Advertisement

American Journal of Clinical Dermatology

, Volume 14, Issue 6, pp 449–459 | Cite as

Wound Dressings: Selecting the Most Appropriate Type

  • Karen C. Broussard
  • Jennifer Gloeckner PowersEmail author
Therapy in Practice

Abstract

Appropriate wound dressing selection is guided by an understanding of wound dressing properties and an ability to match the level of drainage and depth of a wound. Wounds should be assessed for necrosis and infection, which need to be addressed prior to selecting an ideal dressing. Moisture-retentive dressings include films, hydrogels, hydrocolloids, foams, alginates, and hydrofibers and are useful in a variety of clinical settings. Antimicrobial-impregnated dressings can be useful in wounds that are superficially infected or are at higher risk for infection. For refractory wounds that need more growth stimulation, tissue-engineered dressings have become a viable option in the past few decades, especially those that have been approved for burns, venous ulcers, and diabetic ulcers. As wounds heal, the ideal dressing type may change, depending on the amount of exudate and depth of the wound; thus success in wound dressing selection hinges on recognition of the changing healing environment.

Keywords

Pressure Ulcer Epidermolysis Bullosa Venous Ulcer Manuka Honey Wound Exudate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

No funding sources were used to prepare this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

References

  1. 1.
    Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound Repair Regen. Nature. 2008;453(7193):314–21. doi: 10.1038/nature07039.PubMedCrossRefGoogle Scholar
  2. 2.
    Niethammer P, Grabher C, Look AT, Mitchison TJ. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature. 2009;459(7249):996–9. doi: 10.1038/nature08119.PubMedCrossRefGoogle Scholar
  3. 3.
    Singer AJ, Clark RA. Cutaneous wound healing. New Engl J Med. 1999;341(10):738–46. doi: 10.1056/nejm199909023411006.PubMedCrossRefGoogle Scholar
  4. 4.
    Beyer TA, Auf dem Keller U, Braun S, et al. Roles and mechanisms of action of the Nrf2 transcription factor in skin morphogenesis, wound repair and skin cancer. Cell Death Differ. 2007;14(7):1250–4. doi: 10.1038/sj.cdd.4402133.Google Scholar
  5. 5.
    Schreml S, Szeimies RM, Prantl L, Landthaler M, Babilas P. Wound healing in the 21st century. J Am Acad Dermatol. 2010;63(5):866–81. doi: 10.1016/j.jaad.2009.10.048.PubMedCrossRefGoogle Scholar
  6. 6.
    Bolognia J, Jorizzo JL, Rapini RP. Dermatology. 2nd edn. St. Louis: Mosby/Elsevier, 2008.Google Scholar
  7. 7.
    Broughton G 2nd, Janis JE, Attinger CE. A brief history of wound care. Plast Reconstr Surg. 2006;117(7 Suppl):6S–11S. doi: 10.1097/01.prs.0000225429.76355.dd.PubMedCrossRefGoogle Scholar
  8. 8.
    Del Rosso JQ. Wound care in the dermatology office: where are we in 2011? J Am Acad Dermatol. 2011;64(3 Suppl):S1–7. doi: 10.1016/j.jaad.2010.10.038.PubMedCrossRefGoogle Scholar
  9. 9.
    Odland GF. The fine structure of the interrelationship of cells in the human epidermis. J Biophys Biochem Cytol. 1958;4(5):529–38.PubMedCrossRefGoogle Scholar
  10. 10.
