Advertisement

Value of Galectin-3 in Acute Myocardial Infarction

  • Mingxing Li
  • Yong Yuan
  • Kai Guo
  • Yi Lao
  • Xuansheng Huang
  • Li FengEmail author
Review Article

Abstract

Galectins are an ancient family of lectins characterized by evolutionarily conserved amino acid sequences and β-galactoside recognition and binding sites. Galectin-3 (Gal-3) is one of 15 known galectins. This protein has important functions in numerous biological activities, including cardiac fibrosis and heart failure. In recent years, many studies have shown that Gal-3 is closely associated with acute myocardial infarction (AMI) and may be a promising biomarker for the assessment of severity as well as prognosis prediction in AMI patients, but controversy still exists. In this review, we summarize the latest literature on the relationship between Gal-3 and unstable plaques, the secretion kinetics of Gal-3 during the acute phase of AMI, and the value of Gal-3 in the prediction of post-AMI remodeling. Finally, the possible value of Gal-3 as a biological target for AMI therapy is examined.

Notes

Acknowledgements

The authors thank Dr. Kai Guo for assistance with figure preparation.

Author Contributions

ML performed the literature search and wrote the article; KG and YL contributed to the figure preparation; YY and XH provided a good suggestion regarding the subject matter of the paper; and LF reviewed and approved the manuscript.

Compliance with Ethical Standards

Funding

No sources of funding were used to assist in the preparation of this review.

Conflict of interest

Mingxing Li, Yong Yuan, Kai Guo, Yi Lao, Xuansheng Huang, Li Feng declare they have no conflicts of interest.

