Advertisement

American Journal of Cardiovascular Drugs

, Volume 18, Issue 4, pp 259–269 | Cite as

A Literature Review of Genetic Markers Conferring Impaired Response to Cardiovascular Drugs

  • Hitesh Shukla
  • Jessica Louise Mason
  • Abdullah Sabyah
Review Article

Abstract

Pharmacogenetics is an emerging area of medicine, and more work is needed to fully integrate it into a clinical setting for the benefit of patients. Genetic markers can influence the action of many drugs, including those that prevent and treat cardiovascular conditions. Genotyping is not yet commonplace, but guidelines are being put in place to help practitioners determine the effect a genetic marker may have on certain drugs. With advancements in genetic technology and falling costs, genotyping could be available to all patients via a simple saliva test. This would be a cost-effective way for practitioners to determine the most effective treatment for individuals, reducing “trial and error,” adverse effects, and rehospitalization rates and increasing patient compliance. Cardiovascular diseases are the leading causes of death worldwide, so using the most effective medication to treat or prevent them is of utmost importance in reducing incidence and mortality.

Notes

Compliance with Ethical Standards

Funding

No external funding was used in the preparation of this manuscript.

Conflicts of interest

Hitesh Shukla, Jessica Mason, and Abdullah Sabyah have no conflicts of interest that might be relevant to the contents of this manuscript. The authors declare that the text of the manuscript is part of a literature review article under which the markers discussed are part of a gene panel list used by the “Heart DNA Test” service for Rightangled Ltd. The authors are employed by Rightangled Ltd.

