American Journal of Clinical Dermatology

, Volume 15, Issue 4, pp 339–356 | Cite as

Optimal Management of Skin Cancer in Immunosuppressed Patients

  • Lauren Brin
  • Adeel S. Zubair
  • Jerry D. BrewerEmail author
Review Article


Skin cancer is the most common malignancy in humans with basal cell carcinoma representing the majority of cases in the general population. The prevalence of skin cancer is increased amongst immunosuppressed patients such as those with lymphoproliferative disorders including non-Hodgkin lymphoma and chronic lymphocytic leukemia or those with iatrogenic immunosuppression following organ transplantation. In addition, these patients experience greater morbidity and mortality associated with skin cancers. The most common skin cancer in immunosuppressed patients is squamous cell carcinoma, which often presents with more aggressive features and has a greater rate of metastasis. This article reviews the risk factors, etiology, clinical presentation, and prevalence of skin cancer amongst immunosuppressed patients, including organ transplant, lymphoproliferative disorders, autoimmune disorders, and human immunodeficiency virus. We also provide a comprehensive review of treatment guidelines for immunosuppressed patients with cutaneous malignancy. Surgical therapy is the cornerstone of treatment; however, we also discuss pharmacologic treatment options, lifestyle modifications, and revision of immunosuppressive regimens.


Malignant Melanoma Squamous Cell Carcinoma Chronic Lymphocytic Leukemia Sentinel Lymph Node Biopsy Human Papilloma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Conflict of interest

LR Brin, AS Zubair, and Dr. JD Brewer have no conflicts of interest to declare. No sources of funding were used in the preparation of this paper.


  1. 1.
    Rogers HW, Weinstock MA, Harris AR, et al. Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol. 2010;146(3):283–7.PubMedGoogle Scholar
  2. 2.
    American Cancer Society. Cancer facts and figures 2013. Accessed 15 Sept 2013.
  3. 3.
    Berg D, Otley CC. Skin cancer in organ transplant recipients: epidemiology, pathogenesis, and management. J Am Acad Dermatol. 2002;47(1):1–17.PubMedGoogle Scholar
  4. 4.
    Jensen P, Hansen S, Moller B, et al. Skin cancer in kidney and heart transplant recipients and different long-term immunosuppressive therapy regimens. J Am Acad Dermatol. 1999;40(2 Pt 1):177–86.PubMedGoogle Scholar
  5. 5.
    Stoff B, Salisbury C, Parker D, et al. Dermatopathology of skin cancer in solid organ transplant recipients. Transpl Rev. 2010;24(4):172–89.Google Scholar
  6. 6.
    Athar M, Walsh SB, Kopelovich L, et al. Pathogenesis of nonmelanoma skin cancers in organ transplant recipients. Arch Biochem Biophys. 2011;508(2):159–63.PubMedCentralPubMedGoogle Scholar
  7. 7.
    de Graaf YG, Rebel H, Elghalbzouri A, et al. More epidermal p53 patches adjacent to skin carcinomas in renal transplant recipients than in immunocompetent patients: the role of azathioprine. Exp Dermatol. 2008;17(4):349–55.PubMedGoogle Scholar
  8. 8.
    Benjamin CL, Ananthaswamy HN. p53 and the pathogenesis of skin cancer. Toxicol Appl Pharmacol. 2007;224(3):241–8.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Rivas JM, Ullrich SE. Systemic suppression of delayed-type hypersensitivity by supernatants from UV-irradiated keratinocytes: an essential role for keratinocyte-derived IL-10. J Immunol. 1992;149(12):3865–71.PubMedGoogle Scholar
  10. 10.
    Euvrard S, Kanitakis J, Claudy A. Skin cancers after organ transplantation. N Engl J Med. 2003;348(17):1681–91.PubMedGoogle Scholar
  11. 11.
    Stasko T, Brown MD, Carucci JA, et al. Guidelines for the management of squamous cell carcinoma in organ transplant recipients. Dermatol Surg. 2004;30(4 Pt 2):642–50.PubMedGoogle Scholar
  12. 12.
    Kovach BT, Stasko T. Skin cancer after transplantation. Transpl Rev. 2009;23(3):178–89.Google Scholar
  13. 13.
    Stockfleth E, Nindl I, Sterry W, et al. Human papillomaviruses in transplant-associated skin cancers. Dermatol Surg. 2004;30(4 Pt 2):604–9.PubMedGoogle Scholar
  14. 14.
    Munger K, Basile JR, Duensing S, et al. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene. 2001;20(54):7888–98.PubMedGoogle Scholar
  15. 15.
    Li X, Coffino P. High-risk human papillomavirus E6 protein has two distinct binding sites within p53, of which only one determines degradation. J Virol. 1996;70(7):4509–16.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Bouwes Bavinck JN, Vermeer BJ, van der Woude FJ, et al. Relation between skin cancer and HLA antigens in renal-transplant recipients. N Engl J Med. 1991;325(12):843–8.PubMedGoogle Scholar
  17. 17.
