, Wollins DS, Tyne C, Blayney DW, Blum D, et al. American Society of Clinical Oncology statement: a conceptual framework to assess the value of cancer treatment options. J Clin Oncol. 2015;33(23):2563–77.PubMedCrossRefGoogle Scholar
  84. 84.
    Kaplan JB, Guitart J, Giles FJ. Targeted therapies for cutaneous T-cell lymphomas. Expert Rev Hematol. 2014;7(4):481–93.PubMedCrossRefGoogle Scholar
  85. 85.
    Schlaak M, Theurich S, Pickenhain J, Skoetz N, Kurschat P, von Bergwelt-Baildon M. Allogeneic stem cell transplantation for advanced primary cutaneous T-cell lymphoma: a systematic review. Crit Rev Oncol Hematol. 2013;85(1):21–31.PubMedCrossRefGoogle Scholar
  86. 86.
    Bernengo MG, Quaglino P, Comessatti A, Ortoncelli M, Novelli M, Lisa F, et al. Low-dose intermittent alemtuzumab in the treatment of Sezary syndrome: clinical and immunologic findings in 14 patients. Haematologica. 2007;92(6):784–94.PubMedCrossRefGoogle Scholar
  87. 87.
    de Masson A, Guitera P, Brice P, Moulonguet I, Mouly F, Bouaziz JD, et al. Long-term efficacy and safety of alemtuzumab in advanced primary cutaneous T-cell lymphomas. Br J Dermatol. 2014;170(3):720–4.PubMedCrossRefGoogle Scholar
  88. 88.
    Kennedy GA, Seymour JF, Wolf M, Januszewicz H, Davison J, McCormack C, et al. Treatment of patients with advanced mycosis fungoides and Sezary syndrome with alemtuzumab. Eur J Haematol. 2003;71(4):250–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Lundin J, Hagberg H, Repp R, Cavallin-Stahl E, Freden S, Juliusson G, et al. Phase 2 study of alemtuzumab (anti-CD52 monoclonal antibody) in patients with advanced mycosis fungoides/Sezary syndrome. Blood. 2003;101(11):4267–72.PubMedCrossRefGoogle Scholar
  90. 90.
    Querfeld C, Mehta N, Rosen ST, Guitart J, Rademaker A, Gerami P, et al. Alemtuzumab for relapsed and refractory erythrodermic cutaneous T-cell lymphoma: a single institution experience from the Robert H. Lurie Comprehensive Cancer Center. Leuk Lymphoma. 2009;50(12):1969–76.PubMedCrossRefGoogle Scholar
  91. 91.
    Clark RA, Watanabe R, Teague JE, Schlapbach C, Tawa MC, Adams N, et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci Transl Med. 2012;4(117):117ra7.Google Scholar
  92. 92.
    Perini GF, Pro B. Brentuximab vedotin in CD30+ lymphomas. Biol Ther. 2013;3:15–23.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Horwitz SM, Advani RH, Bartlett NL, Jacobsen ED, Sharman JP, O’Connor OA, et al. Objective responses in relapsed T-cell lymphomas with single-agent brentuximab vedotin. Blood. 2014;123(20):3095–100.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kim YH, Tavallaee M, Sundram U, Salva KA, Wood GS, Li S, et al. Phase II investigator-initiated study of brentuximab vedotin in mycosis fungoides and Sezary syndrome with variable CD30 expression level: a multi-institution collaborative project. J Clin Oncol. 2015;33(32):3750–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Duvic M, Tetzlaff MT, Gangar P, Clos AL, Sui D, Talpur R. Results of a phase ii trial of brentuximab vedotin for CD30+ cutaneous T-cell lymphoma and lymphomatoid papulosis. J Clin Oncol. 2015;33(32):3759–65.PubMedCrossRefGoogle Scholar
  96. 96.
    Mehra T, Ikenberg K, Moos RM, Benz R, Nair G, Schanz U, et al. Brentuximab as a treatment for CD30+ mycosis fungoides and Sezary syndrome. JAMA Dermatol. 2015;151(1):73–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Ni X, Jorgensen JL, Goswami M, Challagundla P, Decker WK, Kim YH, et al. Reduction of regulatory T cells by mogamulizumab, a defucosylated anti-CC chemokine receptor 4 antibody, in patients with aggressive/refractory mycosis fungoides and Sezary syndrome. Clin Cancer Res. 2015;21(2):274–85.PubMedCrossRefGoogle Scholar
  98. 98.
    Wilcox RA. Mogamulizumab: 2 birds, 1 stone. Blood. 2015;125(12):1847–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Duvic M, Pinter-Brown LC, Foss FM, Sokol L, Jorgensen JL, Challagundla P, et al. Phase 1/2 study of mogamulizumab, a defucosylated anti-CCR4 antibody, in previously treated patients with cutaneous T-cell lymphoma. Blood. 2015;125(12):1883–9.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wilcox RA, Feldman AL, Wada DA, Yang ZZ, Comfere NI, Dong H, et al. B7-H1 (PD-L1, CD274) suppresses host immunity in T-cell lymphoproliferative disorders. Blood. 2009;114(10):2149–58.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hawkes EA, Grigg A, Chong G. Programmed cell death-1 inhibition in lymphoma. Lancet Oncol. 2015;16(5):e234–45.PubMedCrossRefGoogle Scholar
  102. 102.