References

  1. 1.
    World Health Organization (WHO). (2017). Cardiovascular diseases (CVDs): Fact Sheet. http://www.who.int/mediacentre/factsheets/fs317/en/. Accessed 10 Aug 2017.
  2. 2.
    Prescriptions Dispensed in the Community: England 2005-2015. (2016). 1st ed. [ebook] Health and Social Care Information Centre. http://content.digital.nhs.uk/catalogue/PUB20664/pres-disp-com-eng-2005-1. Accessed 17 Aug 2017.
  3. 3.
    Altman R. Pharmacogenomics: “noninferiority” is sufficient for initial implementation. Clin Pharmacol Ther. 2011;89(3):348–50.CrossRefPubMedGoogle Scholar
  4. 4.
    Epstein RS, Moyer TP, Aubert RE, O’Kane DJ, Xia F, Verbrugge RR, Gage BF, Teagarden JR. Warfarin genotyping reduces hospitalization rates results from the MM-WES (Medco-Mayo Warfarin Effectiveness study). J Am Coll Cardiol. 2010;55(25):2804–12.CrossRefPubMedGoogle Scholar
  5. 5.
    Caudle K, Klein T, Hoffman J, Muller D, Whirl-Carrillo M, Gong L, McDonagh E, Sangkuhl K, Thorn C, Schwab M, Agundez J, Freimuth R, Huser V, Michael Lee M, Iwuchukwu O, Crews K, Scott S, Wadelius M, Swen J, Tyndale R, Stein C, Roden D, Relling M, Williams M, Johnson S. Incorporation of pharmacogenomics into routine clinical practice: the clinical pharmacogenetics implementation consortium (CPIC) guideline development process. Curr Drug Metab. 2014;15(2):209–17.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fda.gov. (2010). FDA Drug Safety Communication: Reduced effectiveness of Plavix (clopidogrel) in patients who are poor metabolizers of the drug. https://www.fda.gov/drugs/drugsafety/postmarketdrugsafetyinformationforpatientsandproviders/ucm203888.htm. Accessed 17 Aug 2017.
  7. 7.
    Mega J, Close S, Wiviott S, Shen L, Hockett R, Brandt J, Walker J, Antman E, Macias W, Braunwald E, Sabatine M. Cytochrome P-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360(4):354–62.CrossRefPubMedGoogle Scholar
  8. 8.
    Pan Y, Chen W, Xu Y, Yi X, Han Y, Yang Q, Li X, Huang L, Johnston S, Zhao X, Liu L, Zhang Q, Wang G, Wang Y, Wang Y. Genetic polymorphisms and clopidogrel efficacy for acute ischemic stroke or transient ischemic attack clinical perspective. Circulation. 2016;135(1):21–33.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang Y, Yan B, Liew D, Lee V. Cost-effectiveness of cytochrome P450 2C19 *2 genotype-guided selection of clopidogrel or ticagrelor in Chinese patients with acute coronary syndrome. Pharmacogenom J. 2017.  https://doi.org/10.1038/tpj.2016.94.CrossRefGoogle Scholar
  10. 10.
    Scott S, Sangkuhl K, Stein C, Hulot J, Mega J, Roden D, Klein T, Sabatine M, Johnson J, Shuldiner A. Clinical pharmacogenetics implementation consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013;94(3):317–23.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lobmeyer M, Wang L, Zineh I, Turner S, Gums J, Chapman A, Cooper-DeHoff R, Beitelshees A, Bailey K, Boerwinkle E, Pepine C, Johnson J. Polymorphisms in genes coding for GRK2 and GRK5 and response differences in antihypertensive-treated patients. Pharmacogenet Genom. 2011;21(1):42–9.CrossRefGoogle Scholar
  12. 12.
    Liggett S, Cresci S, Kelly R, Syed F, Matkovich S, Hahn H, Diwan A, Martini J, Sparks L, Parekh R, Spertus J, Koch W, Kardia S, Dorn G II. A GRK5 polymorphism that inhibits β-adrenergic receptor signaling is protective in heart failure. Nat Med. 2008;14(5):510–7.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Traynham C, Cannavo A, Zhou Y, Vouga A, Woodall B, Hullmann J, Ibetti J, Gold J, Chuprun J, Gao E, Koch W. Differential role of G protein-coupled receptor kinase 5 in physiological versus pathological cardiac hypertrophy. Circ Res. 2015;117(12):1001–12. PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Traynham C, Hullmann J, Koch W. Canonical and non-canonical actions of GRK5 in the heart. J Mol Cell Cardiol. 2016;92:196–202.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Philipp M, Berger I, Just S, Caron M. Overlapping and opposing functions of G protein-coupled receptor kinase 2 (GRK2) and GRK5 during heart development. J Biol Chem. 2014;289(38):26119–30.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Harris D, Cohn H, Pesant S, Eckhart A. GPCR signalling in hypertension: role of GRKs. Clin Sci. 2008;115(3):79–89.CrossRefPubMedGoogle Scholar
  17. 17.
