Advertisement

Chemical Research in Chinese Universities

, Volume 36, Issue 1, pp 24–32 | Cite as

Stabilizing High-voltage Cathode Materials for Next-generation Li-ion Batteries

  • Xiaobo Zhu
  • Tobias Schulli
  • Lianzhou WangEmail author
Review

Abstract

The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage. Despite more than ten years of research, high-voltage cathode materials, such as high-voltage layered oxides, spinel LiNi0.5Mn1.5O4, and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes, cathode materials, and cathode electrolyte interphases under high-voltage operation. This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials. The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.

Keywords

High voltage Cathode material Surface engineering Cathode electrolyte interphase Cycling stability Lithium ion battery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Akira Y., Angew. Chem. Int. Ed., 2012, 51(24), 5798Google Scholar
  2. [2]
    Wang J., Tang H., Zhang L., Ren H., Yu R., Jin Q., Qi J., Mao D., Yang M., Wang Y., Liu P., Zhang Y., Wen Y., Gu L., Ma G., Su Z., Tang Z., Zhao H., Wang D., Nat. Energy, 2016, 1, 16050Google Scholar
  3. [3]
    Zhang J. N., Li Q., Ouyang C., Yu X., Ge M., Huang X., Hu E., Ma C., L, S., Xiao R., Yang W., Chu Y., Liu Y., Yu H., Yang X.Q., Huang X., Chen L., Li H., Nat. Energy, 2019, 4(7), 594Google Scholar
  4. [4]
    Liu Q., Su X., Lei D., Qin Y., Wen J., Guo F., Wu Y. A., Rong Y., Kou R., Xiao X., Aguesse F., Bareño J., Ren Y., Lu W., Li Y., Nat. Energy, 2018, 3(11), 936Google Scholar
  5. [5]
    Zhang J., Zhang J., Ou X., Wan C., Peng C., Zhang B., ACS Appl. Mater. Interfaces, 2019, 11(17), 15507PubMedGoogle Scholar
  6. [6]
    Thackeray M. M., Johnson C. S., Vaughey J. T., Li N., Hackney S. A., J. Mater. Chem., 2005, 15(23), 2257Google Scholar
  7. [7]
    Nayak P. K., Erickson E. M., Schipper F., Penki T. R., Munichandraiah N., Adelhelm P., Sclar H., Amalraj F., Markovsky B., Aurbac D., Adv. Energy Mater., 2018, 8(8), 1702397Google Scholar
  8. [8]
    Zhu X., Li X., Zhu Y., Jin S., Wang Y., Qian Y., Electrochim. Acta, 2014, 121, 253Google Scholar
  9. [9]
    Zhu X., Sun D., Luo B., Hu Y., Wang L., Electrochim. Acta, 2018, 284, 30Google Scholar
  10. [10]
    Zhu X., Li X., Zhu Y., Jin S., Wang Y., Qian Y., J. Power Sources, 2014, 261, 93Google Scholar
  11. [11]
    Okada S., Sawa S., Egashira M., Yamaki J. I., Tabuchi M., Kageyama H., Konishi T., Yoshino A., J. Power Sources, 2001, 97/98, 430Google Scholar
  12. [12]
    Li W., Song B., Manthiram A., Chem. Soc. Rev., 2017, 46(10), 3006PubMedGoogle Scholar
  13. [13]
    Zhan C., Wu T., Lu J., Amine K., Energy Environ. Sci., 2018, 11(2), 243Google Scholar
  14. [14]
    Birkl C. R., Roberts M. R., McTurk E., Bruce P. G., Howey D. A., J. Power Sources, 2017, 341, 373Google Scholar
  15. [15]
    Yi T. F., Mei J., Zhu Y. R., J. Power Sources, 2016, 316, 85Google Scholar
  16. [16]
    Xu X., Deng S., Wang H., Liu J., Yan H., Nano-Micro Letters, 2017, 9(2), 22PubMedPubMedCentralGoogle Scholar
  17. [17]
    Zeng X., Zhan C., Lu J., Amine K., Chem., 2018, 4(4), 690Google Scholar
