American Journal of Clinical Dermatology

, Volume 14, Issue 3, pp 179–194 | Cite as

Optimal Management of Metastatic Melanoma: Current Strategies and Future Directions

  • Marta Batus
  • Salman Waheed
  • Carl Ruby
  • Lindsay Petersen
  • Steven D. Bines
  • Howard L. KaufmanEmail author
Review Article


Melanoma is increasing in incidence and remains a major public health threat. Although the disease may be curable when identified early, advanced melanoma is characterized by widespread metastatic disease and a median survival of less than 10 months. In recent years, however, major advances in our understanding of the molecular nature of melanoma and the interaction of melanoma cells with the immune system have resulted in several new therapeutic strategies that are showing significant clinical benefit. Current therapeutic approaches include surgical resection of metastatic disease, chemotherapy, immunotherapy, and targeted therapy. Dacarbazine, interleukin-2, ipilimumab, and vemurafenib are now approved for the treatment of advanced melanoma. In addition, new combination chemotherapy regimens, monoclonal antibodies blocking the programmed death-1 (PD-1)/PD-ligand 1 pathway, and targeted therapy against CKIT, mitogen-activated protein/extracellular signal-regulated kinase (MEK), and other putative signaling pathways in melanoma are beginning to show promise in early-phase clinical trials. Further research on these modalities alone and in combination will likely be the focus of future clinical investigation and may impact the outcomes for patients with advanced melanoma.


Melanoma Metastatic Melanoma Objective Response Rate BRAF Mutation Ipilimumab 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



No sources of funding were received to prepare this article. The authors have no conflicts of interest that are directly relevant to the content of this article.


  1. 1.
    Gray-Schopfer V, Wellbrock C, Marias R. Melanoma biology and new targeted therapy. Nature. 2007;445:851–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Ko JM, Fisher DE. A new era: melanoma genetics and therapeutics. J Pathol. 2011;223:241–50.PubMedCrossRefGoogle Scholar
  3. 3.
    Eggermont AM. Advances in systemic treatment of melanoma. Ann Oncol. 2010;21(Suppl. 7):viii339–44.Google Scholar
  4. 4.
    Garbe C, Eigentler TK, Keilholz U, et al. Systematic review of medical treatments in melanoma: current status and future prospects. Oncologist. 2011;16:5–24.PubMedCrossRefGoogle Scholar
  5. 5.
    Nathanson KL. Using genetics and genomics strategies to personalize therapy for cancer: focus on melanoma. Biochem Pharmacol. 2010;80:755–61.PubMedCrossRefGoogle Scholar
  6. 6.
    Atallah E, Flaherty L. Treatment of metastatic malignant melanoma. Curr Treat Options Oncol. 2005;6(3):185–93.PubMedCrossRefGoogle Scholar
  7. 7.
    Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27:6199–206.PubMedCrossRefGoogle Scholar
  8. 8.
    Wasif N, Bagaria SP, Ray P, et al. Does metastasectomy improve survival in patients with Stage IV melanoma? A cancer registry analysis of outcomes. J Surg Oncol. 2011;104(2):111–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Essner R, Lee JH, Wanek LA, et al. Contemporary surgical treatment of advanced-stage melanoma. Arch Surg. 2004;139(9):961–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee CC, Faries MB, Wanek LA, et al. Improved survival after lymphadenectomy for nodal metastasis from an unknown primary melanoma. J Clin Oncol. 2008;26(4):535–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Neuman HB, Patel A, Hanlon C, et al. Stage-IV melanoma and pulmonary metastases: factors predictive of survival. Ann Surg Oncol. 2007;14(10):2847–53.PubMedCrossRefGoogle Scholar
  12. 12.
    Schuhan C, Muley T, Dienemann H, et al. Survival after pulmonary metastasectomy in patients with malignant melanoma. Thorac Cardiovasc Surg. 2011;59(3):158–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Petersen RP, Hanish SI, Haney JC, et al. Improved survival with pulmonary metastasectomy: an analysis of 1720 patients with pulmonary metastatic melanoma. J Thorac Cardiovasc Surg. 2007;133(1):104–10.PubMedCrossRefGoogle Scholar
  14. 14.