    Santulli G, Trimarco B, Iaccarino G. G-Protein-coupled receptor kinase 2 and hypertension. High Blood Press Cardiovasc Prev. 2013;20(1):5–12.CrossRefPubMedGoogle Scholar
  18. 18.
    Liang M, Puri A, Devlin G. Heart rate and cardiovascular disease: an alternative to beta blockers. Cardiol Res Pract. 2009;2009:1–5.CrossRefGoogle Scholar
  19. 19.
    Fox K, Ford I, Steg P, Tardif J, Tendera M, Ferrari R. Ivabradine in stable coronary artery disease without clinical heart failure. N Engl J Med. 2014;371(12):1091–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Barron A, Zaman N, Cole G, Wensel R, Okonko D, Francis D. Systematic review of genuine versus spurious side-effects of beta-blockers in heart failure using placebo control: recommendations for patient information. Int J Cardiol. 2013;168(4):3572–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Morales D. Initiating beta-blockers in patients with asthma. Prescriber. 2014;25(19):9–10.CrossRefGoogle Scholar
  22. 22.
    Inoue K. Managing adverse effects of glaucoma medications. Clin Ophthalmol. 2014;12(8):903–13. CrossRefGoogle Scholar
  23. 23.
    Curtis J, Sokol S, Wang Y, Rathore S, Ko D, Jadbabaie F, Portnay E, Marshalko S, Radford M, Krumholz H. The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J Am Coll Cardiol. 2003;42(4):736–42.CrossRefPubMedGoogle Scholar
  24. 24.
    Fonarow G, Hsu J. Left ventricular ejection fraction. JACC Heart Fail. 2016;4(6):511–3.CrossRefPubMedGoogle Scholar
  25. 25.
    Taylor M. Pharmacogenetics of the human beta-adrenergic receptors. Pharmacogenom J. 2006;7(1):29–37.CrossRefGoogle Scholar
  26. 26.
    Pacanowski M, Zineh I, Li H, Johnson B, Cooper-DeHoff R, Bittner V, McNamara D, Sharaf B, Bairey Merz C, Pepine C, Johnson J. Adrenergic gene polymorphisms and cardiovascular risk in the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation. J Transl Med. 2008;6(1):11.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    La Rosee K, Huntgeburth M, Rosenkranz S, Bohm M, Schnabel P. The Arg389Gly beta1-adrenoceptor gene polymorphism determines contractile response to catecholamines. Pharmacogenetics. 2004;14(11):711–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Huntgeburth M, La Rosee K, ten Freyhaus H, Bohm M, Schnabel P, Hellmich M, Rosenkranz S. The Arg389Gly beta1-adrenoceptor gene polymorphism influences the acute effects of beta-adrenoceptor blockade on contractility in the human heart. Clin Res Cardiol. 2011;100(8):641–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Liggett SB, Mialet-Perez J, Thaneemit-Chen S, Weber SA, Greene SM, Hodne D, Nelson B, Morrison J, Domanski MJ, et al. A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci USA. 2006;103(30):11288–93.CrossRefPubMedGoogle Scholar
  30. 30.
    Liu W, Fu K, Gao H, Shang Y, Wang Z, Jiang G, Zhang Y, Zhang W, Zhong M. β1 adrenergic receptor polymorphisms and heart failure: a meta-analysis on susceptibility, response to β-blocker therapy and prognosis. PLoS One. 2012;7(7):e37659.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kuruvilla M, Gurk-Turner C. A review of warfarin dosing and monitoring. Proc (Bayl Univ Med Cent). 2001;14(3):305–6.CrossRefGoogle Scholar
  32. 32.
    Ageno W, Gallus A, Wittkowsky A, Crowther M, Hylek E, Palareti G. Oral anticoagulant therapy. Chest. 2012;141(2):e44S–88S.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Horton JD, Bushwick BM. Warfarin therapy: evolving strategies in anticoagulation. Am Fam Physician. 1999;59:635–46.PubMedGoogle Scholar
  34. 34.
    Johnson J, Gong L, Whirl-Carrillo M, Gage B, Scott S, Stein C, Anderson J, Kimmel S, Lee M, Pirmohamed M, Wadelius M, Klein T, Altman R. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther. 2011;90(4):625–9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet. 2001;40(8):587–603.CrossRefPubMedGoogle Scholar
  36. 36.
    Gan GG, Phipps ME, Lee MM, Lu LS, Subramaniam RY, Bee PC, Chang SH. Contribution of VKORC1 and CYP2C9 polymorphisms in the interethnic variability of warfarin dose in Malaysian populations. Ann Hematol. 2011;90(6):635–64.CrossRefPubMedGoogle Scholar
  37. 37.
    Owen R, Gong L, Sagreiya H, Klein T, Altman R. VKORC1 pharmacogenomics summary. Pharmacogenet Genom. 2010;20(10):642–4.CrossRefGoogle Scholar
  38. 38.