    Ramsay AG, Clear AJ, Fatah R, Gribben JG. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood. 2012;120(7):1412–21.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ramsay AG, Johnson AJ, Lee AM, Gorgun G, Le Dieu R, Blum W, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest. 2008;118(7):2427–37.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Kotla V, Goel S, Nischal S, Heuck C, Vivek K, Das B, et al. Mechanism of action of lenalidomide in hematological malignancies. J Hematol Oncol. 2009;2:36.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Querfeld C, Rosen ST, Guitart J, Duvic M, Kim YH, Dusza SW, et al. Results of an open-label multicenter phase 2 trial of lenalidomide monotherapy in refractory mycosis fungoides and Sezary syndrome. Blood. 2014;123(8):1159–66.PubMedCrossRefGoogle Scholar
  106. 106.
    Olsen EA. Interferon in the treatment of cutaneous T-cell lymphoma. Dermatol Ther. 2003;16(4):311–21.PubMedCrossRefGoogle Scholar
  107. 107.
    Olsen EA, Bunn PA. Interferon in the treatment of cutaneous T-cell lymphoma. Hematol Oncol Clin North Am. 1995;9(5):1089–107.PubMedGoogle Scholar
  108. 108.
    Bunn PA Jr, Ihde DC, Foon KA. The role of recombinant interferon alfa-2a in the therapy of cutaneous T-cell lymphomas. Cancer. 1986;57(8 Suppl):1689–95.PubMedCrossRefGoogle Scholar
  109. 109.
    Jumbou O, N’Guyen JM, Tessier MH, Legoux B, Dreno B. Long-term follow-up in 51 patients with mycosis fungoides and Sezary syndrome treated by interferon-alfa. Br J Dermatol. 1999;140(3):427–31.PubMedCrossRefGoogle Scholar
  110. 110.
    Kohn EC, Steis RG, Sausville EA, Veach SR, Stocker JL, Phelps R, et al. Phase II trial of intermittent high-dose recombinant interferon alfa-2a in mycosis fungoides and the Sezary syndrome. J Clin Oncol. 1990;8(1):155–60.PubMedGoogle Scholar
  111. 111.
    Tura S, Mazza P, Zinzani PL, Ghetti PL, Poletti G, Gherlinzoni F, et al. Alpha recombinant interferon in the treatment of mycosis fungoides (MF). Haematologica. 1987;72(4):337–40.PubMedGoogle Scholar
  112. 112.
    Dippel E, Schrag H, Goerdt S, Orfanos CE. Extracorporeal photopheresis and interferon-alpha in advanced cutaneous T-cell lymphoma. Lancet. 1997;350(9070):32–3.PubMedCrossRefGoogle Scholar
  113. 113.
    Papa G, Tura S, Mandelli F, Vegna ML, Defazio D, Mazza P, et al. Is interferon alpha in cutaneous T-cell lymphoma a treatment of choice? Br J Haematol. 1991;79(Suppl 1):48–51.PubMedCrossRefGoogle Scholar
  114. 114.
    Roenigk HH Jr, Kuzel TM, Skoutelis AP, Springer E, Yu G, Caro W, et al. Photochemotherapy alone or combined with interferon alpha-2a in the treatment of cutaneous T-cell lymphoma. J Invest Dermatol. 1990;95(6 Suppl):198S–205S.PubMedCrossRefGoogle Scholar
  115. 115.
    Rupoli S, Barulli S, Guiducci B, Offidani M, Mozzicafreddo G, Simonacci M, et al. Low dose interferon-alpha2b combined with PUVA is an effective treatment of early stage mycosis fungoides: results of a multicenter study. Cutaneous-T Cell Lymphoma Multicenter Study Group. Haematologica. 1999;84(9):809–13.PubMedGoogle Scholar
  116. 116.
    Straus DJ, Duvic M, Kuzel T, Horwitz S, Demierre MF, Myskowski P, et al. Results of a phase II trial of oral bexarotene (Targretin) combined with interferon alfa-2b (Intron-A) for patients with cutaneous T-cell lymphoma. Cancer. 2007;109(9):1799–803.PubMedCrossRefGoogle Scholar
  117. 117.
    Hughes CF, Khot A, McCormack C, Lade S, Westerman DA, Twigger R, et al. Lack of durable disease control with chemotherapy for mycosis fungoides and Sezary syndrome: a comparative study of systemic therapy. Blood. 2015;125(1):71–81.PubMedCrossRefGoogle Scholar
  118. 118.