    Conill C, Gimferrer JM, Marruecos J, et al. Clinical outcome after surgical resection of lung metastases from melanoma. Clin Transl Oncol. 2007;9(1):48–52.PubMedCrossRefGoogle Scholar
  15. 15.
    Andrews S, Robinson L, Cantor A, et al. Survival after surgical resection of isolated pulmonary metastases from malignant melanoma. Cancer Control. 2006;13(3):218–23.PubMedGoogle Scholar
  16. 16.
    Lewis CW Jr, Harpole D. Pulmonary metastasectomy for metastatic malignant melanoma. Semin Thorac Cardiovasc Surg. 2002;14(1):45–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Yang SC. Pulmonary metastasectomy for melanoma: beyond the standard of care. Ann Surg Oncol. 2007;14(10):2696–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Liang KV, Sanderson SO, Nowakowski GS, et al. Metastatic malignant melanoma of the gastrointestinal tract. Mayo Clin Proc. 2006;81(4):511–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Chua TC, Saxena A, Morris DL. Surgical metastasectomy in AJCC stage IV M1c melanoma patients with gastrointestinal and liver metastases. Ann Acad Med Singap. 2010;39(8):634–9.PubMedGoogle Scholar
  20. 20.
    Sanki A, Scolyer RA, Thompson JF. Surgery for melanoma metastases of the gastrointestinal tract: indications and results. Eur J Surg Oncol. 2009;35(3):313–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Baars A, van Riel JM, Cuesta MA, et al. Metastasectomy and active specific immunotherapy for a large single melanoma metastasis. Hepatogastroenterology. 2002;49(45):691–3.PubMedGoogle Scholar
  22. 22.
    Woon WW, Haghighi KS, Zuckerman RS, et al. Liver resection and cryotherapy for metastatic melanoma. Int Surg. 2008;93(5):274–7.PubMedGoogle Scholar
  23. 23.
    Pawlik TM, Zorzi D, Abdalla EK, et al. Hepatic resection for metastatic melanoma: distinct patterns of recurrence and prognosis for ocular versus cutaneous disease. Ann Surg Oncol. 2006;13(5):712–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Mittendorf EA, Lim SJ, Schacherer CW, et al. Melanoma adrenal metastasis: natural history and surgical management. Am J Surg. 2008;195(3):363–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Sturgeon C, Leong SP, Duh QY. Laparoscopic surgery for melanoma metastases to the adrenal gland. Expert Rev Anticancer Ther. 2004;4(5):837–41.PubMedCrossRefGoogle Scholar
  26. 26.
    Zacest AC, Basser M, Stevens G, et al. Surgical management of cerebral metastases from melanoma: outcome in 147 patients treated at a single institution over two decades. J Neurosurg. 2002;96(3):552–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Carrubba CJ, Vitaz TW. Factors affecting the outcome after treatment for metastatic melanoma to the brain. Surg Neurol. 2009;72(6):707–11.PubMedCrossRefGoogle Scholar
  28. 28.
    Majer M, Samlowski WE. Management of metastatic melanoma patients with brain metastases. Curr Oncol Rep. 2007;9(5):4111–6.CrossRefGoogle Scholar
  29. 29.
    Douglas JG, Margolin K. The treatment of brain metastases from malignant melanoma. Semin Oncol. 2002;29(5):518–24.PubMedCrossRefGoogle Scholar
  30. 30.
    Lonser RR, Song DK, Klapper J, et al. Surgical management of melanoma brain metastases in patients treated with immunotherapy. J Neurosurg. 2011;115(1):30–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Ollila DW, Gleisner AL, Hsueh EC. Rationale for complete metastasectomy in patients with stage IV metastatic melanoma. J Surg Oncol. 2011;104(4):420–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Morton DL. Melanoma: are we there yet? J Surg Oncol. 2011;104(4):337.Google Scholar
  33. 33.
    Faries MB, Ariyan S. Current surgical treatment in melanoma. Curr Probl Cancer. 2011;35(4):173–84.PubMedCrossRefGoogle Scholar
  34. 34.