  18. [18]
    Lee W., Muhammad S., Sergey C., Lee H., Yoon J., Kang Y. M., Yoon W. S., Angew. Chem. Int. Ed., 2019, doi:  https://doi.org/10.1002/anie.201902359, https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201902359
  19. [19]
    Cho J., Kim Y. J., Park B., Chem. Mater., 2000, 12(12), 3788Google Scholar
  20. [20]
    Wise A. M., Ban C., Weker J. N., Misra S., Cavanagh A. S., Wu Z., Li Z., Whittingham M. S., Xu K., George S. M., Toney M. F., Chem. Mater., 2015, 27(17), 6146Google Scholar
  21. [21]
    Kim J. W., Kim D. H., Oh D. Y., Lee H., Kim J. H., Lee J. H., Jung Y. S., J. Power Sources, 2015, 274, 1254Google Scholar
  22. [22]
    Chen Y., Zhang Y., Chen B., Wang Z., Lu C., J. Power Sources, 2014, 256, 20Google Scholar
  23. [23]
    Liu K., Yang G. L., Dong Y., Shi T., Chen L., J. Power Sources, 2015, 281, 370Google Scholar
  24. [24]
    Gao Y., Patel R. L., Shen K.Y., Wang X., Axelbaum R. L., Liang X., ACS Omega, 2018, 3(1), 906PubMedPubMedCentralGoogle Scholar
  25. [25]
    Chen Z., Dahn J. R., Electrochem. Solid-State Lett., 2002, 5(10), A213Google Scholar
  26. [26]
    Wu H. M., Belharouak I., Abouimrane A., Sun Y. K., Amine K., J. Power Sources, 2010, 195(9), 2909Google Scholar
  27. [27]
    Sun Y. K., Lee Y. S., Yoshio M., Amine K., Electrochem. Solid-State Lett., 2002, 5(5), A99Google Scholar
  28. [28]
    Mou J., Deng Y., He L., Zheng Q., Jiang N., Lin D., Electrochim. Acta, 2018, 260, 101Google Scholar
  29. [29]
    Lu Y. C., Mansou A. N., Yabuuchi N., Shao-Horn Y., Chem. Mater., 2009, 21(19), 4408Google Scholar
  30. [30]
    Cho J., Kim Y. W., Kim B., Lee J. G., Park B., Angew. Chem. Int. Ed., 2003, 42(14), 1618Google Scholar
  31. [31]
    Xiao B., Liu J., Sun Q., Wang B., Banis M. N., Zhao D., Wang Z., Li R., Cui X., Sham T. K., Sun X., Adv. Sci., 2015, 2(5), 1500022Google Scholar
  32. [32]
    Bai Y., Chang Q., Yu Q., Zhao S., Jiang K., Electrochim. Acta, 2013, 112, 414Google Scholar
  33. [33]
    Zhang D., Hu L. L., Sun Y. G., Piao J. Y., Tao X.S., Xu Y.S., Cao A. M., Wan L. J., J. Mater. Chem. A, 2018, 6(19), 8992Google Scholar
  34. [34]
    Park B. C., Kim H. B., Myung S. T., Amine K., Belharouak I., Lee S. M., Sun Y. K., J. Power Sources, 2008, 178(2), 826Google Scholar
  35. [35]
    Wu Q., Zhang X., Sun S., Wan N., Pan D., Bai Y., Zhu H., Hu Y. S., Dai S., Nanoscale, 2015, 7(38), 15609PubMedGoogle Scholar
  36. [36]
    Lu C., Wu H., Zhang Y., Liu H., Chen B., Wu N., Wang S., J. Power Sources, 2014, 267, 682Google Scholar
  37. [37]
    Xiong X., Wang Z., Guo H., Zhang Q., Li X., J. Mater. Chem. A, 2013, 1(4), 1284Google Scholar
  38. [38]
    He H., Zan L., Zhang Y., J. Alloys Compd., 2016, 680, 95Google Scholar
  39. [39]
    Xiong X., Wang Z., Yan G., Guo H., Li X., J. Power Sources, 2014, 245, 183Google Scholar
  40. [40]
    Wang J., Yao S., Lin W., Wu B., He X., Li J., Zhao J., J. Power Sources, 2015, 280, 114Google Scholar
  41. [41]
    Chong J., Xun S., Song X., Liu G., Battaglia V. S., Nano Energy, 2013, 2(2), 283Google Scholar
  42. [42]
    Chong J., Xun S., Zhang J., Song X., Xie H., Battaglia V., Wang R., Chem. Eur. J., 2014, 20(24), 7479PubMedGoogle Scholar