    Olsen EA, Rook AH, Zic J, Kim Y, Porcu P, Querfeld C, et al. Sezary syndrome: immunopathogenesis, literature review of therapeutic options, and recommendations for therapy by the United States Cutaneous Lymphoma Consortium (USCLC). J Am Acad Dermatol. 2011;64(2):352–404.PubMedCrossRefGoogle Scholar
  119. 119.
    Spaccarelli N, Rook AH. The use of interferons in the treatment of cutaneous T-cell lymphoma. Dermatol Clin. 2015;33(4):731–45.PubMedCrossRefGoogle Scholar
  120. 120.
    Kaplan EH, Rosen ST, Norris DB, Roenigk HH Jr, Saks SR, Bunn PA Jr. Phase II study of recombinant human interferon gamma for treatment of cutaneous T-cell lymphoma. J Natl Cancer Inst. 1990;82(3):208–12.PubMedCrossRefGoogle Scholar
  121. 121.
    Lansigan F, Stearns DM, Foss F. Role of denileukin diftitox in the treatment of persistent or recurrent cutaneous T-cell lymphoma. Cancer Manag Res. 2010;2:53–9.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Olsen E, Duvic M, Frankel A, Kim Y, Martin A, Vonderheid E, et al. Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol. 2001;19(2):376–88.PubMedGoogle Scholar
  123. 123.
    Frankel AE, Woo JH, Mauldin JP, et al. An update on the clinical activity of resimmune, a targeted therapy directed to CD3 receptor, in patients with cutaneous T cell lymphomas—CTCL. Blood. 2013;122(21):4381.Google Scholar
  124. 124.
    Prince HM, Dickinson M. Romidepsin for cutaneous T-cell lymphoma. Clin Cancer Res. 2012;18(13):3509–15.PubMedCrossRefGoogle Scholar
  125. 125.
    Schrump DS. Cytotoxicity mediated by histone deacetylase inhibitors in cancer cells: mechanisms and potential clinical implications. Clin Cancer Res. 2009;15(12):3947–57.PubMedCrossRefGoogle Scholar
  126. 126.
    Kim YH, Krathen MS, Duvic M, et al. Tolerability and encouraging clinical activity of SHP-141, a topical skin-restricted HDAC inhibitor, in a phase 1B study in cutaneous t-cell lymphoma. J Invest Dermatol. 2014;134:S93.Google Scholar
  127. 127.
    Piekarz RL, Frye R, Turner M, Wright JJ, Allen SL, Kirschbaum MH, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol. 2009;27(32):5410–7.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Whittaker SJ, Demierre MF, Kim EJ, Rook AH, Lerner A, Duvic M, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010;28(29):4485–91.PubMedCrossRefGoogle Scholar
  129. 129.
    Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109(1):31–9.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Olsen EA, Kim YH, Kuzel TM, Pacheco TR, Foss FM, Parker S, et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007;25(21):3109–15.PubMedCrossRefGoogle Scholar
  131. 131.
    Duvic M, Dummer R, Becker JC, Poulalhon N, Ortiz Romero P, Grazia Bernengo M, et al. Panobinostat activity in both bexarotene-exposed and -naive patients with refractory cutaneous T-cell lymphoma: results of a phase II trial. Eur J Cancer. 2013;49(2):386–94.PubMedCrossRefGoogle Scholar
  132. 132.
    Foss F, Advani R, Duvic M, Hymes KB, Intragumtornchai T, Lekhakula A, et al. A phase ii trial of belinostat (PXD101) in patients with relapsed or refractory peripheral or cutaneous T-cell lymphoma. Br J Haematol. 2015;168(6):811–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Girardi M, Vakkalanka S, Viswanadha S, Bertoni F. RP6530, a dual PI3Kδ/γ inhibitor, attenutates AKT phosphorylation and induces apoptosis in primary cutaneous T cell lymphoma (CTCL) Cells. Blood. 2013;122(21):4418.Google Scholar
  134. 134.
    Zinzani PL, Musuraca G, Tani M, Stefoni V, Marchi E, Fina M, et al. Phase II trial of proteasome inhibitor bortezomib in patients with relapsed or refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007;25(27):4293–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Gandhi V, Kilpatrick JM, Plunkett W, Ayres M, Harman L, Du M, et al. A proof-of-principle pharmacokinetic, pharmacodynamic, and clinical study with purine nucleoside phosphorylase inhibitor immucillin-H (BCX-1777, forodesine). Blood. 2005;106(13):4253–60.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Dummer R, Duvic M, Scarisbrick J, Olsen EA, Rozati S, Eggmann N, et al. Final results of a multicenter phase II study of the purine nucleoside phosphorylase (PNP) inhibitor forodesine in patients with advanced cutaneous T-cell lymphomas (CTCL) (Mycosis fungoides and Sezary syndrome). Ann Oncol. 2014;25(9):1807–12.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Division of Hematology and Oncology, Department of Internal MedicineUniversity of Michigan Comprehensive Cancer CenterAnn ArborUSA
  2. 2.Division of Hematology and Oncology, Department of Internal MedicineUniversity of Michigan Comprehensive Cancer CenterAnn ArborUSA

Personalised recommendations