    Winter GD. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature. 1962;193:293–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Hinman CD, Maibach H. Effect of air exposure and occlusion on experimental human skin wounds. Nature. 1963;200:377–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Field FK, Kerstein MD. Overview of wound healing in a moist environment. Am J Surg. 1994;167(1A):2S–6S.PubMedCrossRefGoogle Scholar
  13. 13.
    Kirschner CM, Anseth KS. Hydrogels in healthcare: from static to dynamic material microenvironments. Acta Materialia. 2013;61(3):931–44. doi: 10.1016/j.actamat.2012.10.037.PubMedCrossRefGoogle Scholar
  14. 14.
    Li W, Dasgeb B, Phillips T, Li Y, Chen M, Garner W, et al. Wound-healing perspectives. Dermatol Clin. 2005;23(2):181–92. doi: 10.1016/j.det.2004.09.004.PubMedCrossRefGoogle Scholar
  15. 15.
    Nemeth AJ, Eaglstein WH, Taylor JR, Peerson LJ, Falanga V. Faster healing and less pain in skin biopsy sites treated with an occlusive dressing. Arch Dermatol. 1991;127(11):1679–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Greener B, Hughes AA, Bannister NP, Douglass J. Proteases and pH in chronic wounds. J Wound Care. 2005;14(2):59–61.PubMedGoogle Scholar
  17. 17.
    Schultz GS, Sibbald RG, Falanga V, Ayello EA, Dowsett C, Harding K, et al. Wound bed preparation: a systematic approach to wound management. Wound Repair Regen. 2003;11(Suppl 1):S1–28.PubMedCrossRefGoogle Scholar
  18. 18.
    Granick M, Boykin J, Gamelli R, Schultz G, Tenenhaus M. Toward a common language: surgical wound bed preparation and debridement. Wound Repair Regen. 2006;14(Suppl 1):S1–10. doi: 10.1111/j.1743-6109.2005.00096.x.PubMedCrossRefGoogle Scholar
  19. 19.
    Demidova-Rice TN, Geevarghese A, Herman IM. Bioactive peptides derived from vascular endothelial cell extracellular matrices promote microvascular morphogenesis and wound healing in vitro. Wound Repair Regen. 2011;19(1):59–70. doi: 10.1111/j.1524-475X.2010.00642.x.PubMedCrossRefGoogle Scholar
  20. 20.
  21. 21.
    Nigam Y, Bexfield A, Thomas S, Ratcliffe NA. Maggot therapy: the science and implication for cam part i-history and bacterial resistance. Evidence-Based Complement Altern Med eCAM. 2006;3(2):223–7. doi: 10.1093/ecam/nel021.CrossRefGoogle Scholar
  22. 22.
    Lionelli GT, Lawrence WT. Wound dressings. Surg Clin North Am. 2003;83(3):617–38. doi: 10.1016/s0039-6109(02)00192-5.PubMedCrossRefGoogle Scholar
  23. 23.
    Stone LL, Dalton HP, Haynes BW. Bacterial debridement of the burn eschar: the in vivo activity of selected organisms. J Surg Res. 1980;29(1):83–92.PubMedCrossRefGoogle Scholar
  24. 24.
    Percival SL, Hill KE, Williams DW, Hooper SJ, Thomas DW, Costerton JW. A review of the scientific evidence for biofilms in wounds. Wound Repair Regen. 2012;20(5):647–57. doi: 10.1111/j.1524-475X.2012.00836.x.PubMedCrossRefGoogle Scholar
  25. 25.
    Fletcher J. Using film dressings. Nurs Times. 2003;99(25):57.Google Scholar
  26. 26.
    Romagnolo SC, Benedetto AV. Wound dressings. In: Snow SN, Mikhail GR, editors. Mohs micrographic surgery. Madison: The University of Wisconsin Press; 2004. p. 219–31.Google Scholar
  27. 27.
    Dumville JC, O’Meara S, Deshpande S, et al.. Hydrogel dressings for healing diabetic foot ulcers. Cochrane Database Syst Rev. 2011;(9):CD009101. doi: 10.1002/14651858.CD009101.pub2.
  28. 28.
    Wasiak J, Cleland H, Campbell F, et al. Dressings for superficial and partial thickness burns. Cochrane Database Syst Rev. 2013;(3):CD002106. doi: 10.1002/14651858.CD002106.pub4.