    Czarnecki D, Watkins F, Leahy S, et al. Skin cancers and HLA frequencies in renal transplant recipients. Dermatology. 1992;185(1):9–11.PubMedGoogle Scholar
  18. 18.
    Krynitz B, Edgren G, Lindelöf B, et al. Risk of skin cancer and other malignancies in kidney, liver, heart and lung transplant recipients 1970 to 2008: a Swedish population-based study. Int J Cancer. 2013;132(6):1429–38.PubMedGoogle Scholar
  19. 19.
    Jensen AO, Svaerke C, Farkas D, et al. Skin cancer risk among solid organ recipients: a nationwide cohort study in Denmark. Acta Derm Venereol. 2010;90(5):474–9.PubMedGoogle Scholar
  20. 20.
    Dantal J, Hourmant M, Cantarovich D, et al. Effect of long-term immunosuppression in kidney-graft recipients on cancer incidence: randomised comparison of two cyclosporin regimens. Lancet. 1998;351(9103):623–8.PubMedGoogle Scholar
  21. 21.
    Clipstone NA, Crabtree GR. Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature. 1992;357(6380):695–7.PubMedGoogle Scholar
  22. 22.
    Euvrard S, Morelon E, Rostaing L, et al. Sirolimus and secondary skin-cancer prevention in kidney transplantation. N Engl J Med. 2012;367(4):329–39.PubMedGoogle Scholar
  23. 23.
    Hojo M, Morimoto T, Maluccio M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature. 1999;397(6719):530–4.PubMedGoogle Scholar
  24. 24.
    Kelly GE, Meikle W, Sheil AG. Effects of immunosuppressive therapy on the induction of skin tumors by ultraviolet irradiation in hairless mice. Transplantation. 1987;44(3):429–34.PubMedGoogle Scholar
  25. 25.
    Wimmer CD, Angele MK, Schwarz B, et al. Impact of cyclosporine versus tacrolimus on the incidence of de novo malignancy following liver transplantation: a single center experience with 609 patients. Transpl Int. 2013;26(10):999–1006.PubMedGoogle Scholar
  26. 26.
    Wimmer CD, Rentsch M, Crispin A, et al. The janus face of immunosuppression: de novo malignancy after renal transplantation: the experience of the Transplantation Center Munich. Kidney Int. 2007;71(12):1271–8.PubMedGoogle Scholar
  27. 27.
    Kasiske B, Snyder J, Gilbertson D, et al. Cancer after kidney transplantation in the United States. Am J Transpl. 2004;4(6):905.Google Scholar
  28. 28.
    Tjon AS, Sint Nicolaas J, Kwekkeboom J, et al. Increased incidence of early de novo cancer in liver graft recipients treated with cyclosporine: an association with C2 monitoring and recipient age. Liver Transpl. 2010;16(7):837–46.PubMedGoogle Scholar
  29. 29.
    Webster AC, Woodroffe RC, Taylor RS, et al. Tacrolimus versus cyclosporin as primary immunosuppression for kidney transplant recipients: meta-analysis and meta-regression of randomised trial data. BMJ. 2005;331(7520):810.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Bertino JR. Chemical action and pharmacology of methotrexate, azathioprine and cyclophosphamide in man. Arthritis Rheum. 1973;16(1):79–83.PubMedGoogle Scholar
  31. 31.
    Ingvar A, Smedby KE, Lindelof B, et al. Immunosuppressive treatment after solid organ transplantation and risk of post-transplant cutaneous squamous cell carcinoma. Nephrol Dial Transpl. 2010;25(8):2764–71.Google Scholar
  32. 32.
    Watorek E, Boratynska M, Smolska D, et al. Malignancy after renal transplantation in the new era of immunosuppression. Ann Transpl. 2011;16(2):14–8.Google Scholar
  33. 33.
    O’Donovan P, Perrett CM, Zhang X, et al. Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science. 2005;309(5742):1871–4.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Fulton B, Markham A. Mycophenolate mofetil: a review of its pharmacodynamic and pharmacokinetic properties and clinical efficacy in renal transplantation. Drugs. 1996;51(2):278–98.PubMedGoogle Scholar
  35. 35.
    O’Neill JO, Edwards LB, Taylor DO. Mycophenolate mofetil and risk of developing malignancy after orthotopic heart transplantation: analysis of the transplant registry of the International Society for Heart and Lung Transplantation. J Heart Lung Transpl. 2006;25(10):1186–91.Google Scholar
  36. 36.
    Ballou LM, Lin RZ. Rapamycin and mTOR kinase inhibitors. J Chem Biol. 2008;1(1–4):27–36.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Kauffman HM, Cherikh WS, Cheng Y, et al. Maintenance immunosuppression with mTOR inhibitors is associated with a reduced incidence of de novo malignancies. Transplantation. 2005;80(7):883–9.PubMedGoogle Scholar
  38. 38.
