American Journal of Clinical Dermatology

, Volume 15, Issue 4, pp 323–337

A Review of Novel Therapies for Melanoma

  • Chante Karimkhani
  • Rene Gonzalez
  • Robert P. Dellavalle
Review Article

Abstract

This review summarizes results from major recent trials regarding novel therapeutic agents in melanoma. The topics discussed include targeted therapy with BRAF (V-RAF murine sarcoma viral oncogene homolog B) inhibitors (vemurafenib and dabrafenib), MEK (mitogen-activated protein kinase kinase) inhibitors (trametinib), bcr-abl/c-kit/PDGF-R inhibitors (imatinib), and angiogenesis inhibitors (bevacizumab and aflibercept), as well as immunotherapy with anti-CTLA-4 (anti-cytotoxic T-lymphocyte antigen-4) antibodies (ipilimumab), anti-PD (anti-programmed death receptor) antibodies (nivolumab and lambrolizumab), and anti-PD-L (anti-programmed death ligand) antibodies. Various combinations of these agents, as well as adjunctive GM-CSF (granulocyte–macrophage colony-stimulating factor), T-VEC (talimogene laherparepvec) oncolytic viruses, and novel chemotherapeutic agents, are also described. Despite the tremendous advances that these novel treatments have created, optimal therapeutic agent selection remains a highly individualized decision. Melanoma therapy has vastly progressed since the days when dacarbazine was the sole option for advanced melanoma patients. The molecular understanding of melanoma pathogenesis has yielded a brighter future for advanced melanoma patients.