    Sosman JA, Moon J, Tuthill RJ, et al. A phase 2 trial of complete resection for stage IV melanoma: results of Southwest Oncology Group Clinical Trial S9430. Cancer. 2011;117(20):4740–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Caudle AS, Ross MI. Metastasectomy for stage IV melanoma: for whom and how much? Surg Oncol Clin N Am. 2011;20(1):133–44.PubMedCrossRefGoogle Scholar
  36. 36.
    Hussussian CJ. Surgical treatment of advanced melanoma. Clin Plast Surg. 2010;37(1):161–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Wargo JA, Tanabe K. Surgical management of melanoma. Hematol Oncol Clin N Am. 2009;23(3):565–81.CrossRefGoogle Scholar
  38. 38.
    Smylie M, Claveau J, Alanen K, et al. Management of malignant melanoma: best practices. J Cutan Med Surg. 2009;13(2):55–73.PubMedGoogle Scholar
  39. 39.
    Mosca PJ, Teicher E, Nair SP, et al. Can surgeons improve survival in stage IV melanoma? J Surg Oncol. 2008;97(5):462–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Young SE, Martinez SR, Essner R. The role of surgery in treatment of stage IV melanoma. J Surg Oncol. 2006;94(4):344–51.PubMedCrossRefGoogle Scholar
  41. 41.
    Faries MB, Morton DL. The promise of metastasectomy in melanoma. Ann Surg Oncol. 2006;13(5):607–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Ollila DW, Caudle AS. Surgical management of distant metastases. Surg Oncol Clin N Am. 2006;15(2):385–98.PubMedCrossRefGoogle Scholar
  43. 43.
    Wong SL, Coit DG. Role of surgery in patients with stage IV melanoma. Curr Opin Oncol. 2004;16(2):155–60.PubMedCrossRefGoogle Scholar
  44. 44.
    Essner R. Surgical treatment of malignant melanoma. Surg Clin N Am. 2003;83(1):109–56.PubMedCrossRefGoogle Scholar
  45. 45.
    Allen PJ, Coit DG. The surgical management of metastatic melanoma. Ann Surg Oncol. 2002;9(8):762–70.PubMedCrossRefGoogle Scholar
  46. 46.
    Allen PJ, Coit DG. The role of surgery for patients with metastatic melanoma. Curr Opin Oncol. 2002;14(2):221–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Komorowski AL, Wysocki WM, White RL Jr. Surgical management of solitary metastatic melanoma. Acta Chir Belg. 2009;109(2):155–8.PubMedGoogle Scholar
  48. 48.
    Martinez SR, Young SE. A rational surgical approach to the treatment of distant melanoma metastases. Cancer Treat Rev. 2008;34(7):614–20.PubMedCrossRefGoogle Scholar
  49. 49.
    Tauceri F, Mura G, Roseano M, et al. Surgery and adjuvant therapies in the treatment of stage IV melanoma: our experience in 84 patients. Langenbecks Arch Surg. 2009;394(6):1079–84.PubMedCrossRefGoogle Scholar
  50. 50.
    Tomov T, Siegel R, Bembenek A. Long-term survival in stage IV melanoma after repetitive surgical therapy. Onkologie. 2008;31(5):259–61.PubMedCrossRefGoogle Scholar
  51. 51.
    Spanknebel K, Kaufman HL. Surgical treatment of stage IV melanoma. Clin Dermatol. 2004;22(3):240–50.PubMedCrossRefGoogle Scholar
  52. 52.
    Tagawa ST, Cheung E, Banta W, et al. Survival analysis after resection of metastatic disease followed by peptide vaccines in patients with stage IV melanoma. Cancer. 2006;106(6):1353–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Lotem M, Peretz T, Drize O, et al. Autologous cell vaccine as a post operative adjuvant treatment for high-risk melanoma patients (AJCC stages III and IV): the new American Joint Committee on Cancer. Br J Cancer. 2002;86(10):1534–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Guba M, Steinbauer M, Ruhland V, et al. Elevated MIA serum levels are predictors of poor prognosis after surgical resection of metastatic malignant melanoma. Oncol Rep. 2002;9(5):981–4.PubMedGoogle Scholar
  55. 55.