References

  1. 1.
    Mendis S, Puska P, Norrving B. Global atlas on cardiovascular disease prevention and control. Geneva: World Health Organization; 2011.Google Scholar
  2. 2.
    Li J, Li X, Wang Q, Hu S, Wang Y, Masoudi FA, Spertus JA, et al. ST-segment elevation myocardial infarction in China from 2001 to 2011 (The China PEACE-retrospective acute myocardial infarction study): a retrospective analysis of hospital data. Lancet. 2015;385:441–51.PubMedCrossRefGoogle Scholar
  3. 3.
    McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European society of cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14:803–69.PubMedCrossRefGoogle Scholar
  4. 4.
    Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000;101:2981–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Ohlmeier C, Mikolajczyk R, Frick J, Prütz F, Haverkamp W, Garbe E. Incidence, prevalence and 1-year all-cause mortality of heart failure in Germany: a study based on electronic healthcare data of more than six million persons. Clin Res Cardiol. 2015;104:688–96.PubMedCrossRefGoogle Scholar
  6. 6.
    Steg P, Dabbous OH, Feldman L, Cohen-Solal A, Aumont M, López-Sendón J, et al. Determinants and prognostic impact of heart failure complicating acute coronary syndromes observations from the global registry of acute coronary events (GRACE). Circulation. 2004;109:494–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Shin S-H, Hung C-L, Uno H, Amira H, Verma A, Bourgoun M, et al. Mechanical dyssynchrony after myocardial infarction in patients with left ventricular dysfunction, heart failure, or both. Circulation. 2010;121:1096–103.PubMedCrossRefGoogle Scholar
  8. 8.
    Paul SC, Soto G, Philip GJ, Brahmajee KN, Zhang Z, William SW, et al. Patient health status and costs in heart failure. Circulation. 2009;119:398–407.CrossRefGoogle Scholar
  9. 9.
    Morrow DA, O’Donoghue ML. Galectin-3 in cardiovascular disease: a possible window into early myocardial fibrosis. J Am Coll Cardiol. 2012;60:1257–8.PubMedCrossRefGoogle Scholar
  10. 10.
    van Kimmenade RR, Januzzi JL, Ellinor PT, Sharma UC, Bakker JA, Low AF, et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48:1217–24.PubMedCrossRefGoogle Scholar
  11. 11.
    Lok DJ, van der Meer P, de la Porte PW, Lipsic E, van Wijngaarden J, Hillege HL, et al. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol. 2010;99:323–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    de Boer RA, Lok DJ, Jaarsma T, van der Meer P, Voors AA, Hillege HL, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011;43:60–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Lopez-Andrès N, Rossignol P, Iraqi W, Fay R, Nuée J, Ghio S, et al. Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: insights from the CARE-HF (CArdiac REsynchronization in Heart Failure) trial. Eur J Heart Fail. 2011;14:74–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Gullestad L, Ueland T, Kjekshus J, Nymo SH, Hulthe J, Muntendam P, et al. Galectin-3 predicts response to statin therapy in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). Eur Heart J. 2012;33:2290–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Anand IS, Rector TS, Kuskowski M, Adourian A, Muntendam P, Cohn JN. Baseline and serial measurements of galectin-3 in patients with heart failure: relationship to prognosis and effect of treatment with valsartan in the Val-HeFT. Eur J Heart Fail. 2013;15:511–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;128:240–327.Google Scholar
  17. 17.
    Suthahar N, Meijers WC, Sillje HH, Ho JE, Liu FT, de Boer RA. Galectin-3 activation and inhibition in heart failure and cardiovascular disease: an update. Theranostics. 2018;8:593–609.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Barondes SH, Cooper DN, Gitt MA, Leffler H. Structure and function of a large family of animal lectins. J Biol Chem. 1994;269:20807–10.PubMedGoogle Scholar
  19. 19.