References

  1. 1.
    Rigel DS, Russak J, Friedman R. The evolution of melanoma diagnosis: 25 years beyond the ABCDs. CA Cancer J Clin. 2010;60(5):301–16.PubMedCrossRefGoogle Scholar
  2. 2.
    Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013. http://globocan.iarc.fr. Accessed 3 Feb 2014.
  3. 3.
    Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27(36):6199.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Balch CM, Buzaid AC, Soong SJ, et al. Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J Clin Oncol. 2001;19(16):3635–48.PubMedGoogle Scholar
  5. 5.
    Long GV, Menzies AM, Nagrial AM, et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol. 2011;29(10):1239–46.PubMedCrossRefGoogle Scholar
  6. 6.
    Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(20):2135–47.PubMedCrossRefGoogle Scholar
  7. 7.
    Ribas A, Flaherty KT. BRAF targeted therapy changes the treatment paradigm in melanoma. Nat Rev Clin Oncol. 2011;8(7):426–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Wan PT, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116(6):855–67.PubMedCrossRefGoogle Scholar
  9. 9.
    Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    US Food and Drug Administration. FDA news release: FDA approves Zelboraf and companion diagnostic test for late-stage skin cancer. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm268241.htm. Accessed 9 Feb 2014.
  11. 11.
    Onco’Zine. First personalized cancer medicine allows patients with deadly form of metastatic melanoma to live significantly longer. http://oncozine.com/profiles/blogs/first-personalized-cancer-medicine-allows-patients-deadly-form-of. Accessed 9 Feb 2014.
  12. 12.
    Chapman PB, Hauschild A, Robert C, et al. Updated overall survival (OS) results for BRIM-3, a phase III randomized, open-label, multicenter trial comparing BRAF inhibitor vemurafenib (VEM) with dacarbazine (DTIC) in previously untreated patients with BRAF V600E-mutated melanoma. J Clin Oncol, ASCO Annual Meeting Abstract 2012;30(suppl):8502.Google Scholar
  13. 13.
    Su F, Viros A, Milagre C, et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF. N Engl J Med. 2012;366(3):207–15.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Hauschild A, Grob J, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.PubMedCrossRefGoogle Scholar
  15. 15.
    Hauschild A, Grob JJ, Demidov LV, et al. Phase III, randomized, open-label, multicenter trial (BREAK-3) comparing the BRAF kinase inhibitor dabrafenib (GSK2118436) with dacarbazine (DTIC) in patients with BRAF V600E-mutated melanoma. J Clin Oncol, ASCO Annual Meeting Abstract 2012;30(suppl):LBA8500.Google Scholar
  16. 16.
    Lee CI, Menzies AM, Haydu L, et al. Correlates of fever in patients (pts) receiving combined dabrafenib (GSK2118436) plus trametinib (GSK1120212) for V600 BRAF-mutant metastatic melanoma (MM). J Clin Oncol, ASCO Annual Meeting Abstracts 2012;30(suppl):E19011.Google Scholar
  17. 17.
    Kefford R, Miller WH, Shao-Weng D, et al. Preliminary results from a phase Ib/II, open-label, dose-escalation study of the oral BRAF inhibitor LGX818 in combination with the oral MEK 1/2 inhibitor MEK162 in BRAFV600-dependent advanced solid tumors. J Clin Oncol, ASCO Annual Meeting Abstract 2013;31(suppl):9029.Google Scholar
  18. 18.
    Nakamura A, Arita T, Tsuchiya S, et al. Antitumor activity of the selective pan-RAF inhibitor TAK-632 in BRAF inhibitor-resistant melanoma. Cancer Res. 2013;73(23):7043–55.PubMedCrossRefGoogle Scholar
  19. 19.
    Gonzalez D, Fearfield L, Nathan P, et al. BRAF mutation testing algorithm for vemurafenib treatment in melanoma: recommendations from an expert panel. Br J Dermatol. 2013;168(4):700–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Halait H, Demartin K, Shah S, et al. Analytical performance of a real-time PCR-based assay for V600 mutations in the BRAF gene, used as the companion diagnostic test for the novel BRAF inhibitor vemurafenib in metastatic melanoma. Diagn Mol Pathol. 2012;21(1):1–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Cobas® 4800 BRAF V600 Mutation Test Package Insert. Roche Molecular Systems, Inc. August 2011.Google Scholar
  22. 22.
    US Food and Drug Administration. THxID™-BRAF kit for use on the ABI 7500 Fast Dx Real-Time PCR Instrument—P120014. BioMérieux labeling, May 2013. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cftopic/pma/pma.cfm?num=p120014. Accessed 2 Mar 2014.