  43. [43]
    Lu J., Peng Q., Wang W., Nan C., Li L., Li Y., J. Am. Chem. Soc., 2013, 135(5), 1649PubMedGoogle Scholar
  44. [44]
    Zhang J., Li Z., Gao R., Hu Z., Liu X., J. Phys. Chem. C, 2015, 119(35), 20350Google Scholar
  45. [45]
    Mou J., Deng Y., Song Z., Zheng Q., Lam K. H., Lin D., Dalton Trans., 2018, 47(20), 7020PubMedGoogle Scholar
  46. [46]
    Zhao E., Chen M., Hu Z., Chen D., Yang L., Xiao X., J. Power Sources, 2017, 343, 345Google Scholar
  47. [47]
    Li J., Zhu Y., Wang L., Cao C., ACS Appl. Mater. Interfaces, 2014, 6(21), 18742PubMedGoogle Scholar
  48. [48]
    Fu J., Mu D., Wu B., Bi J., Cui H., Yang H., Wu H., Wu F., ACS Appl. Mater. Interfaces, 2018, 10(23), 19704PubMedGoogle Scholar
  49. [49]
    Kim H., Byun D., Chang W., Jung H., J. Mater. Chem. A, 2017, 5(47), 25077Google Scholar
  50. [50]
    Gabrielli G., Axmann P., Diemant T., Behm R. J., Wohlfahrt-Mehrens M., ChemSusChem, 2016, 9(13), 1670PubMedGoogle Scholar
  51. [51]
    Zhao R., Li L., Xu T., Wang D., Pan D., He G., Zhao H., Bai Y., ACS Appl. Mater. Interfaces, 2019, 11(17), 16233PubMedGoogle Scholar
  52. [52]
    Shim J. H., Han J. M., Lee S., ACS Appl. Mater. Interfaces, 2016, 8(19), 12205PubMedGoogle Scholar
  53. [53]
    Yang Q., Huang J., Li Y., Wang Y., Qiu J., Zhang J., Yu H., Yu X., Li H., Chen L., J. Power Sources, 2018, 388, 65Google Scholar
  54. [54]
    Deng Y. F., Zhao S. X., Xu Y.H., Nan C. W., J. Power Sources, 2015, 296, 261Google Scholar
  55. [55]
    Li L., Zhao R., Xu T., Wang D., Pan D., Zhang K., Yu C., Lu X., He G., Bai Y., Nanoscale, 2019, 11(18), 8967PubMedGoogle Scholar
  56. [56]
    Liang J. Y., Zeng X. X., Zhang X. D., Wang P. F., Ma J. Y., Yin Y. X., Wu X. W., Guo Y. G., Wan L. J., J. Am. Chem. Soc., 2018, 140(22), 6767PubMedGoogle Scholar
  57. [57]
    Li F., Li J., Zhu F., Liu T., Xu B., Kim T. H., Kramer M. J., Ma C., Zhou L., Nan C. W., Matter, 2019, 1(4), 1001Google Scholar
  58. [58]
    Aravindan V., Gnanaraj J., Lee Y. S., Madhavi S., J. Mater. Chem. A, 2013, 1(11), 3518Google Scholar
  59. [59]
    Li H. H., Jin J., Wei J. P., Zhou Z., Yan J., Electrochem. Commun., 2009, 11(1), 95Google Scholar
  60. [60]
    Gao X. W., Deng Y. F., Wexler D., Chen G. H., Chou S. L., Liu H. K., Shi Z. C., Wang J. Z., J. Mater. Chem. A, 2015, 3(1), 404Google Scholar
  61. [61]
    Gao X. W., Wang J. Z., Chou S. L., Liu H. K., J. Power Sources, 2012, 220, 47Google Scholar
  62. [62]
    Kwon Y., Lee Y., Kim S. O., Kim H. S., Kim K. J., Byun D., Choi W., ACS Appl. Mater. Interfaces, 2018, 10(35), 29457PubMedGoogle Scholar
  63. [63]
    Liu J., Chen Y., Xu J., Sun W., Zheng C., Li Y., RSC Adv., 2019, 9(6), 3081Google Scholar
  64. [64]
    Gao H., Zeng X., Hu Y., Tileli V., Li L., Ren Y., Meng X., Maglia F., Lamp P., Kim S. J., Amine K., Chen Z., ACS Applied Energy Mater., 2018, 1(5), 2254Google Scholar
  65. [65]
    Zhao Y., Li J., Dahn J. R., Chem. Mater., 2017, 29(12), 5239Google Scholar
  66. [66]
    Piao J. Y., Duan S. Y., Li X. J., Tao X. S., Xu Y. S., Cao A. M., Wan L. J., Chem. Commun., 2018, 54(42), 5326Google Scholar