    Signorell J, Hunziker T, Martinelli M, et al. Recurrent non-melanoma skin cancer: remission of field cancerization after conversion from calcineurin inhibitor- to proliferation signal inhibitor-based immunosuppression in a cardiac transplant recipient. Transplant Proc. 2010;42(9):3871–5.PubMedGoogle Scholar
  39. 39.
    Cantwell M, Hua T, Pappas J, et al. Acquired CD40-ligand deficiency in chronic lymphocytic leukemia. Nat Med. 1997;3(9):984–9.PubMedGoogle Scholar
  40. 40.
    Cerutti A, Zan H, Schaffer A, et al. CD40 ligand and appropriate cytokines induce switching to IgG, IgA, and IgE and coordinated germinal center and plasmacytoid phenotypic differentiation in a human monoclonal IgM+IgD+ B cell line. J Immunol. 1998;60(5):2145–57.Google Scholar
  41. 41.
    Semenzato G, Foa R, Agostini C, et al. High serum levels of soluble interleukin 2 receptor in patients with B chronic lymphocytic leukemia. Blood. 1987;70(2):396–400.PubMedGoogle Scholar
  42. 42.
    Pavlidis NA, Manoussakis MN, Germanidis GS, et al. Serum-soluble interleukin-2 receptors in B-cell lymphoproliferative malignancies. Med Pediatr Oncol. 1992;20(1):26–31.PubMedGoogle Scholar
  43. 43.
    Ravandi F, O’Brien S. Immune defects in patients with chronic lymphocytic leukemia. Cancer Immunol Immunother. 2006;55(2):197–209.PubMedGoogle Scholar
  44. 44.
    Riches JC, Ramsay AG, Gribben JG. Immune reconstitution in chronic lymphocytic leukemia. Curr Hematol Malig Rep. 2012;7(1):13–20.PubMedGoogle Scholar
  45. 45.
    Davidovitz Y, Ballin A, Meytes D. Flare-up of squamous cell carcinoma of the skin following fludarabine therapy for chronic lymphocytic leukemia. Acta Haematol. 1997;98(1):44–6.PubMedGoogle Scholar
  46. 46.
    Larsen CR, Hansen PB, Clausen NT. Aggressive growth of epithelial carcinomas following treatment with nucleoside analogues. Am J Hematol. 2002;70(1):48–50.PubMedGoogle Scholar
  47. 47.
    Callea V, Brugiatelli M, Stelitano C, et al. Incidence of second neoplasia in patients with B-cell chronic lymphocytic leukemia treated with chlorambucil maintenance chemotherapy. Leuk Lymphoma. 2006;47(11):2314–20.PubMedGoogle Scholar
  48. 48.
    Cheson BD, Vena DA, Barrett J, et al. Second malignancies as a consequence of nucleoside analog therapy for chronic lymphoid leukemias. J Clin Oncol. 1999;17(8):2454–60.PubMedGoogle Scholar
  49. 49.
    Robak T, Blonski JZ, Gora-Tybor J, et al. Second malignancies and Richter’s syndrome in patients with chronic lymphocytic leukaemia treated with cladribine. Eur J Cancer. 2004;40(3):383–9.PubMedGoogle Scholar
  50. 50.
    van Leeuwen MT, Turner JJ, Falster MO, et al. Latitude gradients for lymphoid neoplasm subtypes in Australia support an association with ultraviolet radiation exposure. Int J Cancer. 2013;133(4):944–51.PubMedGoogle Scholar
  51. 51.
    Smedby KE, Hjalgrim H, Melbye M, et al. Ultraviolet radiation exposure and risk of malignant lymphomas. J Natl Cancer Inst. 2005;97(3):199–209.PubMedGoogle Scholar
  52. 52.
    Adami J, Gridley G, Nyrén O, et al. Sunlight and non-Hodgkin’s lymphoma: a population-based cohort study in Sweden. Int J Cancer. 1999;80(5):641–5.PubMedGoogle Scholar
  53. 53.
    Grant WB. Ultraviolet exposure and non-Hodgkin’s lymphoma: beneficial and adverse effects? Cancer Causes Control. 2012;23(4):653–5.PubMedGoogle Scholar
  54. 54.
    Wolfe F, Michaud K. Biologic treatment of rheumatoid arthritis and the risk of malignancy: analyses from a large US observational study. Arthritis Rheum. 2007;56(9):2886–95.PubMedGoogle Scholar
  55. 55.
    Amari W, Zeringue AL, McDonald JR, et al. Risk of non-melanoma skin cancer in a national cohort of veterans with rheumatoid arthritis. Rheumatology. 2011;50(8):1431–9.PubMedGoogle Scholar
  56. 56.