  29. 29.
    Chaby G, Senet P, Vaneau M, Martel P, Guillaume JC, Meaume S, et al. Dressings for acute and chronic wounds: a systematic review. Arch Dermatol. 2007;143(10):1297–304. doi: 10.1001/archderm.143.10.1297.PubMedCrossRefGoogle Scholar
  30. 30.
    Gist S, Tio-Matos I, Falzgraf S, Cameron S, Beebe M. Wound care in the geriatric client. Clin Interv Aging. 2009;4:269–87.PubMedGoogle Scholar
  31. 31.
    Jones V, Grey JE, Harding KG. Wound dressings. BMJ. 2006;332(7544):777–80. doi: 10.1136/bmj.332.7544.777.PubMedCrossRefGoogle Scholar
  32. 32.
    Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97(8):2892–923. doi: 10.1002/jps.21210.PubMedCrossRefGoogle Scholar
  33. 33.
    Belmin J, Meaume S, Rabus MT, Bohbot S. Sequential treatment with calcium alginate dressings and hydrocolloid dressings accelerates pressure ulcer healing in older subjects: a multicenter randomized trial of sequential versus nonsequential treatment with hydrocolloid dressings alone. J Am Geriatr Soc. 2002;50(2):269–74.PubMedCrossRefGoogle Scholar
  34. 34.
    Bello YM, Phillips TJ. Management of venous ulcers. J Cutan Med Surg. 1998;3(Suppl 1):S1-6-12.Google Scholar
  35. 35.
    Blome-Eberwein S, Johnson RM, Miller SF, Caruso DM, Jordan MH, Milner S, et al. Hydrofiber dressing with silver for the management of split-thickness donor sites: a randomized evaluation of two protocols of care. Burns. 2010;36(5):665–72. doi: 10.1016/j.burns.2009.06.193.PubMedCrossRefGoogle Scholar
  36. 36.
    Muangman P, Pundee C, Opasanon S, Muangman S. A prospective, randomized trial of silver containing hydrofiber dressing versus 1% silver sulfadiazine for the treatment of partial thickness burns. Int Wound J. 2010;7(4):271–6. doi: 10.1111/j.1742-481X.2010.00690.x.PubMedCrossRefGoogle Scholar
  37. 37.
    Doughty D. Dressings and more: guidelines for topical wound management. Nurs Clin North Am. 2005;40(2):217–31. doi: 10.1016/j.cnur.2004.09.012.PubMedCrossRefGoogle Scholar
  38. 38.
    Carter MJ, Tingley-Kelley K, Warriner RA 3rd. Silver treatments and silver-impregnated dressings for the healing of leg wounds and ulcers: a systematic review and meta-analysis. J Am Acad Dermatol. 2010;63(4):668–79. doi: 10.1016/j.jaad.2009.09.007.PubMedCrossRefGoogle Scholar
  39. 39.
    Lipsky BA, Hoey C. Topical antimicrobial therapy for treating chronic wounds. Clin Infect Dis. 2009;49(10):1541–9. doi: 10.1086/644732.PubMedCrossRefGoogle Scholar
  40. 40.
    Vermeulen H, Ubbink DT, Goossens A, de Vos R, Legemate DA. Systematic review of dressings and topical agents for surgical wounds healing by secondary intention. Br J Surg. 2005;92(6):665–72. doi: 10.1002/bjs.5055.PubMedCrossRefGoogle Scholar
  41. 41.
    Jull AB, Walker N, Deshpande S. Honey as a topical treatment for wounds. Cochrane Database Syst Rev. 2013;2:CD005083. doi: 10.1002/14651858.CD005083.pub3.
  42. 42.
    Jull AB, Rodgers A, Walker N. Honey as a topical treatment for wounds. Cochrane Database Syst Rev. 2008;4:CD005083. doi: 10.1002/14651858.CD005083.pub2.
  43. 43.
    Rheinwald JG, Green H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell. 1975;6(3):317–30.PubMedCrossRefGoogle Scholar
  44. 44.
    Ehrenreich M, Ruszczak Z. Update on tissue-engineered biological dressings. Tissue Eng. 2006;12(9):2407–24. doi: 10.1089/ten.2006.12.2407.PubMedCrossRefGoogle Scholar