  67. [67]
    Piao J. Y., Gu L., Wei Z., Ma J., Wu J., Yang W., Gong Y., Sun Y. G., Duan S. Y., Tao X. S., Bin D. S., Cao A. M., Wan L. J., J. Am. Chem. Soc., 2019, 141(12), 4900PubMedGoogle Scholar
  68. [68]
    Piao J. Y., Sun Y. G., Duan S. Y., Cao A. M., Wang X. L., Xiao R. J., Yu X. Q., Gong Y., Gu L., Li Y., Liu Z. J., Peng Z. Q., Qiao R. M., Yang W. L., Yang X. Q., Goodenough J. B., Wan L. J., Chem., 2018, 4(7), 1685Google Scholar
  69. [69]
    Lim J. M., Oh R. G., Kim D., Cho W., Cho K., Cho M., Park M. S., ChemSusChem, 2016, 9(20), 2967PubMedGoogle Scholar
  70. [70]
    Zheng H., Yang R., Liu G., Song X., Battaglia V. S., J. Phys. Chem. C, 2012, 116(7), 4875Google Scholar
  71. [71]
    Koo B., Kim H., Cho Y., Lee K. T., Choi N. S., Cho J., Angew. Chem. Int. Ed., 2012, 51(35), 8762Google Scholar
  72. [72]
    Cai Z. P., Liang Y., Li W. S., Xing L. D., Liao Y. H., J. Power Sources, 2009, 189(1), 547Google Scholar
  73. [73]
    Park J. K., Principles and Applications of Lithium Secondary Batteries, John Wiley & Sons, Weinheim, 2012 Google Scholar
  74. [74]
    Choi J., Ryou M. H., Son B., Song J., Park J. K., Cho K. Y., Lee Y. M., Journal of Power Sources, 2014, 252, 138Google Scholar
  75. [75]
    Pieczonka N. P. W., Borgel V., Ziv B., Leifer N., Dargel V., Aurbach D., Kim J. H., Liu Z., Huang X., Krachkovskiy S. A., Goward G. R., Halalay I., Powell B. R., Manthiram A., Adv. Energy Mater., 2015, 5(23), 1501008Google Scholar
  76. [76]
    Zhang T., Li J. T., Liu J., Deng Y. P., Wu Z. G., Yin Z. W., Guo D., Huang L., Sun S. G., Chem. Commun., 2016, 52(25), 4683Google Scholar
  77. [77]
    Zhang S. J., Deng Y. P., Wu Q. H., Zhou Y., Li, J. T., Wu Z. Y., Yin Z. W., Lu Y. Q., Shen C. H., Huang L., Sun S. G., ChemElectroChem, 2018, 5(9), 1321Google Scholar
  78. [78]
    Zhang S., Gu H., Pan H., Yang S., Du W., Li X., Gao M., Liu Y., Zhu M., Ouyang L., Jian D., Pan F., Adv. Energy Mater., 2017, 7(6), 1601066Google Scholar
  79. [79]
    Pham H. Q., Kim G., Jung H. M., Song S. W., Adv. Funct. Mater., 2018, 28(2), 1704690Google Scholar
  80. [80]
    Hitomi S., Kubota K., Horiba T., Hida K., Matsuyama T., Oji H., Yasuno S., Komaba S., ChemElectroChem, 2019, 6(19), 5070Google Scholar
  81. [81]
    Li G., Liao Y., He Z., Zhou H., Xu N., Lu Y., Sun G., Li W., Electrochim. Acta, 2019, 319, 527Google Scholar
  82. [82]
    Dong T., Zhang H., Ma Y., Zhang J., Du X., Lu C., Shangguan X., Li J., Zhang M., Yang J., Zhou X., Cui G., J. Mater. Chem. A, 2019, 7(42), 24594Google Scholar
  83. [83]
    Ma Y., Chen K., Ma J., Xu G., Dong S., Chen B., Li J., Chen Z., Zhou X., Cui G., Energy Environ. Sci., 2019, 12(1), 273Google Scholar
  84. [84]
    Vetter J., Novák P., Wagner M. R., Veit C., Möller K. C., Besenhard J. O., Winter M., Wohlfahrt-Mehrens M., Vogler C., Hammouche A., J. Power Sources, 2005, 147(1), 269Google Scholar
  85. [85]
    Solchenbach S., Metzger M., Egawa M., Beyer H., Gasteiger H. A., J. Electrochem. Soc., 2018, 165(13), A3022Google Scholar
  86. [86]
    Gnanaraj J. S., Zinigrad E., Asraf L., Gottlieb H. E., Sprecher M., Schmidt M., Geissler W., Aurbach D., J. Electrochem. Soc., 2003, 150(11), A1533Google Scholar