  23. 23.
    Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366(8):707–14.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Chapman PB. Mechanisms of resistance to RAF inhibition in melanomas harboring a BRAF mutation. Am Soc Clin Oncol Educ Book 2013: 80–2.Google Scholar
  25. 25.
    Qi M, Elion EA. MAP kinase pathways. J Cell Sci. 2005;118(Pt 16):3569–72.PubMedCrossRefGoogle Scholar
  26. 26.
    US Food and Drug Administration. Trametinib. http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm354478.htm. Accessed 12 Feb 2014.
  27. 27.
    Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367(2):107–14.PubMedCrossRefGoogle Scholar
  28. 28.
    Su F, Viros A, Milagre C, et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med. 2012;366:207–15.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367(18):1694–703.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    US Food and Drug Administration. Trametinib and dabrafenib. http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm381451.htm. Accessed 17 Feb 2014.
  31. 31.
    GlaxoSmithKline. A study comparing trametinib and dabrafenib combination therapy to dabrafenib monotherapy in subjects with BRAF-mutant melanoma [ClinicalTrials.gov identifier NCT01584648]. US National Institutes of Health, ClinicalTrials.gov [online]. http://clinicaltrials.gov/show/NCT01584648. Accessed 20 Aug 2013.
  32. 32.
    GlaxoSmithKline. Dabrafenib plus trametinib vs vemurafenib alone in unresectable or metastatic BRAF V600E/K cutaneous melanoma (COMBI-v) [ClinicalTrials.gov identifier NCT01597908]. http://clinicaltrials.gov/show/NCT01597908. Accessed 20 Aug 2013.
  33. 33.
    Hoffman La Roche. A phase 3 study comparing GDC-0973, a MEK inhibitor, in combination with vemurafenib vs vemurafenib alone in patients with metastatic melanoma [ClinicalTrials.gov identifier NCT01689519]. http://clinicaltrials.gov/show/NCT01689519. Accessed 25 Aug 2013.
  34. 34.
    Singh AD, Topham A. Incidence of uveal melanoma in the United States: 1973–1997. Ophthalmology. 2003;110(5):956–61.PubMedCrossRefGoogle Scholar
  35. 35.
    Van Raamsdonk CD, Griewank KG, Crosby MB, et al. Mutations in GNA11 in uveal melanoma. N Engl J Med. 2010;363(23):2191–9.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Carvajal RD, Sosman JA, Quevedo F, et al. Phase II study of selumetinib (sel) versus temozolomide (TMZ) in gnaq/Gna11 (Gq/11) mutant (mut) uveal melanoma. J Clin Oncol, ASCO Annual Meeting Abstract 2013;31(suppl):9003.Google Scholar
  37. 37.
    Alexeev V, Yoon K. Distinctive role of the cKit receptor tyrosine kinase signaling in mammalian melanocytes. J Invest Dermatol. 2006;126(5):1102–10.PubMedCrossRefGoogle Scholar
  38. 38.
    Ko JM, Velez NF, Tsao H. Pathways to melanoma. Semin Cutan Med Surg. 2010;29(4):210–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Guilhot F. Indications for imatinib mesylate therapy and clinical management. Oncologist. 2004;9(3):271–81.PubMedCrossRefGoogle Scholar
  40. 40.
    Carvajal RD, Antonescu CR, Wolchok JD, et al. KIT as a therapeutic target in metastatic melanoma. JAMA. 2011;305(22):2327–34.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Carvajal RD, Antonescu CR, Wolchok JD, et al. Supplementary appendix to: KIT as a therapeutic target in metastatic melanoma. JAMA. 2011;305(22):2327–34.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Todd JR, Becker TM, Kefford RF, et al. Secondary c-kit mutations confer acquired resistance to RTK inhibitors in c-kit mutant melanoma cells. Pigment Cell Melanoma Res. 2013;26(4):518–26.PubMedCrossRefGoogle Scholar
  43. 43.
    Weisberg E, Manley PW, Breitenstein W, et al. Characterization of AMN107, a selective inhibitor of native and mutant BCR-ABL. Cancer Cell. 2005;7(2):129–41.PubMedCrossRefGoogle Scholar
  44. 44.
    US Food and Drug Administration. Nilotinib (Tasigna). http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm216218.htm. Accessed 12 Feb 2014.
  45. 45.
    Cho JH, Kim KM, Kwon M, et al. Nilotinib in patients with metastatic melanoma harboring kit gene aberration. Invest New Drugs. 2012;30(5):2008–14.PubMedCrossRefGoogle Scholar
  46. 46.
    Dana-Farber Cancer Institute; Brigham and Women’s Hospital; Beth Israel Deaconess Medical Center; Massachusetts General Hospital; Novartis. Nilotinib in TKI resistant or intolerant patients with metastatic mucosal, acral, or chronically sun damaged melanoma [ClinicalTrials.gov identifier NCT00788775]. http://clinicaltrials.gov/show/NCT00788775. Accessed 25 Aug 2013.