    Barondes SH, Castronovo V, Cooper DN, Cummings RD, Drickamer K, Feizi T, et al. Galectins: a family of animal beta-galactoside-binding lectins. Cell. 1994;76:597–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Perillo NL, Marcus ME, Baum LG. Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J Mol Med. 1998;76:402–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Krzeslak A, Lipińska A. Galectin-3 as a multifunctional protein. Cell Mol Biol Lett. 2004;9:305–28.PubMedGoogle Scholar
  22. 22.
    Dumic J, Dabelic S, Flögel M. Galectin-3: an open-ended story. Biochim Biophys Acta. 2006;1760:616–35.PubMedCrossRefGoogle Scholar
  23. 23.
    Walther M, Kuklinski S, Pesheva P, Guntinas-Lichius O, Angelov D, Neiss W, et al. Galectin-3 is upregulated in microglial cells in response to ischemic brain lesions, but not to facial nerve axotomy. J Neurosci Res. 2000;61:430–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Yan Y-P, Lang B, Vemuganti R, Dempsey RJ. Galectin-3 mediates post-ischemic tissue remodeling. Brain Res. 2009;1288:116–24.PubMedCrossRefGoogle Scholar
  25. 25.
    Springer TA. Monoclonal antibody analysis of complex biological systems. Combination of cell hybridization and immunoadsorbents in a novel cascade procedure and its application to the macrophage cell surface. J Biol Chem. 1981;256:3833–9.PubMedGoogle Scholar
  26. 26.
    Ho MK, Springer TA. Mac-2, a novel 32,000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies. J Immunol. 1982;128:1221–8.PubMedGoogle Scholar
  27. 27.
    Liu F-T, Patterson RJ, Wang JL. Intracellular functions of galectins. Biochim Biophys Acta. 2002;1572:263–73.PubMedCrossRefGoogle Scholar
  28. 28.
    Hughes RC. The galectin family of mammalian carbohydrate-binding molecules. Biochem Soc Trans. 1997;25:1194–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Hughes RC. Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta. 1999;1473:172–85.PubMedCrossRefGoogle Scholar
  30. 30.
    Hashmi S, Al-Salam S. Galectin-3 is expressed in the myocardium very early post-myocardial infarction. Cardiovasc Pathol. 2015;24:213–23.PubMedCrossRefGoogle Scholar
  31. 31.
    Kim H, Lee J, Hyun JW, Park JW, Joo H-G, Shin T. Expression and immunohistochemical localization of galectin-3 in various mouse tissues. Cell Biol Int. 2007;31:655–62.PubMedCrossRefGoogle Scholar
  32. 32.
    Yang H, Lei C, Zhang W. Expression of galectin-3 in mouse endometrium and its effect during embryo implantation. Reprod Biomed Onlines. 2012;24:116–22.CrossRefGoogle Scholar
  33. 33.
    Koch A, Poirier F, Jacob R, Delacour D. Galectin-3, a novel centrosome-associated protein, required for epithelial morphogenesis. Mol Biol Cell. 2010;21:219–31.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Bullock S, Johnson TM, Bao Q, Hughes RC, Winyard P, Woolf AS. Galectin-3 modulates ureteric bud branching in organ culture of the developing mouse kidney. J Am Soc Nephrol. 2001;12:515–23.PubMedGoogle Scholar
  35. 35.
    Dalton P, Christian HC, Redman CWG, Sargent IL, Boyd CA. Membrane trafficking of CD98 and its ligand galectin 3 in BeWo cells-implication for placental cell fusion. FEBS J. 2007;274:2715–27.PubMedCrossRefGoogle Scholar
  36. 36.
    van den Brûle FA, Fernandez PL, Buicu C, Liu F-T, Jackers P, Lambotte R, et al. Differential expression of galectin-1 and galectin-3 during first trimester human embryogenesis. Dev Dyn. 1997;209:399–405.PubMedCrossRefGoogle Scholar
  37. 37.
    de Boer R, van Veldhuisen DJ, Gansevoort RT, Muller Kobold A, van Gilst W, Hillege H, et al. The fibrosis marker galectin-3 and outcome in the general population. J Intern Med. 2011;272:55–64.PubMedCrossRefGoogle Scholar
  38. 38.
    Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60:1249–56.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lok DJ, Lok SI, de la Porte PW, Badings E, Lipsic E, van Wijngaarden J, et al. Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol. 2013;102:103–10.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Yalta K, Yilmaz MB, Yalta T, Palabiyik O, Taylan G, Zorkun C. Late versus early myocardial remodeling after acute myocardial infarction: a comparative review on mechanistic insights and clinical implications. J Cardiovasc Pharmacol Ther. 2019.  https://doi.org/10.1177/1074248419869618.CrossRefPubMedGoogle Scholar