    Burgi A, Brodine S, Wegner S, et al. Incidence and risk factors for the occurrence of non-AIDS-defining cancers among human immunodeficiency virus-infected individuals. Cancer. 2005;104(7):1505–11.PubMedGoogle Scholar
  57. 57.
    Silverberg MJ, Leyden W, Warton EM, et al. HIV infection status, immunodeficiency, and the incidence of non-melanoma skin cancer. J Natl Cancer Inst. 2013;105(5):350–60.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Powles T, Robinson D, Stebbing J, et al. Highly active antiretroviral therapy and the incidence of non-AIDS-defining cancers in people with HIV infection. J Clin Oncol. 2009;27(6):884–90.PubMedGoogle Scholar
  59. 59.
    Wilkins K, Turner R, Dolev JC, et al. Cutaneous malignancy and human immunodeficiency virus disease. J Am Acad Dermatol. 2006;54(2):189–206; quiz 7–10.Google Scholar
  60. 60.
    Mbulaiteye SM, Biggar RJ, Goedert JJ, et al. Immune deficiency and risk for malignancy among persons with AIDS. J Acquir Immune Defic Syndr. 2003;32(5):527–33.PubMedGoogle Scholar
  61. 61.
    Webb MC, Compton F, Andrews PA, et al. Skin tumours posttransplantation: a retrospective analysis of 28 years’ experience at a single centre. Transpl Proc. 1997;29(1–2):828–30.Google Scholar
  62. 62.
    Moloney FJ, Comber H, O’Lorcain P, et al. A population-based study of skin cancer incidence and prevalence in renal transplant recipients. Br J Dermatol. 2006;154(3):498–504.PubMedGoogle Scholar
  63. 63.
    Euvrard S, Kanitakis J, Decullier E, et al. Subsequent skin cancers in kidney and heart transplant recipients after the first squamous cell carcinoma. Transplantation. 2006;81(8):1093–100.PubMedGoogle Scholar
  64. 64.
    Lindelof B, Sigurgeirsson B, Gabel H, et al. Incidence of skin cancer in 5356 patients following organ transplantation. Br J Dermatol. 2000;143(3):513–9.PubMedGoogle Scholar
  65. 65.
    Martinez JC, Otley CC, Stasko T, et al. Defining the clinical course of metastatic skin cancer in organ transplant recipients: a multicenter collaborative study. Arch Dermatol. 2003;139(3):301–6.PubMedGoogle Scholar
  66. 66.
    Sheil AG, Disney AP, Mathew TH, et al. De novo malignancy emerges as a major cause of morbidity and late failure in renal transplantation. Transpl Proc. 1993;25(1 Pt 2):1383–4.Google Scholar
  67. 67.
    Ong CS, Keogh AM, Kossard S, et al. Skin cancer in Australian heart transplant recipients. J Am Acad Dermatol. 1999;40(1):27–34.PubMedGoogle Scholar
  68. 68.
    Ferrandiz C, Fuente MJ, Ribera M, et al. Epidermal dysplasia and neoplasia in kidney transplant recipients. J Am Acad Dermatol. 1995;33(4):590–6.PubMedGoogle Scholar
  69. 69.
    Euvrard S, Kanitakis J, Pouteil-Noble C, et al. Comparative epidemiologic study of premalignant and malignant epithelial cutaneous lesions developing after kidney and heart transplantation. J Am Acad Dermatol. 1995;33(2 Pt 1):222–9.PubMedGoogle Scholar
  70. 70.
    Kanitakis J, Alhaj-Ibrahim L, Euvrard S, et al. Basal cell carcinomas developing in solid organ transplant recipients: clinicopathologic study of 176 cases. Arch Dermatol. 2003;139(9):1133–7.PubMedGoogle Scholar
  71. 71.
    Bouwes Bavinck JN, Hardie DR, Green A, et al. The risk of skin cancer in renal transplant recipients in Queensland, Australia: a follow-up study. Transplantation. 1996;61(5):715–21.PubMedGoogle Scholar
  72. 72.
    Kubica AW, Brewer JD. Melanoma in immunosuppressed patients. Mayo Clin Proc. 2012;87(10):991–1003.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Penn I. Malignant melanoma in organ allograft recipients. Transplantation. 1996;61(2):274–8.PubMedGoogle Scholar
  74. 74.
    Brewer JD, Christenson LJ, Weaver AL, et al. Malignant melanoma in solid transplant recipients: collection of database cases and comparison with surveillance, epidemiology, and end results data for outcome analysis. Arch Dermatol. 2011;147(7):790–6.PubMedGoogle Scholar
  75. 75.
    Matin RN, Mesher D, Proby CM, et al.; Skin Care in Organ Transplant Patients, Europe (SCOPE) group. Melanoma in organ transplant recipients: clinicopathological features and outcome in 100 cases. Am J Transpl. 2008;8(9):1891–1900.Google Scholar
  76. 76.