  45. 45.
    Woodley DT, Peterson HD, Herzog SR, Stricklin GP, Burgeson RE, Briggaman RA, et al. Burn wounds resurfaced by cultured epidermal autografts show abnormal reconstitution of anchoring fibrils. JAMA. 1988;259(17):2566–71.PubMedCrossRefGoogle Scholar
  46. 46.
    Benichou G, Yamada Y, Yun SH, Lin C, Fray M, Tocco G. Immune recognition and rejection of allogeneic skin grafts. Immunotherapy. 2011;3(6):757–70. doi: 10.2217/imt.11.2.PubMedCrossRefGoogle Scholar
  47. 47.
    van der Veen VC, van der Wal MB, van Leeuwen MC, Ulrich MM, Middelkoop E. Biological background of dermal substitutes. Burns. 2010;36(3):305–21. doi: 10.1016/j.burns.2009.07.012.PubMedCrossRefGoogle Scholar
  48. 48.
    Jones JE, Nelson EA, Al-Hity A. Skin grafting for venous leg ulcers. Cochrane Database Syst Rev. 2013;(1):CD001737. doi: 10.1002/14651858.CD001737.pub4.
  49. 49.
    Waymack P, Duff RG, Sabolinski M. The effect of a tissue engineered bilayered living skin analog, over meshed split-thickness autografts on the healing of excised burn wounds: the Apligraf Burn Study Group. Burns. 2000;26(7):609–19.PubMedCrossRefGoogle Scholar
  50. 50.
    Eaglstein WH, Alvarez OM, Auletta M, Leffel D, Rogers GS, Zitelli JA, et al. Acute excisional wounds treated with a tissue-engineered skin (Apligraf). Dermatol Surg. 1999;25(3):195–201.PubMedCrossRefGoogle Scholar
  51. 51.
    Falabella AF, Valencia IC, Eaglstein WH, Schachner LA. Tissue-engineered skin (Apligraf) in the healing of patients with epidermolysis bullosa wounds. Arch Dermatol. 2000;136(10):1225–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Owen CM, Murphy H, Yates VM. Tissue-engineered dermal skin grafting in the treatment of ulcerated necrobiosis lipoidica. Clin Exp Dermatol. 2001;26(2):176–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Wieman TJ, Smiell JM, Su Y. Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (becaplermin) in patients with chronic neuropathic diabetic ulcers: a phase III randomized placebo-controlled double-blind study. Diabetes Care. 1998;21(5):822–7.PubMedCrossRefGoogle Scholar
  54. 54.
  55. 55.
    Queen D, Orsted H, Sanada H, Sussman G. A dressing history. Int Wound J. 2004;1(1):59–77. doi: 10.1111/j.1742-4801.2004.0009.x.PubMedCrossRefGoogle Scholar
  56. 56.
    Yan H, Chen J, Peng X. Recombinant human granulocyte-macrophage colony-stimulating factor hydrogel promotes healing of deep partial thickness burn wounds. Burns. 2012;38(6):877–81. doi: 10.1016/j.burns.2012.02.001.PubMedCrossRefGoogle Scholar
  57. 57.
    Heilmann S, Kuchler S, Wischke C, Lendlein A, Stein C, Schafer-Korting M. A thermosensitive morphine-containing hydrogel for the treatment of large-scale skin wounds. Int J Pharm. 2013;444(1–2):96–102. doi: 10.1016/j.ijpharm.2013.01.027.PubMedCrossRefGoogle Scholar
  58. 58.
    Pulat M, Kahraman AS, Tan N, Gumusderelioglu M. Sequential antibiotic and growth factor releasing chitosan-PAAm semi-IPN hydrogel as a novel wound dressing. J Biomater Sci Polymer Ed. 2013;24(7):807–19. doi: 10.1080/09205063.2012.718613.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Karen C. Broussard
    • 1
  • Jennifer Gloeckner Powers
    • 1
    Email author
  1. 1.Vanderbilt Division of DermatologyNashvilleUSA

Personalised recommendations