  87. [87]
    Xu M., Zhou L., Dong Y., Chen Y., Demeaux J., MacIntosh A. D., Garsuch A., Lucht B. L., Energy Environ. Sci., 2016, 9(4), 1308Google Scholar
  88. [88]
    Haregewoin A. M., Wotango A. S., Hwang B. J., Energy Environ. Sci., 2016, 9(6), 1955Google Scholar
  89. [89]
    Zhao H., Yu X., Li J., Li B., Shao H., Li L., Deng Y., J. Mater. Chem. A, 2019, 7(15), 8700Google Scholar
  90. [90]
    Xu G., Wang X., Li J., Shangguan X., Huang S., Lu D., Chen B., Ma J., Dong S., Zhou X., Kong Q., Cui G., Chem. Mater., 2018, 30(22), 8291Google Scholar
  91. [91]
    Liu J., Song X., Zhou L., Wang S., Song W., Liu W., Long H., Zhou L., Wu H., Feng C., Guo Z., Nano Energy, 2018, 46, 404Google Scholar
  92. [92]
    von Aspern N., Diddens D., Kobayashi T., Börner M., Stubbmann-Kazakova O., Kozel V., Röschenthaler G. V., Smiatek J., Winter M., Cekic-Laskovic I., ACS Appl. Mater. Interfaces, 2019, 11(18), 16605PubMedGoogle Scholar
  93. [93]
    Xu M., Zhou L., Dong Y., Chen Y., Garsuch A., Lucht B. L., J. Electrochem. Soc., 2013, 160(11), A2005Google Scholar
  94. [94]
    Yang L., Markmaitree T., Lucht B. L., J. Power Sources, 2011, 196(4), 2251Google Scholar
  95. [95]
    Li Y., Wan S., Veith G. M., Unocic R. R., Paranthaman M. P., Dai S., Sun X. G., Adv. Energy Mater., 2017, 7(4), 1601397Google Scholar
  96. [96]
    Hong S., Hong B., Song W., Qin Z., Duan B., Lai Y., Jian, F., J. Electrochem. Soc., 2018, 165(2), A368Google Scholar
  97. [97]
    Xu G., Pang C., Chen B., Ma J., Wang X., Chai J., Wang Q., An W., Zhou X., Cui G., Chen L., Adv. Energy Mater., 2018, 8(9), 1701398Google Scholar
  98. [98]
    Lan J., Zheng Q., Zhou H., Li J., Xing L., Xu K., Fan W., Yu L., Li W., ACS Appl. Mater. Interfaces, 2019, 11(32), 28841PubMedGoogle Scholar
  99. [99]
    Lee T. J., Soon J., Chae S., Ryu J. H., Oh S. M., ACS Appl. Mater. Interfaces, 2019, 11(12), 11306PubMedGoogle Scholar
  100. [100]
    Han J. G., Jeong M. Y., Kim K., Park C., Sung C. H., Bak D. W., Kim K. H., Jeong K. M., Choi N. S., J. Power Sources, 2020, 446, 227366Google Scholar
  101. [101]
    Wang J., Yamada Y., Sodeyama K., Chiang C. H., Tateyama Y., Yamada A., Nat. Commun., 2016, 7(1), 12032PubMedPubMedCentralGoogle Scholar
  102. [102]
    Doi T., Shimizu Y., Matsumoto R., Hashinokuchi M., Inaba M., ChemistrySelect, 2017, 2(28), 8824Google Scholar
  103. [103]
    Qiao Y., He Y., Jiang K., Liu Y., Li X., Jia M., Guo S., Zhou H., Adv. Energy Mater., 2018, 8(33), 1802322Google Scholar
  104. [104]
    Gao X., Wu F., Mariani A., Passerini S., ChemSusChem, 2019, 12(18), 4185PubMedPubMedCentralGoogle Scholar
  105. [105]
    Li J., Ma C., Chi M., Liang C., Dudney N. J., Adv. Energy Mater., 2015, 5(4), 1401408Google Scholar
  106. [106]
    Chen S., Wen K., Fan J., Bando Y., Golberg D., J. Mater. Chem. A, 2018, 6(25), 11631Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2020

Authors and Affiliations

  1. 1.Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneAustralia
  2. 2.ESRF-The European SynchrotronGrenobleFrance

Personalised recommendations