    Fang M (2010) Current issues in patient adherence and persistence: focus on anticoagulants for the treatment and prevention of thromboembolism. Patient Preference Adher. 24(4):51–60. CrossRefGoogle Scholar
  39. 39.
    Sangkuhl K, Klein T, Altman R. Clopidogrel pathway. Pharmacogenet Genom. 2010;20(7):463–5.Google Scholar
  40. 40.
    Savi P, Pereillo JM, Uzabiaga MF, Combalbert J, Picard C, Maffrand JP, Pascal M, Herbert JM. Identification and biological activity of the active metabolite of clopidogrel. Thromb Haemost. 2000;84(11):891–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Romkes M, Faletto MB, Blaisdell JA, Raucy JL, Goldstein JA. Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily. Biochemistry. 1991;30(13):3247–55.CrossRefPubMedGoogle Scholar
  42. 42.
    Rao S, Uppugunduri C, Daali Y, Desmeules J, Dayer P, Krajinovic M, Ansari M. Transcriptional regulation of CYP2C19 and its role in altered enzyme activity. Curr Drug Metab. 2012;13(8):1196–204.CrossRefGoogle Scholar
  43. 43.
    Dean, L. (2012). Clopidogrel Therapy and CYP2C19 Genotype. [online] Ncbi.nlm.nih.gov. https://www.ncbi.nlm.nih.gov/books/NBK84114/. Accessed 7 Aug 2017.
  44. 44.
    NHS (2016) Clopidogrel - NHS Choices. [online] http://www.nhs.uk/conditions/Anti-platelets-clopidogrel/Pages/Introduction.aspx. Accessed 7 Aug 2017.
  45. 45.
    Judge H, Buckland R, Holgate C, Storey R. Glycoprotein IIb/IIIa and P2Y12receptor antagonists yield additive inhibition of platelet aggregation, granule secretion, soluble CD40L release and procoagulant responses. Platelets. 2005;16(7):398–407.CrossRefPubMedGoogle Scholar
  46. 46.
    Schneider D. Anti-platelet therapy: glycoprotein IIb–IIIa antagonists. Br J Clin Pharmacol. 2011;72(4):672–82.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wheeler G, Braden G, Bray P, Marciniak S, Mascelli M, Sane D. Reduced inhibition by abciximab in platelets with the PlA2 polymorphism. Am Heart J. 2002;143(1):76–82.CrossRefPubMedGoogle Scholar
  48. 48.
    Lanni F, Santulli G, Izzo R, Rubattu S, Zanda B, Volpe M, et al. The PlA1/A2 polymorphism of glycoprotein IIIa and cerebrovascular events in hypertension: increased risk of ischemic stroke in high-risk patients. J Hypertens. 2007;25(3):551–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Floyd C, Ellis B, Ferro A. The PlA1/A2 polymorphism of glycoprotein IIIa as a risk factor for stroke: a systematic review and meta-analysis. PLoS One. 2014;9(7):e100239.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bruzelius M, Bottai M, Sabater-Lleal M, Strawbridge R, Bergendal A, Silveira A, Sundström A, Kieler H, Hamsten A, Odeberg J. Predicting venous thrombosis in women using a combination of genetic markers and clinical risk factors. J Thromb Haemost. 2015;13(2):219–27.CrossRefPubMedGoogle Scholar
  51. 51.
    Soria J, Morange P, Vila J, Souto J, Moyano M, Tregouet D, Mateo J, Saut N, Salas E, Elosua R. Multilocus genetic risk scores for venous thromboembolism risk assessment. J American Heart Assoc. 2014;3(5):e001060.CrossRefGoogle Scholar
  52. 52.
    Aleksova A, Di Nucci M, Gobbo M, Bevilacqua E, Pradella P, Salam K, Barbati G, De Luca A, Mascaretti L, Sinagra G. Factor-V HR2 haplotype and thromboembolic disease. Acta Cardiol. 2015;70(6):707–11.  https://doi.org/10.2143/AC.70.6.3120184.CrossRefPubMedGoogle Scholar
  53. 53.
    Fsrh.org (2017) FSRH Statement: venous thromboembolism (VTE) and hormonal contraception Nov 2014—Faculty of Sexual and Reproductive Healthcare. [online] http://www.fsrh.org/standards-and-guidance/documents/fsrhstatementvteandhormonalcontraception-november/. Accessed 14 Aug 2017.
  54. 54.
    Nnuh.nhs.uk (2017) Norfolk and Norwich University Hospitals NHS Foundation Trust » Contraception and Thrombophilia Screening G21 v1. [online] http://www.nnuh.nhs.uk/publication/contraception-and-thrombophilia-screening-g21-v1/. Accessed 14 Aug 2017.
  55. 55.
    Buhaescu I, Izzedine H. Mevalonate pathway: a review of clinical and therapeutical implications. Clin Biochem. 2007;40(9–10):575–84.CrossRefPubMedGoogle Scholar
  56. 56.
    Golomb B, Evans MA. Statin adverse effects: a review of the literature and evidence for a mitochondrial mechanism. Am J Cardiovasc Drugs. 2008;8(6):373–418.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ornelas WLHB (2008) SLCO1B1 variants and statin-induced myopathy—a genomewide study. N Engl J Med. 2008;359:789–799.Google Scholar