    Le Mire L, Hollowood K, Gray D, et al. Melanomas in renal transplant recipients. Br J Dermatol. 2006;154(3):472–7.PubMedGoogle Scholar
  77. 77.
    Feng H, Shuda M, Chang Y, et al. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319(5866):1096–100.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Miller RW, Rabkin CS. Merkel cell carcinoma and melanoma: etiological similarities and differences. Cancer Epidemiol Biomark Prev. 1999;8(2):153.Google Scholar
  79. 79.
    Penn I, First MR. Merkel’s cell carcinoma in organ recipients: report of 41 cases. Transplantation. 1999;68(11):1717–21.PubMedGoogle Scholar
  80. 80.
    Mehrany K, Otley CC, Weenig RH, et al. A meta-analysis of the prognostic significance of sentinel lymph node status in Merkel cell carcinoma. Dermatol Surg. 2002;28(2):113–7.PubMedGoogle Scholar
  81. 81.
    Levi F, Randimbison L, Te VC, et al. Non-Hodgkin’s lymphomas, chronic lymphocytic leukaemias and skin cancers. Br J Cancer. 1996;74(11):1847–50.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Mehrany K, Byrd DR, Roenigk RK, et al. Lymphocytic infiltrates and subclinical epithelial tumor extension in patients with chronic leukemia and solid-organ transplantation. Dermatol Surg. 2003;29(2):129–34.PubMedGoogle Scholar
  83. 83.
    Mehrany K, Weenig RH, Pittelkow MR, et al. High recurrence rates of squamous cell carcinoma after Mohs’ surgery in patients with chronic lymphocytic leukemia. Dermatol Surg. 2005;31(1):38–42.PubMedGoogle Scholar
  84. 84.
    Mehrany K, Weenig RH, Lee KK, et al. Increased metastasis and mortality from cutaneous squamous cell carcinoma in patients with chronic lymphocytic leukemia. J Am Acad Dermatol. 2005;53(6):1067–71.PubMedGoogle Scholar
  85. 85.
    Mehrany K, Weenig RH, Pittelkow MR, et al. High recurrence rates of basal cell carcinoma after mohs surgery in patients with chronic lymphocytic leukemia. Arch Dermatol. 2004;140(8):985–8.PubMedGoogle Scholar
  86. 86.
    Agnew KL, Ruchlemer R, Catovsky D, et al. Cutaneous findings in chronic lymphocytic leukaemia. Br J Dermatol. 2004;150(6):1129–35.PubMedGoogle Scholar
  87. 87.
    Adami J, Frisch M, Yuen J, et al. Evidence of an association between non-Hodgkin’s lymphoma and skin cancer. BMJ. 1995;310(6993):1491–5.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Travis LB, Curtis RE, Hankey BF, et al. Second cancers in patients with chronic lymphocytic leukemia. J Natl Cancer Inst. 1992;84(18):1422–7.PubMedGoogle Scholar
  89. 89.
    McKenna DB, Doherty VR, McLaren KM, et al. Malignant melanoma and lymphoproliferative malignancy: is there a shared aetiology? Br J Dermatol. 2000;143(1):171–3.PubMedGoogle Scholar
  90. 90.
    McKenna DB, Stockton D, Brewster DH, et al. Evidence for an association between cutaneous malignant melanoma and lymphoid malignancy: a population-based retrospective cohort study in Scotland. Br J Cancer. 2003;88(1):74–8.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Brewer JD, Christenson LJ, Weenig RH, et al. Effects of chronic lymphocytic leukemia on the development and progression of malignant melanoma. Dermatol Surg. 2010;36(3):368–76.PubMedGoogle Scholar
  92. 92.
    Brewer JD, Shanafelt TD, Otley CC, et al. Chronic lymphocytic leukemia is associated with decreased survival of patients with malignant melanoma and Merkel cell carcinoma in a SEER population-based study. J Clin Oncol. 2012;30(8):843–9.PubMedGoogle Scholar
  93. 93.
    Nguyen P, Vin-Christian K, Ming ME, et al. Aggressive squamous cell carcinomas in persons infected with the human immunodeficiency virus. Arch Dermatol. 2002;138(6):758–63.PubMedGoogle Scholar
  94. 94.
    Patel P, Hanson DL, Sullivan PS, et al. Incidence of types of cancer among HIV-infected persons compared with the general population in the United States, 1992–2003. Ann Intern Med. 2008;148(10):728–36.PubMedGoogle Scholar
  95. 95.
    Rodrigues LK, Klencke BJ, Vin-Christian K, et al. Altered clinical course of malignant melanoma in HIV-positive patients. Arch Dermatol. 2002;138(6):765–70.PubMedGoogle Scholar
  96. 96.