  41. 41.
    Meijers WC, van der Vel de AR, Pascual-Figal DA, de Boer RA. Galectin-3 and post-myocardial infarction cardiac remodeling. Eur J Pharmacol. 2015;763:115–21.PubMedCrossRefGoogle Scholar
  42. 42.
    Mayr A, Klug G, Mair J, Streil K, Harrasser B, Feistritzer HJ, et al. Galectin-3: relation to infarct scar and left ventricular function after myocardial infarction. Int J Cardiol. 2013;163:335–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Sundblad V, Croci D, Rabinovich G. Regulated expression of galectin-3, a multifunctional glycan-binding protein, in haematopoietic and non-haematopoietic tissues. Histol Histopathol. 2011;26:247–65.PubMedGoogle Scholar
  44. 44.
    Kim K, Mayer EP, Nachtigal M. Galectin-3 expression in macrophages is signaled by Ras/MAP kinase pathway and up-regulated by modified lipoproteins. Biochim Biophys Acta. 2003;1641:13–23.PubMedCrossRefGoogle Scholar
  45. 45.
    Dong R, Zhang M, Hu Q, Zheng S, Soh A, Zheng Y, et al. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review). Int J Mol Med. 2018;41:599–614.Google Scholar
  46. 46.
    Meijers WC, van der Velde AR, de Boer RA. The ARCHITECT galectin-3 assay: comparison with other automated and manual assays for the measurement of circulating galectin-3 levels in heart failure. Expert Rev Mol. 2014;14:257–66.CrossRefGoogle Scholar
  47. 47.
    Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med. 1999;340:115–26.PubMedCrossRefGoogle Scholar
  48. 48.
    Aksan G, Gedikli O, Keskin K, Nar G, Inci S, Yildiz SS, et al. Is galectin-3 a biomarker, a player-or both-in the presence of coronary atherosclerosis? J Investig Med. 2016;64:764–70.PubMedCrossRefGoogle Scholar
  49. 49.
    Papaspyridonos M, McNeill E, de Bono J, Smith A, Burnand KG, Channon KM, et al. Galectin-3 is an amplifier of inflammation in atherosclerotic plaque progression through macrophage activation and monocyte chemoattraction. Arterioscler Thromb Vasc Biol. 2008;28:433–40.PubMedCrossRefGoogle Scholar
  50. 50.
    Madrigal-Matute J, Lindholt JS, Fernandez-Garcia CE, Benito-Martin A, Burillo E, Zalba G, et al. Galectin-3, a biomarker linking oxidative stress and inflammation with the clinical outcomes of patients with atherothrombosis. J Am Heart Assoc. 2014;3:e000785.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lee YJ, Koh YS, Park HE, Lee HJ, Hwang BH, Kang MK, et al. Spatial and temporal expression, and statin responsiveness of galectin-1 and galectin-3 in murine atherosclerosis. Korean Circ J. 2013;43:223–30.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    MacKinnon AC, Liu X, Hadoke PW, Miller MR, Newby DE, Sethi T. Inhibition of galectin-3 reduces atherosclerosis in apolipoprotein E-deficient mice. Glycobiology. 2013;23:654–63.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Lu Y, Zhang M, Zhao P, Jia M, Liu B, Jia Q, et al. Modified citrus pectin inhibits galectin-3 function to reduce atherosclerotic lesions in apoE-deficient mice. Mol Med Rep. 2017;16:647–53.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Nachtigal M, Ghaffar A, Mayer EP. Galectin-3 gene inactivation reduces atherosclerotic lesions and adventitial inflammation in ApoE-deficient mice. Am J Pathol. 2008;172:247–55.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kusaka H, Yamamoto E, Hirata Y, Fujisue K, Tokitsu T, Sugamura K, et al. Clinical significance of plasma galectin-3 in patients with coronary artery disease. Int J Cardiol. 2015;201:532–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Falcone C, Lucibello S, Mazzucchelli I, Bozzini S, D’Angelo A, Schirinzi S, et al. Galectin-3 plasma levels and coronary artery disease: a new possible biomarker of acute coronary syndrome. Int J Immunopathol Pharmacol. 2011;24:905–13.PubMedCrossRefGoogle Scholar
  57. 57.
    Ozturk D, Celik O, Satilmis S, Aslan S, Erturk M, Cakmak HA, et al. Association between serum galectin-3 levels and coronary atherosclerosis and plaque burden/structure in patients with type 2 diabetes mellitus. Coron Artery Dis. 2015;26:396–401.PubMedCrossRefGoogle Scholar