    Lens M. Current clinical overview of cutaneous melanoma. Br J Nurs. 2008;17(5):300–5.PubMedGoogle Scholar
  56. 56.
    Kim C, Lee CW, Kovacic L, et al. Long-term survival in patients with metastatic melanoma treated with DTIC or temozolomide. Oncologist. 2010;15:765–71.PubMedCrossRefGoogle Scholar
  57. 57.
    Middleton MR, Grob JJ, Aronson N, et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic melanoma. J Clin Oncol. 2000;18:158–66.PubMedGoogle Scholar
  58. 58.
    Bajetta E, Del Vecchio M, Nova P, et al. Multicenter phase III randomized trial of polychemotherapy (CVD regimen) versus the same chemotherapy (CT) plus subcutaneous interleukin-2 and interferon-α2b in metastatic melanoma. Ann Oncol. 2006;17:571–7.PubMedCrossRefGoogle Scholar
  59. 59.
    O’Day SJ, Kim CJ, Reintgen DS. Metastatic melanoma: chemotherapy to biochemotherapy. Cancer Control. 2002;9(1):31–8.PubMedGoogle Scholar
  60. 60.
    Pflugfelder A, Eigentler TK, Keim U, et al. Effectiveness of carboplatin and paclitaxel as first- and second-line treatment of 61 patients with metastatic melanoma. PLoS One. 2011;6(2):e16882.PubMedCrossRefGoogle Scholar
  61. 61.
    Chapman PB, Panageas KS, Williams L, et al. Clinical results using biochemotherapy as a standard of care in advanced melanoma. Melanoma Res. 2002;12:381–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Atkins MB, Hsu J, Lee S, et al. Phase III trial comparing concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin-2, and interferon alpha-2b with cisplatin, vinblastine, and dacarbazine alone in patients with metastatic malignant melanoma (E3695): a trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol. 2008;26:5748–54.PubMedCrossRefGoogle Scholar
  63. 63.
    Ives NJ, Stowe RL, Lorigan P, et al. Chemotherapy compared with biochemotherapy for the treatment of metastatic melanoma: a meta-analysis of 18 trials involving 2621 patients. J Clin Oncol. 2007;25:5426–34.PubMedCrossRefGoogle Scholar
  64. 64.
    Atkins MB, Gollob JA, Sosman JA, et al. A phase II pilot trial of concurrent biochemotherapy with cisplatin, vinblastine, temozolomide, interleukin 2, and IFN-α2B in patients with metastatic melanoma. Clin Cancer Res. 2002;8:3075–81.PubMedGoogle Scholar
  65. 65.
    Stinchcombe TE, Socinski MA, Walko CM, et al. Phase 1 and pharmacokinetic trial of carboplatin and albumin-bound paclitaxel, ABI-007 (Abraxane®) on three treatment schedules in patients with solid tumors. Cancer Chemother Pharmacol. 2007;6:759–66.CrossRefGoogle Scholar
  66. 66.
    Gradishar WJ, Tjulandin S, Davidson N, et al. Superior efficacy of albumin-bound paclitaxel, ABI-007, compared with polyethylated castor oil-based paclitaxel in women with metastatic breast cancer: results of a phase III trial. J Clin Oncol. 2005;23:7794–803.PubMedCrossRefGoogle Scholar
  67. 67.
    Hersh EM, O’Day SJ, Ribas A, et al. A phase 2 clinical trial of nab-paclitaxel in previously treated and chemotherapy-naïve patients with metastatic melanoma. Cancer. 2010;116:155–63.PubMedGoogle Scholar
  68. 68.
    Kottschade LA, Suman VJ, Amatruda T III, et al. A phase II trial of nab-paclitaxel (ABI-007) and carboplatin in patients with unresectable stage IV melanoma. Cancer. 2011;117:1704–10.PubMedCrossRefGoogle Scholar
  69. 69.
    Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.PubMedCrossRefGoogle Scholar
  70. 70.
    Krieg C, Létourneau S, Pantaleo G, et al. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci USA. 2010;107(26):11906–11.PubMedCrossRefGoogle Scholar
  71. 71.
    Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17(7):2105–16.PubMedGoogle Scholar
  72. 72.
    Atkins MB, Kunkel L, Sznol M, et al. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J Sci Am. 2000;6(Suppl. 1):S11–4.PubMedGoogle Scholar
  73. 73.
    Bhatia S, Tykodi SS, Thompson JA. Treatment of metastatic melanoma: an overview. Oncology (Williston Park). 2009;23(6):488–96.Google Scholar
  74. 74.
    Sosman JA, Carillo C, Urba WJ, et al. Three phase II cytokine working group trials of gp100 (210M) peptide plus high-dose interleukin-2 in patients with HLA-A2-positive advanced melanoma. J Clin Oncol. 2008;26(14):2292–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Rosenberg SA, Yang JC, Schwartzentruber DJ, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med. 1998;4(3):321–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Schwartzentruber DJ, Lawson DH, Richards JM, et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med. 2011;364(22):2119–27.PubMedCrossRefGoogle Scholar
  77. 77.
    Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995;270(5238):985–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Tivol EA, Borriello F, Schweitzer AN, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3(5):541–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Chambers CA, Sullivan TJ, Allison JP. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity. 1997;7(6):885–95.PubMedCrossRefGoogle Scholar
  80. 80.
    Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23:515–48.PubMedCrossRefGoogle Scholar
  81. 81.
    Salama AK, Hodi FS. Cytotoxic T-lymphocyte-associated antigen-4. Clin Cancer Res. 2011;17(14):4622–8.PubMedCrossRefGoogle Scholar
  82. 82.
    van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med. 1999;190(3):355–66.PubMedCrossRefGoogle Scholar
  83. 83.
    Wolchok JD, Neyns B, Linette G, et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 2010;11(2):155–64.PubMedCrossRefGoogle Scholar
  84. 84.
    O’Day SJ, Maio M, Chiarion-Sileni V, et al. Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study. Ann Oncol. 2010;21(8):1712–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Weber J, Thompson JA, Hamid O, et al. A randomized, double-blind, placebo-controlled, phase II study comparing the tolerability and efficacy of ipilimumab administered with or without prophylactic budesonide in patients with unresectable stage III or IV melanoma. Clin Cancer Res. 2009;15(17):5591–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.PubMedCrossRefGoogle Scholar
  87. 87.
    Robinson MR, Chan CC, Yang JC, et al. Cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma: a new cause of uveitis. J Immunother. 2004;27(6):478–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Blansfield JA, Beck KE, Tran K, et al. Cytotoxic T-lymphocyte-associated antigen-4 blockage can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer. J Immunother. 2005;28(6):593–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Phan GQ, Yang JC, Sherry RM, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA. 2003;100(14):8372–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34.PubMedCrossRefGoogle Scholar
  91. 91.
    Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Hirano F, Kameko K, Tamura H, et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 2005;65(3):1089–96.PubMedGoogle Scholar
  93. 93.
    Sheppard KA, Fitz LJ, Lee JM, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett. 2004;574(1–3):37–41.PubMedCrossRefGoogle Scholar
  94. 94.
    Okazaki T, Maeda A, Nishimura H, et al. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci USA. 2001;98(24):13866–71.PubMedCrossRefGoogle Scholar
  95. 95.
    Yamazaki T, Akiba H, Iwai H, et al. Expression of programmed death 1 ligands by murine T cells and APC. J Immunol. 2002;169(10):5538–45.PubMedGoogle Scholar
  96. 96.
    Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA. 2002;99(19):12293–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Hino R, Kabashima K, Kato Y, et al. Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer. 2010;116(7):1757–66.PubMedCrossRefGoogle Scholar
  98. 98.
    He YF, Zhang GM, Wang XH, et al. Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J Immunol. 2004;173(8):4919–28.PubMedGoogle Scholar
  99. 99.
    Strome SE, Dong H, Tamura H, et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res. 2003;63(19):6501–5.PubMedGoogle Scholar
  100. 100.
    Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19(7):813–24.PubMedCrossRefGoogle Scholar
  101. 101.