    Engels EA, Frisch M, Goedert JJ, et al. Merkel cell carcinoma and HIV infection. Lancet. 2002;359(9305):497–8.PubMedGoogle Scholar
  97. 97.
    Izikson L, Nornhold E, Iyer JG, et al. Merkel cell carcinoma associated with HIV: review of 14 patients. AIDS. 2011;25(1):119–21. doi: 10.1097/QAD.0b013e328340a19c.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Leung J, Dowling L, Obadan I, et al. Risk of non-melanoma skin cancer in autoimmune hepatitis. Dig Dis Sci. 2010;55(11):3218–23.PubMedGoogle Scholar
  99. 99.
    Mahr A, Heijl C, Le Guenno G, et al. ANCA-associated vasculitis and malignancy: current evidence for cause and consequence relationships. Best Pract Res Clin Rheumatol. 2013;27(1):45–56.PubMedGoogle Scholar
  100. 100.
    Burmester GR, Panaccione R, Gordon KB, et al. Adalimumab: long-term safety in 23 458 patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis and Crohn’s disease. Ann Rheum Dis. 2013;72(4):517–24.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Long MD, Martin CF, Pipkin CA, et al. Risk of melanoma and nonmelanoma skin cancer among patients with inflammatory bowel disease. Gastroenterology. 2012;143(2):390–9.e1.Google Scholar
  102. 102.
    Osterman MT, Sandborn WJ, Colombel JF, et al. Increased risk of malignancy with adalimumab combination therapy, compared to monotherapy, for Crohn’s disease. Gastroenterology. 2014;146(4):941–9.PubMedGoogle Scholar
  103. 103.
    Askling J, Fored CM, Brandt L, et al. Risks of solid cancers in patients with rheumatoid arthritis and after treatment with tumour necrosis factor antagonists. Ann Rheum Dis. 2005;64(10):1421–6.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Raaschou P, Simard JF, Holmqvist M, et al. Rheumatoid arthritis, anti-tumour necrosis factor therapy, and risk of malignant melanoma: nationwide population based prospective cohort study from Sweden. BMJ. 2013;. doi: 10.1136/bmj.f1939.PubMedGoogle Scholar
  105. 105.
    Paul CF, Ho VC, McGeown C, et al. Risk of malignancies in psoriasis patients treated with cyclosporine: a 5 y cohort study. J Invest Dermatol. 2003;120(2):211–6.PubMedGoogle Scholar
  106. 106.
    Singh MK, Brewer JD. Current approaches to skin cancer management in organ transplant recipients. Semin Cutan Med Surg. 2011;1(1):35–47.Google Scholar
  107. 107.
    Otley CC, Stasko T, editors. Skin disease in organ transplantation. New York: Cambridge University Press; 2008.Google Scholar
  108. 108.
    Ulrich C, Bichel J, Euvrard S, et al. Topical immunomodulation under systemic immunosuppression: results of a multicentre, randomized, placebo-controlled safety and efficacy study of imiquimod 5% cream for the treatment of actinic keratoses in kidney, heart, and liver transplant patients. Br J Dermatol. 2007;157(2):25–31.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Ulrich CJA, Röwert-Huber J, Ulrich M, Sterry W, Stockfleth E. Results of a randomized, placebo-controlled safety and efficacy study of topical diclofenac 3% gel in organ transplant patients with multiple actinic keratoses. Eur J Dermatol. 2010;20(4):482–8.PubMedGoogle Scholar
  110. 110.
    Basset-Seguin N, Baumann Conzett K, Gerritsen MJP, et al. Photodynamic therapy for actinic keratosis in organ transplant patients. J Eur Acad Dermatol Venereol. 2013;27(1):57–66.PubMedGoogle Scholar
  111. 111.
    Piaserico S, Belloni Fortina A, Rigotti P, et al. Topical photodynamic therapy of actinic keratosis in renal transplant recipients. Transpl Proc. 2007;39(6):1847–50.Google Scholar
  112. 112.
    Rosen RH, Gupta AK, Tyring SK. Dual mechanism of action of ingenol mebutate gel for topical treatment of actinic keratoses: rapid lesion necrosis followed by lesion-specific immune response. J Am Acad Dermatol. 2012;66(3):486–93.PubMedGoogle Scholar
  113. 113.
    Ogbourne SM, Suhrbier A, Jones B, et al. Antitumor activity of 3-ingenyl angelate: plasma membrane and mitochondrial disruption and necrotic cell death. Cancer Res. 2004;64(8):2833–9.PubMedGoogle Scholar
  114. 114.
    Keating GM. Ingenol mebutate gel 0.015% and 0.05%. Drugs. 2012;72(18):2397–405.PubMedGoogle Scholar
  115. 115.
    Lebwohl M, Swanson N, Anderson LL, et al. Ingenol mebutate gel for actinic keratosis. N Engl J Med. 2012;366(11):1010–9.PubMedGoogle Scholar
  116. 116.