  58. 58.
    Ghorbani A, Bhambhani V, Christenson RH, Meijers WC, de Boer RA, Levy D, et al. Longitudinal change in galectin-3 and incident cardiovascular outcomes. J Am Coll Cardiol. 2018;72:3246–54.PubMedCrossRefGoogle Scholar
  59. 59.
    González GE, Cassaglia P, Truant S, Fernández MM, Wilensky L, Volberg V, et al. Galectin-3 is essential for early wound healing and ventricular remodeling after myocardial infarction in mice. Int J Cardiol. 2014;176:1423–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Sharma UC, Mosleh W, Chaudhari MR, Katkar R, Weil B, Evelo C, et al. Myocardial and serum galectin-3 expression dynamics marks post-myocardial infarction cardiac remodelling. Heart Lung Circ. 2017;26:736–45.PubMedCrossRefGoogle Scholar
  61. 61.
    Sánchez-Más J, Lax A, Asensio-Lopez MC, Palacio M, Jimenez L, Garrido IP, et al. Galectin-3 expression in cardiac remodeling after myocardial infarction. Int J Cardiol. 2014;172:e98–101.PubMedCrossRefGoogle Scholar
  62. 62.
    Yu L, Willem PT, Meissner M, Eelke M, van Goor H, Sanjabi B, et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Fail. 2013;6:107–17.CrossRefGoogle Scholar
  63. 63.
    de Boer RA, Voors AA, Muntendam P, van Gilst WH, van Veldhuisen DJ. Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail. 2009;11:811–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Bivona G, Bellia C, Lo Sasso B, Agnello L, Scazzone C, Novo G, et al. Short-term changes in Gal 3 circulating levels after acute myocardial infarction. Arch Med Res. 2016;47:521–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Tsai T-H, Sung P-H, Chang L-T, Sun C-K, Yeh K-H, Chung S-Y, et al. Value and level of galectin-3 in acute myocardial infarction patients undergoing primary percutaneous coronary intervention. J Atheroscler Thromb. 2012;19:1073–82.PubMedCrossRefGoogle Scholar
  66. 66.
    George M, Shanmugam E, Srivatsan V, Ramraj B, Jena A, Sridhar A, et al. Value of pentraxin-3 and galectin-3 in acute coronary syndrome: a short-term prospective cohort study. Ther Adv Cardiovasc Dis. 2015;9:275–84.PubMedCrossRefGoogle Scholar
  67. 67.
    van der Velde AR, Lexis CPH, Meijers WC, van der Horst IC, Lipsic E, Dokter MM, et al. Galectin-3 and sST2 in prediction of left ventricular ejection fraction after myocardial infarction. Clin Chim Acta. 2016;452:50–7.PubMedCrossRefGoogle Scholar
  68. 68.
    di Tano G, Caretta G, De Maria R, Parolini M, Bassi L, Testa S, et al. Galectin-3 predicts left ventricular remodelling after anterior-wall myocardial infarction treated by primary percutaneous coronary intervention. Heart. 2017;103:71–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Perea RJ, Morales-Ruiz M, Ortiz-Perez JT, Bosch X, Andreu D, Borras R, et al. Utility of galectin-3 in predicting post-infarct remodeling after acute myocardial infarction based on extracellular volume fraction mapping. Int J Cardiol. 2016;223:458–64.PubMedCrossRefGoogle Scholar
  70. 70.
    Weir RAP, Petrie CJ, Murphy CA, Clements S, Steedman T, Miller AM, et al. Galectin-3 and cardiac function in survivors of acute myocardial infarction. Circ Heart Fail. 2013;6:492–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Singsaas EG, Manhenke CA, Dickstein K, Orn S. Circulating galectin-3 levels are increased in patients with ischemic heart disease, but are not influenced by acute myocardial infarction. Cardiology. 2016;134:398–405.PubMedCrossRefGoogle Scholar
  72. 72.
    Besler C, Lang D, Urban D, Rommel KP, von Roeder M, Fengler K, et al. Plasma and cardiac galectin-3 in patients with heart failure reflects both inflammation and fibrosis: implications for its use as a biomarker. Circ Heart Fail. 2017;10:e003804.CrossRefGoogle Scholar
  73. 73.
    Lisowska A, Knapp M, Tycińska A, Motybel E, Kamiński K, Święcki P, et al. Predictive value of Galectin-3 for the occurrence of coronary artery disease and prognosis after myocardial infarction and its association with carotid IMT values in these patients: a mid-term prospective cohort study. Atherosclerosis. 2016;246:309–17.PubMedCrossRefGoogle Scholar