    Brahmer JR, Drake CJ, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–75.PubMedCrossRefGoogle Scholar
  102. 102.
    Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.PubMedCrossRefGoogle Scholar
  103. 103.
    Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.PubMedCrossRefGoogle Scholar
  104. 104.
    Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA. 2010;107(9):4275–80.PubMedCrossRefGoogle Scholar
  105. 105.
    Dudley ME, Yang JC, Sherry R, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol. 2008;26(32):5233–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Besser MJ, Shapira-Frommer R, Treves AJ, et al. Minimally cultured or selected autologous tumor-infiltrating lymphocytes after a lympho-depleting chemotherapy regimen in metastatic melanoma patients. J Immunother. 2009;32(4):415–23.PubMedCrossRefGoogle Scholar
  107. 107.
    Muranski P, Boni A, Wrzesinski C, et al. Increased intensity lymphodepletion and adoptive immunotherapy: how far can we go? Nat Clin Pract Oncol. 2006;3(12):668–81.PubMedCrossRefGoogle Scholar
  108. 108.
    Dudley ME, Wunderlich JR, Yang JC, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol. 2005;23(10):2346–57.PubMedCrossRefGoogle Scholar
  109. 109.
    Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298(5594):850–4.PubMedCrossRefGoogle Scholar
  110. 110.
    Murphy A, Westwood JA, Teng MW, et al. Gene modification strategies to induce tumor immunity. Immunity. 2005;22(4):403–14.PubMedCrossRefGoogle Scholar
  111. 111.
    Sadelain M, Riviere I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer. 2003;3(1):35–45.PubMedCrossRefGoogle Scholar
  112. 112.
    Johnson LA, Morga RA, Dudley ME, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114(3):535–46.PubMedCrossRefGoogle Scholar
  113. 113.
    Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314(5796):126–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Han Y, Guo Q, Zhang M, et al. CD69+ CD4+ CD25− T cells, a new subset of regulatory T cells, suppress T cell proliferation through membrane-bound TGF-beta 1. J Immunol. 2009;182(1):111–20.PubMedGoogle Scholar
  115. 115.
    Curotto de Lafaille MA, Lafaille JJ. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity. 2009;30(5):626–35.PubMedCrossRefGoogle Scholar
  116. 116.
    Fontenot JD, Rasmussen JP, Williams LM, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity. 2005;22(3):329–41.PubMedCrossRefGoogle Scholar
  117. 117.
    Jacobs JF, Nierkens S, Figdor CG, et al. Regulatory T cells in melanoma: the final hurdle towards effective immunotherapy? Lancet Oncol. 2012;13(1):e32–42.PubMedCrossRefGoogle Scholar
  118. 118.
    Sato E, Olson SH, Ahn J, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA. 2005;102(51):18538–43.PubMedCrossRefGoogle Scholar
  119. 119.
    Dannull J, Su Z, Rizzieri D, et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest. 2005;115(12):3623–33.PubMedCrossRefGoogle Scholar
  120. 120.
    Rasku MA, Clem AL, Telang S, et al. Transient T cell depletion causes regression of melanoma metastases. J Transl Med. 2008;6:12.PubMedCrossRefGoogle Scholar
  121. 121.
    Litzinger MT, Fernando R, Curiel TJ, et al. IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood. 2007;110(9):3192–201.PubMedCrossRefGoogle Scholar
  122. 122.
    Telang S, Rasku MA, Clem AL, et al. Phase II trial of the regulatory T cell-depleting agent, denileukin diftitox, in patients with unresectable stage IV melanoma. BMC Cancer. 2011;11(1):515.PubMedCrossRefGoogle Scholar
  123. 123.
    Attia P, Maker AV, Haworth LR, et al. Inability of a fusion protein of IL-2 and diphtheria toxin (denileukin diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J Immunother. 2005;28(6):582–92.PubMedCrossRefGoogle Scholar
  124. 124.
    Jacobs JF, Punt CJ, Lesterhuis WJ, et al. Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin Cancer Res. 2010;16(20):5067–78.PubMedCrossRefGoogle Scholar
  125. 125.
