Geometric and Electronic Behavior of C60 on PTCDA Hydrogen Bonded Network

  • Ling Li
  • Xuechao Li
  • Yanning Tang
  • Zhichao Xu
  • Haiming ZhangEmail author
  • Lifeng ChiEmail author


Self-assembled supramolecular networks are promising spacer layer for electronic decoupling from the metal substrate. However, the mechanism behind of how the intrinsic electronic structure of spacer layers affects the adsorbate is still unclear. Here a hydrogen bonded network composed of n-type semiconducting molecules 3,4,9,10-perylene-tetracarboxylic-dianhydride(PTCDA) is prepared under ultra-high vacuum to serve as a spacer layer for functional organics C60 on Au(111). The geometric and electronic information of C60 was investigated by scanning tunneling microscopy and scanning tunneling spectroscopy(STM/STS) at 5 K. Effective decoupling from the metal surface yields an energy gap of 3.67 eV for C602nd, merely considering the HOMO-LUMO peak separation. The broadening of resonance peaks in STS measurements however indicates unneglected interlayer interactions in this hetero-organic system. Moreover, we scrutinize the nucleation sites of C60 on PTCDA layer and attribute this to the decreased diffusion capability on a less dense molecular arrangement possessing inhomogeneous spatial distribution of unoccupied molecular orbitals.


Electronic decoupling Scanning tunneling microscopy/spectroscopy C60 3,4,9,10-Perylene-tetracarboxylic-dianhydride(PTCDA) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the Collaborative Innovation Center of Suzhou Nano Science & Technology, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Supplementary material

40242_2020_9099_MOESM1_ESM.pdf (217 kb)
Geometric and electronic behavior of C60 on PTCDA hydrogen bonded network