  47. 47.
    Lombardo LJ, Lee FY, Chen P, et al. Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem. 2004;47(27):6658–61.PubMedCrossRefGoogle Scholar
  48. 48.
    Shah NP, Tran C, Lee FY, et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305(5682):399–401.PubMedCrossRefGoogle Scholar
  49. 49.
    Kluger HM, Dudek AZ, McCann C, et al. A phase 2 trial of dasatinib in advanced melanomas. Cancer. 2011;117(10):2202–8.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Eastern Cooperative Oncology Group; National Cancer Institute. Dasatinib in treating patients with locally advanced or metastatic mucosal melanoma, acral melanoma, or vulvovaginal melanoma that cannot be removed by surgery [ClinicalTrials.gov identifier NCT00700882]. http://clinicaltrials.gov/show/NCT00700882. Accessed 28 Aug 2014.
  51. 51.
    Corrie PG, Basu B, Zaki KA. Targeting angiogenesis in melanoma: prospects for the future. Ther Adv Med Oncol. 2010;2(6):367–80.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Graells J, Vinyals A, Figueras A, et al. Overproduction of VEGF concomitantly expressed with its receptors promotes growth and survival of melanoma cells through MAPK and PI3K signaling. J Invest Dermatol. 2004;123(6):1151–61.PubMedCrossRefGoogle Scholar
  53. 53.
    Goydos JS, Gorski DH. Vascular endothelial growth factor CmRNA expression correlates with stage of progression in patients with melanoma. Clin Cancer Res. 2003;9(16 Pt 1):5962–7.PubMedGoogle Scholar
  54. 54.
    National Cancer Institute. FDA approval for bevacizumab. http://www.cancer.gov/cancertopics/druginfo/fda-bevacizumab. Accessed 31 Jul 2013.
  55. 55.
    Kim KB, Sosman JA, Fruehauf JP, et al. BEAM: a randomized phase II study evaluating the activity of bevacizumab in combination with carboplatin plus paclitaxel in patients with previously untreated advanced melanoma. J Clin Oncol. 2012;30(1):34–41.PubMedCrossRefGoogle Scholar
  56. 56.
    Haukeland University Hospital, The Norwegian Melanoma Group and the Norwegian Cancer Association. Bevacizumab versus dacarbazine in metastatic melanoma [ClinicalTrials.gov identifier NCT01705392]. http://clinicaltrials.gov/show/NCT01705392. Accessed 28 Aug 2013.
  57. 57.
    Corrie P, Marshall A, Goonewardena M, et al. Adjuvant bevacizumab as treatment for melanoma patients at high risk of recurrence: preplanned interim results for the AVAST-M trial. J Clin Oncol, ASCO Annual Meeting Abstract 2013;31(suppl):9000.Google Scholar
  58. 58.
    ImClone LLC. A study of ramucirumab with or without dacarbazine in metastatic malignant melanoma [ClinicalTrials.gov identifier NCT00533702]. http://clinicaltrials.gov/show/NCT00533702. Accessed 25 Aug 2013.
  59. 59.
    Tarhini AA, Frankel P, Margolin KA, et al. Aflibercept (VEGF Trap) in inoperable stage III or stage IV melanoma of cutaneous or uveal origin. Clin Cancer Res. 2011;17(20):6574–81.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.PubMedCrossRefGoogle Scholar
  61. 61.
    Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009;27:591–619.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Lee B, Mukhi N, Liu D. Current management and novel agents for malignant melanoma. J Hematol Oncol. 2012;5(3):1–7.Google Scholar
  63. 63.
    US Food and Drug Administration. FDA approves new treatment for a type of late-stage skin cancer. http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm1193237.htm. Accessed 12 Feb 2014.
  64. 64.
    Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26.PubMedCrossRefGoogle Scholar
  65. 65.
    Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909–15.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Wolchok JD, Hoos A, O’Day S, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20.PubMedCrossRefGoogle Scholar
  68. 68.
    Weber JS, Kahler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30(21):2691–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Chin K, Ibrahim R, Berman D, et al. Treatment guidelines for the management of immune-related adverse events in patients treated with ipilimumab, and anti-CTLA4 therapy. Ann Oncol. 2008;19(8 Suppl):viii244–5.Google Scholar
  70. 70.
    Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 2012;24(2):207–12.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Ribas A. Tumor immunotherapy directed at PD-1. NEJM. 2012;366(26):2517–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Sznol M, Kluger HM, Hodi FS, et al. Survival and long-term follow-up of safety and response in patients (pts) with advanced melanoma (MEL) in a phase I trial of nivolumab (anti-PD-1; BMS-936558; ONO-4538). J Clin Oncol, ASCO Annual Meeting Abstract 2013;31(suppl):CRA9006.Google Scholar
  74. 74.
    Hamid O, Robert C, Daud A, et al. Safety and tumor responses with lambrolizumab (Anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44.PubMedCrossRefGoogle Scholar
  75. 75.
    Merck. Study of MK-3475 (lambrolizumab) in participants with progressive locally advanced or metastatic carcinoma, melanoma, or non-small cell lung carcinoma (P07990/MK-3475-001 AM7) [ClinicalTrials.gov identifier NCT01295827]. http://clinicaltrials.gov/show/NCT01295827. Accessed 20 Aug 2013.
  76. 76.
    Hamid O, Sosman JA, Lawrence DP, et al. Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic melanoma. J Clin Oncol, ASCO Annual Meeting Abstract 2013;31(suppl):CRA9010.Google Scholar
  77. 77.
    Wolchock JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.CrossRefGoogle Scholar
  78. 78.
    Bristol-Myers Squibb. Phase 3 study of nivolumab or nivolumab plus ipilimumab versus ipilimumab alone in previously untreated advanced melanoma [ClinicalTrials.gov identifier NCT01844505]. http://clinicaltrials.gov/show/NCT01844505. Accessed 20 Aug 2013.
  79. 79.
    Liu C, Peng W, Xu C, et al. BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res. 2013;19(2):393–403.PubMedCrossRefGoogle Scholar
  80. 80.
    Ribas A, Hodi FS, Callahan M, et al. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013;368(14):1365–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Shi Y, Liu CH, Roberts AI, et al. Granulocyte–macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don’t know. Cell Res. 2006;16(2):126–33.PubMedCrossRefGoogle Scholar
  82. 82.
    Hodi FS, Lee SJ, McDermott DF, et al. Multicenter, randomized phase II trial of GM-CSF (GM) plus ipilimumab (Ipi) versus Ipi alone in metastatic melanoma: E1608. J Clin Oncol, ASCO Annual Meeting Abstract 2013;31(suppl):9007.Google Scholar
  83. 83.
    The ASCO Post. ASCO 2013: adding GM-CSF to ipilimumab significantly improves survival for patients with metastatic melanoma. http://www.ascopost.com/ViewNews.aspx?nid=4188. Accessed 1 Feb 2014.
  84. 84.
    Liu BL, Robinson M, Han Z-Q, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 2003;10(4):292–303.PubMedCrossRefGoogle Scholar
  85. 85.
    Kaufman HL, Kim DW, DeRaffele G, et al. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIC and IV melanoma. Ann Surg Oncol. 2010;17(3):718–30.PubMedCrossRefGoogle Scholar
  86. 86.
    Senzer NN, Kaufman HL, Amatruda T, et al. Phase II clinical trial of a granulocyte–macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patents with unresectable metastatic melanoma. J Clin Oncol. 2009;27(334):5763–71.PubMedCrossRefGoogle Scholar
  87. 87.
    Andtbacka RHI, Collichio FA, Amatruda T, et al. OPTiM: a randomized phase iii trial of talimogene laherparepvec (T-VEC) versus subcutaneous (SC) granulocyte–macrophage colony-stimulating factor (GM-CSF) for the treatment (tx) of unresected stage IIIB/C and IV melanoma. J Clin Oncol, ASCO Annual Meeting Abstract 2013;31(suppl):9008.Google Scholar
  88. 88.
    Hersh E, Del Vecchio M, Brown M, et al. Phase 3, randomized, open-label, multicenter trial of nab-paclitaxel (nab-P) versus dacarbazine (DTIC) in previously untreated patients with metastatic malignant melanoma [abstract]. Pigment Cell Melanoma Res. 2012;25(6):863–903.Google Scholar
  89. 89.
    Hersh E, Del Vecchio M, Brown MP, et al. A phase III trial of nab-paclitaxel versus dacarbazine in chemotherapy-naive patients with metastatic melanoma: a subanalysis based on BRAF status. J Clin Oncol, ASCO Annual Meeting Abstract 2013;31(suppl):9030.Google Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2014

Authors and Affiliations

  • Chante Karimkhani
    • 1
  • Rene Gonzalez
    • 2
  • Robert P. Dellavalle
    • 3
    • 4
    • 5
  1. 1.Columbia University College of Physicians and SurgeonsNew YorkUSA
  2. 2.University of Colorado Cancer CenterAuroraUSA
  3. 3.Department of DermatologyUniversity of Colorado DenverAuroraUSA
  4. 4.Department of EpidemiologyColorado School of Public HealthAuroraUSA
  5. 5.Dermatology ServiceDepartment of Veterans Affairs Medical CenterDenverUSA

Personalised recommendations