    Jones E, Dahm-Vicker M, Simon AK, et al. Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun. 2002;2:1.PubMedGoogle Scholar
  126. 126.
    Liu BL, Robinson M, Han ZQ, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 2003;10(4):292–303.PubMedCrossRefGoogle Scholar
  127. 127.
    Senzer NN, Kaufman HL, Amatruda T, et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol. 2009;27(34):5763–71.PubMedCrossRefGoogle Scholar
  128. 128.
    Kaufman HL, Kim DW, DeRaffele G, et al. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol. 2010;17(3):718–30.PubMedCrossRefGoogle Scholar
  129. 129.
    Barton GM, Kagan JC. A cell biological view of toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol. 2009;9(8):535–42.PubMedCrossRefGoogle Scholar
  130. 130.
    Krieg AM. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene. 2008;27(2):161–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Schulze HJ, Cribier B, Requena L, et al. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from a randomized vehicle-controlled phase III study in Europe. Br J Dermatol. 2005;152(5):939–47.PubMedCrossRefGoogle Scholar
  132. 132.
    Adams S, O’Neill DW, Nonaka D, et al. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J Immunol. 2008;181(1):776–84.PubMedGoogle Scholar
  133. 133.
    Flaherty TK. Targeting metastatic melanoma. Annu Rev Med. 2012;63:21.1–21.13.CrossRefGoogle Scholar
  134. 134.
    Flahert KT, Fisher DE. New strategies in metastatic melanoma: oncogene-defined taxonomy leads to therapeutic advances. Clin Cancer Res. 2011;17(15):4922–8.CrossRefGoogle Scholar
  135. 135.
    Flaherty TK, Hodi FS, Bastian BC. Mutation-driven drug development in melanoma. Curr Opin Oncol. 2010;22(3):178–83.PubMedCrossRefGoogle Scholar
  136. 136.
    Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.PubMedCrossRefGoogle Scholar
  137. 137.
    Tsao H, Goel V, Wu H, et al. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol. 2004;122:337–41.PubMedCrossRefGoogle Scholar
  138. 138.
    Uribe P, Wistuba II, Gonzalea S. BRAF mutation: a frequent event in benign, atypical and malignant melanocytic lesions of the skin. Am J Dermatopathol. 2003;25(5):365–70.PubMedCrossRefGoogle Scholar
  139. 139.
    Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–19.PubMedCrossRefGoogle Scholar
  140. 140.
    Ribas AK, Kim KB, Schuchter L, et al. BRIM-2: an open-label, multicenter phase II study of vemurafenib (PLX4032, RG7204) in previously treated patients with BRAFV600E mutation-positive metastatic melanoma [abstract]. J Clin Oncol. 2011;29(Suppl):8509.Google Scholar
  141. 141.
    Zelboraf [package insert]. San Francisco: Genetech USA; 2011.Google Scholar
  142. 142.
    Falchook GS, Long GV, Kurzrock R, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet. 2012;379(9829):1858–9.CrossRefGoogle Scholar
  143. 143.
    Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.PubMedCrossRefGoogle Scholar
  144. 144.
    Hochhaus A. Imatinib mesylate (Glivec, Gleevec) in the treatment of chronic myelogenous leukemia (CML) and gastrointestinal stromal tumors (GIST). Ann Hematol. 2004;83(Suppl. 1):S65–6.PubMedGoogle Scholar
  145. 145.
    Beading C, Jacobson-Dunlop E, Hodi FS, et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res. 2008;14(21):6821–8.CrossRefGoogle Scholar
  146. 146.
    Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib responses in patients with metastatic gastrointestinal tumor. J Clin Oncol. 2003;21:4342–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Hodi FS, Friedlander P, Corless CL, et al. Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol. 2008;26(12):2046–51.PubMedCrossRefGoogle Scholar
  148. 148.
    Carvajal RD, Antonescu CR, Wolchok JD, et al. KIT as a therapeutic target in metastatic melanoma. JAMA. 2011;305(22):2327–34.PubMedCrossRefGoogle Scholar
  149. 149.
    Smalley KS, Flaherty KT. Integrating BRAF/MEK inhibitors into combination therapy for melanoma. Br J Cancer. 2009;100(3):431–5.PubMedCrossRefGoogle Scholar
  150. 150.