    Lebwohl M, Shumack S, Stein Gold L, et al. Long-term follow-up study of ingenol mebutate gel for the treatment of actinic keratoses. JAMA Dermatol. 2013;149(6):666–70.PubMedGoogle Scholar
  117. 117.
    Fabrikant J, Touloei K, Brown SM. A review and update on melanocyte stimulating hormone therapy: afamelanotide. J Drugs Dermatol. 2013;12(7):775–9.PubMedGoogle Scholar
  118. 118.
    Wagner JD, Evdokimow DZ, Weisberger E, et al. Sentinel node biopsy for high-risk nonmelanoma cutaneous malignancy. Arch Dermatol. 2004;140(1):75–9.PubMedGoogle Scholar
  119. 119.
    Kwon S, Dong ZM, Wu PC. Sentinel lymph node biopsy for high-risk cutaneous squamous cell carcinoma: clinical experience and review of literature. World J Surg Oncol. 2011;9(80). doi: 10.1186/1477-7819-9-80.
  120. 120.
    Maubec E, Duvillard P, Velasco V, et al. Immunohistochemical analysis of EGFR and HER-2 in patients with metastatic squamous cell carcinoma of the skin. Anticancer Res. 2005;25(2B):1205–10.PubMedGoogle Scholar
  121. 121.
    Shimizu T, Izumi H, Oga A, et al. Epidermal growth factor receptor overexpression and genetic aberrations in metastatic squamous-cell carcinoma of the skin. Dermatology. 2001;202(3):203–6.PubMedGoogle Scholar
  122. 122.
    Maubec E, Petrow P, Scheer-Senyarich I, et al. Phase II study of cetuximab as first-line single-drug therapy in patients with unresectable squamous cell carcinoma of the skin. J Clin Oncol. 2011;29(25):3419–26.PubMedGoogle Scholar
  123. 123.
    Bavinck JN, Tieben LM, Van der Woude FJ, et al. Prevention of skin cancer and reduction of keratotic skin lesions during acitretin therapy in renal transplant recipients: a double-blind, placebo-controlled study. J Clin Oncol. 1995;13(8):1933–8.PubMedGoogle Scholar
  124. 124.
    George R, Weightman W, Russ GR, et al. Acitretin for chemoprevention of non-melanoma skin cancers in renal transplant recipients. Australas J Dermatol. 2002;43(4):269–73.PubMedGoogle Scholar
  125. 125.
    Rook AH, Jaworsky C, Nguyen T, et al. Beneficial effect of low-dose systemic retinoid in combination with topical tretinoin for the treatment and prophylaxis of premalignant and malignant skin lesions in renal transplant recipients. Transplantation. 1995;59(5):714–9.PubMedGoogle Scholar
  126. 126.
    Otley CC, Stasko T, Tope WD, et al. Chemoprevention of nonmelanoma skin cancer with systemic retinoids: practical dosing and management of adverse effects. Dermatol Surg. 2006;32(4):562–8.PubMedGoogle Scholar
  127. 127.
    Kovach BT, Sams HH, Stasko T. Systemic strategies for chemoprevention of skin cancers in transplant recipients. Clin Transpl. 2005;19(6):726–34.Google Scholar
  128. 128.
    Reilly P, DiGiovanna JJ. Retinoid chemoprevention in high-risk skin cancer patients. Dermatol Nurs. 2004;16(2):117–20, 23–6; quiz 27.Google Scholar
  129. 129.
    Jirakulaporn T, Endrizzi B, Lindgren B, et al. Capecitabine for skin cancer prevention in solid organ transplant recipients. Clin Transpl. 2011;25(4):541–8.Google Scholar
  130. 130.
    Otley CC, Berg D, Ulrich C, et al. Reduction of immunosuppression for transplant-associated skin cancer: expert consensus survey. Br J Dermatol. 2006;154(3):395–400.PubMedGoogle Scholar
  131. 131.
    Hahn H, Wicking C, Zaphiropoulous PG, et al. Mutations of the human homolog of drosophila patched in the nevoid basal cell carcinoma syndrome. Cell. 1996;85(6):841–51.PubMedGoogle Scholar
  132. 132.
    Johnson RL, Rothman AL, Xie J, et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science. 1996;272(5268):1668–71.PubMedGoogle Scholar
  133. 133.
    Epstein EH. Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer. 2008;8(10):743–54.PubMedGoogle Scholar
  134. 134.
    Gailani MR, Ståhle-Bäckdahl M, Leffell DJ, et al. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet. 1996;14(1):78–81.PubMedGoogle Scholar
  135. 135.
    Aszterbaum M, Rothman A, Johnson RL, et al. Identification of mutations in the human PATCHED gene in sporadic basal cell carcinomas and in patients with the basal cell nevus syndrome. J Invest Dermatol. 1998;110(6):885–8.PubMedGoogle Scholar
  136. 136.