  74. 74.
    Grandin EW, Jarolim P, Murphy SA, Ritterova L, Cannon CP, Braunwald E, et al. Galectin-3 and the development of heart failure after acute coronary syndrome: pilot experience from PROVE IT-TIMI 22. Clin Chem. 2012;58:267–73.PubMedCrossRefGoogle Scholar
  75. 75.
    Asleh R, Enriquez-Sarano M, Jaffe AS, Manemann SM, Weston SA, Jiang R, et al. Galectin-3 levels and outcomes after myocardial infarction: a population-based study. J Am Coll Cardiol. 2019;73:2286–95.PubMedCrossRefGoogle Scholar
  76. 76.
    Martín-Reyes R, Franco-Peláez JA, Lorenzo Ó, González-Casaus ML, Pello AM, Aceña Á, et al. Plasma levels of monocyte chemoattractant protein-1, n-terminal fragment of brain natriuretic peptide and calcidiol are independently associated with the complexity of coronary artery disease. PLoS One. 2016;11:e0152816.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    O’Donoghue ML, Morrow DA, Cannon CP, Jarolim P, Desai NR, Sherwood MW, et al. Multimarker risk stratification in patients with acute myocardial infarction. J Am Heart Assoc. 2016;5:e002586.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Szadkowska I, Wlazeł RN, Migała M, Szadkowski K, Zielińska M, Paradowski M, et al. The association between galectin-3 and clinical parameters in patients with first acute myocardial infarction treated with primary percutaneous coronary angioplasty. Cardiol J. 2013;20:577–82.PubMedCrossRefGoogle Scholar
  79. 79.
    Szadkowska I, Wlazel R, Migala M, Bajon-Laskowska K, Szadkowski K, Zielińska M, et al. The association between galectin-3 and occurrence of reinfarction early after first myocardial infarction treated invasively. Biomarkers. 2013;18:655–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Ipek EG, Suljevic SA, Kafes H, Basyigit F, Karalok N, Guray Y, et al. Evaluation of galectin-3 levels in acute coronary syndrome. Ann Cardiol Angeiol. 2016;65:26–30.CrossRefGoogle Scholar
  81. 81.
    Winter M-P, Wiesbauer F, Alimohammadi A, Blessberger H, Pavo N, Schillinger M, et al. Soluble galectin-3 is associated with premature myocardial infarction. Eur J Clin Investig. 2016;46:386–91.CrossRefGoogle Scholar
  82. 82.
    Calvier L, Martinez-Martinez E, Miana M, Cachofeiro V, Rousseau E, Sádaba JR, et al. The impact of galectin-3 inhibition on aldosterone-induced cardiac and renal injuries. JACC Heart Fail. 2015;3:59–67.CrossRefGoogle Scholar
  83. 83.
    Martinez-Martinez E, Calvier L, Fernández-Celis A, Rousseau E, Jurado-López R, Rossoni L, et al. Galectin-3 blockade inhibits cardiac inflammation and fibrosis in experimental hyperaldosteronism and hypertension. Hypertension. 2015;66:767–75.PubMedCrossRefGoogle Scholar
  84. 84.
    Vergaro G, Prud’homme M, Fazal L, Merval R, Passino C, Emdin M, et al. Inhibition of galectin-3 pathway prevents isoproterenol-induced left ventricular dysfunction and fibrosis in mice. Hypertension. 2016;67:606–12.PubMedCrossRefGoogle Scholar
  85. 85.
    Liu YH, D’Ambrosio M, Liao T, Peng H, Rhaleb NE, Sharma U, et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol. 2009;296:H404–12.PubMedCrossRefGoogle Scholar
  86. 86.
    Nguyen MN, Su Y, Kiriazis H, Yang Y, Gao XM, McMullen JR, et al. Upregulated galectin-3 is not a critical disease mediator of cardiomyopathy induced by beta2-adrenoceptor overexpression. Am J Physiol Heart Circ Physiol. 2018;314:H1169–78.PubMedCrossRefGoogle Scholar
  87. 87.
    Yang F, Yang XP, Liu YH, Xu J, Cingolani O, Rhaleb NE, et al. Ac-SDKP reverses inflammation and fibrosis in rats with heart failure after myocardial infarction. Hypertension. 2004;43:229–36.PubMedCrossRefGoogle Scholar
  88. 88.
    Milner TD, Viner AC, MacKinnon AC, Sethi T, Flapan AD. Temporal expression of galectin-3 following myocardial infarction. Acta Cardiol. 2014;69(6):595–602.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of CardiologyZhongshan People’s HospitalZhongshanChina

Personalised recommendations