  58. 58.
    Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genom. 2006;16(12):873–9.CrossRefGoogle Scholar
  59. 59.
    Chasman DI. Pharmacogenetic Study of Statin Therapy and Cholesterol Reduction. JAMA. 2004;291(23):2821.CrossRefPubMedGoogle Scholar
  60. 60.
    Krauss R, Mangravite L, Smith J, Medina M, Wang D, Guo X, et al. Variation in the 3-hydroxyl-3-methylglutaryl coenzyme a reductase gene is associated with racial differences in low-density lipoprotein cholesterol response to simvastatin treatment. Circulation. 2008;117(12):1537–44.CrossRefPubMedGoogle Scholar
  61. 61.
    Medina MW, Sangkuhl K, Klein TE, Altman RB. PharmGKB: very important pharmacogene—HMGCR. Pharmacogenet Genom. 2011;21(2):98–101.CrossRefGoogle Scholar
  62. 62.
    Mangravite L, Medina M, Cui J, Pressman S, Smith J, Rieder M, et al. Combined influence of LDLR and HMGCR sequence variation on lipid-lowering response to simvastatin. Arterioscler Thromb Vasc Biol. 2010;30(7):1485–92.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Di Stasi S, MacLeod T, Winters J, Binder-Macleod S. Effects of statins on skeletal muscle: a perspective for physical therapists. Phys Ther. 2010;90(10):1530–42.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Brown M, Bussell J. Medication Adherence: WHO Cares? Mayo Clinic Proc. 2011;86(4):304–14.CrossRefGoogle Scholar
  65. 65.
    Lee KS, Tsien RW. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature. 1983;302(5911):790–4.CrossRefPubMedGoogle Scholar
  66. 66.
    Khan IA. Clinical and therapeutic aspects of congenital and acquired long QT syndrome. Am J Med. 2002;112(1):58–66.CrossRefPubMedGoogle Scholar
  67. 67.
    Castro V, Clements C, Murphy S, Gainer V, Fava M, Weilburg J, Erb J., Churchill, S., Kohane, I., Iosifescu D, Smoller J, Perlis R. QT interval and antidepressant use: a cross sectional study of electronic health records. BMJ. 2013;346(jan29 3):f288.Google Scholar
  68. 68.
    Treuer AV, Gonzalez DR. NOS1AP modulates intracellular Ca2+ in cardiac myocytes and is up-regulated in dystrophic cardiomyopathy. Int J Physiol Pathophysiol Pharmacol. 2014;6(1):37–46.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Earle N, Ingles J, Bagnall R, Gray B, Crawford J, Smith W, Shelling A, Love D, Semsarian C, Skinner J. NOS1AP polymorphisms modify QTc interval duration but not cardiac arrest risk in hypertrophic cardiomyopathy. J Cardiovasc Electrophysiol. 2015;26(12):1346–51.CrossRefPubMedGoogle Scholar
  70. 70.
    Zhelyazkova-Savova M, Gancheva S, Sirakova V. Potential statin-drug interactions: prevalence and clinical significance. SpringerPlus. 2014;3(1):168.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Jeffers T, Webster J, Petrie J. Atenolol once-daily in hypertension. Br J Clin Pharmacol. 1977;4:523–7.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    National Clinical Guidelines Centre (UK) (2011). Stable Angina: Methods, Evidence & Guidance [Internet]. London: Royal College of Physicians (UK); (NICE Clinical Guidelines, No. 126.) 7, Beta blockers vs. calcium channel blockers. https://www.ncbi.nlm.nih.gov/books/NBK83601/. Accessed 8 Aug 2017.
  73. 73.
    Huffman JC, Stern TA. Neuropsychiatric consequences of cardiovascular medications. Dialog Clin Neurosci. 2007;9(1):29–45.Google Scholar
  74. 74.
    Beitelshees AL, Navare H, Wang D, Gong Y, Wessel J, Moss JI, Langaee TY, Cooper-DeHoff RM, Sadee W, Pepine CJ, Schork NJ, Johnson JA. CACNA1C gene polymorphisms, cardiovascular disease outcomes, and treatment response. Circ Cardiovasc Genet. 2009;2(4):362–70.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomised intervention trial in-congestive heart failure (MERIT-HF). Lancet. 1999;353(9169):2001–7.CrossRefGoogle Scholar
  76. 76.
    Goldner J. Metoprolol-induced visual hallucinations: a case series. J Med Case Rep. 2012;6(1):65.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    NHS (2016) Beta-blockers—NHS Choices. [online] http://www.nhs.uk/Conditions/Beta-blockers/Pages/Introduction.aspx. Accessed 8 Aug 2017.
  78. 78.