    Xie J, Murone M, Luoh SM, et al. Activating smoothened mutations in sporadic basal-cell carcinoma. Nature. 1998;391(6662):90–2.PubMedGoogle Scholar
  137. 137.
    LoRusso PM, Rudin CM, Reddy JC, et al. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res. 2011;17(8):2502–11.PubMedGoogle Scholar
  138. 138.
    Von Hoff DD, LoRusso PM, Rudin CM, et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 2009;361(12):1164–72.Google Scholar
  139. 139.
    Sekulic A, Migden MR, Oro AE, et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med. 2012;366(23):2171–9.PubMedGoogle Scholar
  140. 140.
    Kim DJ, Kim J, Spaunhurst K, et al. Open-label, exploratory phase II trial of oral itraconazole for the treatment of basal cell carcinoma. J Clin Oncol. 2014;32(8):745–51.PubMedGoogle Scholar
  141. 141.
    Zwald FO, Christenson LJ, Billingsley EM, et al. Melanoma in solid organ transplant recipients. Am J Transpl. 2010;10(5):1297–304.Google Scholar
  142. 142.
    Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.PubMedGoogle Scholar
  143. 143.
    Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366(8):707–14.PubMedCentralPubMedGoogle Scholar
  144. 144.
    Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19.PubMedCentralPubMedGoogle Scholar
  145. 145.
    Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.PubMedCentralPubMedGoogle Scholar
  146. 146.
    Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.PubMedGoogle Scholar
  147. 147.
    Chapman PB. Mechanisms of resistance to RAF inhibition in melanomas harboring a BRAF mutation. Am Soc Clin Oncol Educ Book. 2013. doi: 10.1200/EdBook_AM.2013.33.e80.
  148. 148.
    Kim KB, Kefford R, Pavlick AC, et al. Phase II study of the MEK1/MEK2 inhibitor trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. J Clin Oncol. 2013;31(4):482–9.PubMedGoogle Scholar
  149. 149.
    Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367(18):1694–703.PubMedCentralPubMedGoogle Scholar
  150. 150.
    Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.PubMedGoogle Scholar
  151. 151.
    Fong L, Small EJ. Anti-cytotoxic T-lymphocyte antigen-4 antibody: the first in an emerging class of immunomodulatory antibodies for cancer treatment. J Clin Oncol. 2008;26(32):5275–83.PubMedGoogle Scholar
  152. 152.
    Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.PubMedCentralPubMedGoogle Scholar
  153. 153.
    Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of Anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.PubMedCentralPubMedGoogle Scholar
  154. 154.
    Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.PubMedGoogle Scholar
  155. 155.
    Campistol JM. Minimizing the risk of posttransplant malignancy. Transpl Proc. 2008;40(10 Suppl):S40–3.Google Scholar
  156. 156.
    Kahan BD, Knight R, Schoenberg L, et al. Ten years of sirolimus therapy for human renal transplantation: the University of Texas at Houston experience. Transpl Proc. 2003;35(3 Suppl):S25–34.Google Scholar
  157. 157.
    Mathew T, Kreis H, Friend P. Two-year incidence of malignancy in sirolimus-treated renal transplant recipients: results from five multicenter studies. Clin Transpl. 2004;18(4):446–9.Google Scholar
  158. 158.
    Otley CC, Hirose R, Salasche SJ. Skin cancer as a contraindication to organ transplantation. Am J Transpl. 2005;5(9):2079–84.Google Scholar
  159. 159.
    Mortier L, Mirabel X, Fournier C, et al. Radiotherapy alone for primary merkel cell carcinoma. Arch Dermatol. 2003;139(12):1587–90.PubMedGoogle Scholar
  160. 160.
    Veness M, Foote M, Gebski V, et al. The role of radiotherapy alone in patients with Merkel cell carcinoma: reporting the Australian experience of 43 patients. Int J Radiat Oncol Biol Phys. 2010;78(3):703–9.PubMedGoogle Scholar
  161. 161.
    Sundaresan P, Hruby G, Hamilton A, et al. Definitive radiotherapy or chemoradiotherapy in the treatment of Merkel cell carcinoma. Clin Oncol. 2012;24(9):e131–6.Google Scholar
  162. 162.
    Hasan S, Liu L, Triplet J, et al. The role of postoperative radiation and chemoradiation in Merkel cell carcinoma: a systematic review of the literature. Front Oncol. 2013. doi: 10.3389/fonc.2013.00276.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lauren Brin
    • 1
  • Adeel S. Zubair
    • 2
  • Jerry D. Brewer
    • 3
    Email author
  1. 1.Creighton University School of MedicineOmahaUSA
  2. 2.Mayo Medical School, Mayo ClinicRochesterUSA
  3. 3.Division of Dermatologic Surgery, Department of DermatologyMayo Clinic/Mayo Clinic College of MedicineRochesterUSA

Personalised recommendations