  1. [1]
    Sekitani T., Nakajima H., Maeda H., Fukushima T., Aida T., Hata K., Someya T., Nat. Mater., 2009, 6, 494CrossRefGoogle Scholar
  2. [2]
    Uoyama H., Goushi K., Shizu K., Nomura H., Adachi C., Nature, 2012, 7428, 234CrossRefGoogle Scholar
  3. [3]
    Zhao J. B., Li Y. K., Yang G. F., Jiang K., Lin H. R., Ade H., Ma W., Yan H., Nat. Energy., 2016, 1, 15027CrossRefGoogle Scholar
  4. [4]
    Wohrle D., Meissner D., Adv. Mater., 1991, 3, 129CrossRefGoogle Scholar
  5. [5]
    Gunes S., Neugebauer H., Sariciftci N. S., Chem. Rev., 2007, 4, 1324CrossRefGoogle Scholar
  6. [6]
    Meijer E. J., de Leeuw D. M., Setayesh S., van Veenendaal E., Huisman B. H., Blom P. W. M., Hummelen J. C., Scherf U., Kadam J., Klapwijk T. M., Nat. Mater., 2003, 12, 834CrossRefGoogle Scholar
  7. [7]
    Schon J. H., Meng H., Bao Z. N., Science, 2001, 5549, 2138CrossRefGoogle Scholar
  8. [8]
    Jones B. A., Facchetti A., Wasielewski M. R., Marks T. J., Adv. Funct. Mater., 2008, 8, 1329CrossRefGoogle Scholar
  9. [9]
    Gamerith S., Klug A., Scheiber H., Scherf U., Moderegger E., List E. J. W., Adv. Funct. Mater., 2007, 16, 3111CrossRefGoogle Scholar
  10. [10]
    Dodabalapur A., Katz H. E., Torsi L., Haddon R. C., Science, 1995, 5230, 1560CrossRefGoogle Scholar
  11. [11]
    Liu Z. H., Sun K. W., Li X. C., Li L., Zhang H. M., Chi L. F., J. Phys. Chem. Lett., 2019, 15, 4297CrossRefGoogle Scholar
  12. [12]
    Yang B., Cao N., Ju H. X., Lin H. P., Li Y. Y., Ding H. H., Ding J. Q., Zhang J. J., Peng C. C., Zhang H. M., Zhu J. F., Li Q., Chi L. F., J. Am. Chem. Soc., 2019, 1, 168CrossRefGoogle Scholar
  13. [13]
    Sun K. W., Chen A. X., Liu M. Z., Zhang H. M., Duan R. M., Ji P. H., Li L., Li Q., Li C., Zhong D. Y., Mullen K., Chi L. F., J. Am. Chem. Soc., 2018, 14, 4820CrossRefGoogle Scholar
  14. [14]
    Zhong Q. G., Ebeling D., Tschakert J., Gao Y. X., Bao D. L., Du S. X., Li C., Chi L. F., Schirmeisen A., Nat. Commun., 2018, 9, 3277CrossRefGoogle Scholar
  15. [15]
    Kohler U., Jusko O., Pietsch G., Muller B., Henzler M., Surf. Sci., 1991, 3, 321CrossRefGoogle Scholar
  16. [16]
    Kolmer M., Zuzak R., Steiner A. K., Zajac L., Engelund M., Godlewski S., Szymonski M., Amsharov K., Science, 2019, 6422, 57CrossRefGoogle Scholar
  17. [17]
    Sun K. W., Ji P. H., Zhang J. J., Wang J. X., Li X. C., Xu X., Zhang H. M., Chi L. F., Small, 2019, 15, 1804526CrossRefGoogle Scholar
  18. [18]
    Merino-Diez N., Garcia-Lekue A., Carbonell-Sanroma E., Li J. C., Corso M., Colazzo L., Sedona F., Sanchez-Portal D., Pascual J. I., de Oteyza D. G., ACS Nano, 2017, 11, 11661CrossRefGoogle Scholar
  19. [19]
    Grobis M., Khoo K. H., Yamachika R., Lu X. H., Nagaoka K., Louie S. G., Crommie M. F., Kato H., Shinohara H., Phys. Rev. Lett., 2005, 94, 136802CrossRefGoogle Scholar
  20. [20]
    Wang Y., Brar V. W., Shytov A. V., Wu Q., Regan W., Tsai H. Z., Zettl A., Levitov L. S., Crommie M. F., Nat. Phys., 2012, 9, 653CrossRefGoogle Scholar
  21. [21]
    Chizhov I., Kahn A., Scoles G., J. Cryst. Growth., 2000, 1, 449CrossRefGoogle Scholar
  22. [22]
    Sahoo R. R., Patnaik A., J. Colloid. Interf. Sci., 2003, 1, 43CrossRefGoogle Scholar
  23. [23]
    Cochrane K. A., Schiffrin A., Roussy T. S., Capsoni M., Burke S. A., Nat. Commun., 2015, 6, 8312CrossRefGoogle Scholar
  24. [24]
    Majima Y., Ogawa D., Iwamoto M., Azuma Y., Tsurumaki E., Osuka A., J. Am. Chem. Soc., 2013, 38, 14159CrossRefGoogle Scholar
  25. [25]
    Zeng C. G., Wang H. Q., Wang B., Yang J. L., Hou J. G., Appl. Phys. Lett., 2000, 22, 3595CrossRefGoogle Scholar
  26. [26]
    Mura M., Sun X., Silly F., Jonkman H. T., Briggs G. A. D., Castell M. R., Kantorovich L. N., Phys. Rev. B, 2010, 81, 195412CrossRefGoogle Scholar
  27. [27]
    Kroger J., Jensen H., Berndt R., Rurali R., Lorente N., Chem. Phys. Lett., 2007, 4, 249CrossRefGoogle Scholar
  28. [28]
    Feng M., Zhao J., Petek H., Science, 2008, 5874, 359CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2020

Authors and Affiliations

  1. 1.Institute of Functional Nano & Soft Materials(FUNSOM)Soochow UniversitySuzhouP. R. China

Personalised recommendations