    Blake C, Kharasch E, Schwab M, Nagele P. A meta-analysis of CYP2D6 metabolizer phenotype and metoprolol pharmacokinetics. Clin Pharmacol Ther. 2013;94(3):394–9.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Hamadeh IS, Langaee TY, Dwivedi R, Garcia S, Burkley BM, Chapman AB, Johnson JA. Impact of CYP2D6 polymorphisms on clinical efficacy & tolerability of metoprolol tartrate. Clin Pharmacol Ther. 2014;96(2):175–81.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Campbell DJ. A review of perindopril in the reduction of cardiovascular events. Vasc Health Risk Manag. 2006;2(2):117–24.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Bernstein K, Giani J, Shen X, Gonzalez-Villalobos R. Renal angiotensin-converting enzyme and blood pressure control. Curr Opin Nephrol Hypertens. 2014;23(2):106–12.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    McLean P, Ahluwalia A, Perretti M. Association between kinin B1 receptor expression and leukocyte trafficking across mouse mesenteric postcapillary venules. J Exp Med. 2000;192(3):367–80.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Hirooka K, Shiraga F. Potential role for angiotensin-converting enzyme inhibitors in the treatment of glaucoma. Clin Ophthalmol. 2007;1(3):217–23.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Mottl A, Shoham D, North K. Angiotensin II type 1 receptor polymorphisms and susceptibility to hypertension: a HuGE review. Genet Med. 2008;10(8):560–74.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Briet M, Schiffrin E. Aldosterone: effects on the kidney and cardiovascular system. Nat Rev Nephrol. 2010;6(5):261–73.CrossRefPubMedGoogle Scholar
  86. 86.
    Oemrawsingh R, Akkerhuis K, Van Vark L, Redekop W, Rudez G, Remme W, Bertrand M, Fox K, Ferrari R, Danser A, de Maat M, Simoons M, Brugts J, Boersma E. Individualized angiotensin-converting enzyme (ACE)-inhibitor therapy in stable coronary artery disease based on clinical and pharmacogenetic determinants: the PERindopril GENEtic (PERGENE) risk model. J Am Heart Assoc. 2016;5(3):e002688.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Bansal S, Chauhan D, Ramesh D, Barmare S, Chakraborty S. Blood pressure control and acceptability of Perindopril and its fixed dose combinations with Amlodipine or Indapamide, in younger patients with hypertension. Indian Heart J. 2014;66(6):635–9.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Loboz K, Shenfield GM. Drug combinations and impaired renal function—the ‘triple whammy’. Br J Clin Pharmacol. 2005;59(2):239–43.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Ashihara H, Crozier A. Biosynthesis and metabolism of caffeine and related purine alkaloids in plants. Adv Bot Res. 1999;30:117–205.CrossRefGoogle Scholar
  90. 90.
    Cappelletti S, Daria P, Sani G, Aromatario M. Caffeine: cognitive and physical performance enhancer or psychoactive drug? Curr Neuropharmacol. 2015;13(1):71–88.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Nehlig A, Daval JL, Debry G. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Brain Res Rev. 1992;17(2):139–70.CrossRefPubMedGoogle Scholar
  92. 92.
    Snel J, Lorist MM. Effects of caffeine on sleep and cognition. Prog Brain Res. 2011;190:105–17.CrossRefPubMedGoogle Scholar
  93. 93.
    Ribeiro J, Sebastião A. Caffeine and adenosine. J Alzheimer’s Dis. 2010;20(s1):S3–15.CrossRefGoogle Scholar
  94. 94.
    Begas E, Kouvaras E, Tsakalof A, Papakosta S, Asprodini E. In vivo evaluation of CYP1A2, CYP2A6, NAT-2 and xanthine oxidase activities in a Greek population sample by the RP-HPLC monitoring of caffeine metabolic ratios. Biomed Chromatogr. 2007;21(2):190–200.CrossRefPubMedGoogle Scholar
  95. 95.
    Welsh E, Bara A, Barley E, Cates C. Caffeine for asthma. Cochrane Database Syst Rev. 2010;20(1):1–35. Google Scholar
  96. 96.
    Ghotbi R, Christensen M, Roh HK, Ingelman-Sundberg M, Aklillu E, Bertilsson L. Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol. 2007;63(6):537–46.CrossRefPubMedGoogle Scholar
  97. 97.
    Cornelis M, El-Sohemy A, Kabagambe E, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA. 2006;295(10):1135.CrossRefPubMedGoogle Scholar
  98. 98.
    Ubiquitous Pharmacogenetics Consortium (U-PGx). (2017). www.upgx.eu/. Accessed 17 Aug 2017.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hitesh Shukla
    • 1
  • Jessica Louise Mason
    • 2
  • Abdullah Sabyah
    • 1
  1. 1.Rightangled LtdCoventryUK
  2. 2.Rightangled LtdBirminghamUK

Personalised recommendations