    Yeh TC, Marsh V, Bennet BA, et al. Biological characterization of AARY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res. 2007;13:1576–83.PubMedCrossRefGoogle Scholar
  151. 151.
    Friday BB, Yu C, Dy GK, et al. BRAF V600E disrupts AZD6244-induced abrogation of negative feedback pathways between extracellular signal-regulated kinase and Raf proteins. Cancer Res. 2008;68:6145–53.PubMedCrossRefGoogle Scholar
  152. 152.
    Kirkwood JM, Bastholt L, Robert C, et al. Phase II, open-label, randomized trial of the MEK 1/2 inhibitor selumetinib as monotherapy versus temozolomide in patients with advanced melanoma. Clin Cancer Res. 2011;18(2):555–67.PubMedCrossRefGoogle Scholar
  153. 153.
    von Moos R, Seifert B, Simcock M, et al. First-line temozolomide combined with bevacizumab in metastatic melanoma: a multicentre phase II trial (SAKK 50/07). Ann Oncol. 2011;23(2):531–6.CrossRefGoogle Scholar
  154. 154.
    Grignol V, Olencki T, Relekar K, et al. A phase II trial of bevacizumab and high-dose interferon alpha 2B in metastatic melanoma. J Immunother. 2011;34(6):509–15.PubMedCrossRefGoogle Scholar
  155. 155.
    Kim KB, Sosman JA, Fruehauf JP, et al. BEAM: a randomized phase II study evaluating the activity of bevacizumab in combination with carboplatin plus paclitaxel in patients with previously untreated advanced melanoma. J Clin Oncol. 2012;30(1):34–41.PubMedCrossRefGoogle Scholar
  156. 156.
    Dankort D, Curley DP, Cartlidge RA, et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nature Genet. 2008;41:544–52.CrossRefGoogle Scholar
  157. 157.
    Malley KS, Contractor R, Nguyen TK, et al. Identification of a novel subgroup of melanomas with KIT/cyclin-dependent kinase-4 overexpression. Cancer Res. 2008;68(14):5743–52.CrossRefGoogle Scholar
  158. 158.
    Prickett TD, Agrawal NS, Wei X, et al. Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nat Genet. 2009;41(10):1127–32.PubMedCrossRefGoogle Scholar
  159. 159.
    Van Raamsdonk CD, Berzrokove V, Green G, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457:599–602.PubMedCrossRefGoogle Scholar
  160. 160.
    Garraway LA, Widlund HR, Rubin MA, et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005;436:117–22.PubMedCrossRefGoogle Scholar
  161. 161.
    Wellbroick C, Rana S, Peterson H, et al. Oncogenic BRAD regulates melanoma proliferation through the lineage specific factor MITF. PLoS One. 2008;3:e2734.CrossRefGoogle Scholar
  162. 162.
    Nazarian R, Shi H, Wang Q, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468:973–7.PubMedCrossRefGoogle Scholar
  163. 163.
    Muthusamy V, Hobbs C, Noguera C, et al. Amplification of CDK4 and MDM2 in malignant melanoma. Genes Chrom Cancer. 2006;45:447–54.PubMedCrossRefGoogle Scholar
  164. 164.
    Wilmott JS, Long GV, Howle JR, et al. Selective BRAF inhibitors and induce marked T cell infiltration into human metastatic melanoma. Clin Cancer Res. 2012;18(5):1386–94.PubMedCrossRefGoogle Scholar
  165. 165.
    Blank CU, Hooijkaas AI, Haanen JB, et al. Combination of targeted therapy and immunotherapy in melanoma. Cancer Immunol Immunother. 2011;60:1359–71.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Marta Batus
    • 1
  • Salman Waheed
    • 1
  • Carl Ruby
    • 1
  • Lindsay Petersen
    • 1
  • Steven D. Bines
    • 1
  • Howard L. Kaufman
    • 1
    Email author
  1. 1.Rush University Melanoma Program and Departments of Medicine, General Surgery and Immunology and MicrobiologyRush University Medical CenterChicagoUSA

Personalised recommendations