Advertisement

Intercalation Effect in NiAl-layered Double Hydroxide Nanosheets for CO2 Reduction Under Visible Light

  • Peter Kipkorir
  • Ling Tan
  • Jing Ren
  • Yufei ZhaoEmail author
  • Yu-Fei SongEmail author
Article
  • 3 Downloads

Abstract

Photocatalytic reduction of CO2(CO2PR) to valuable solar fuels is considered as a promising route to the amelioration of fossil fuel conundrum and the mitigation of greenhouse gases. Although progress has been made to enhance CO2PR performance, the available method that can promote the selectivity of CO2PR products remains to be a challenge. In this work, we synthesized NO3 or CO32− intercalated NiAl-layered double hydroxide(NiAl-LDH) photocatalysts and investigated the performance of CO2PR in the presence of an electron donor and a photosensitizer. Compared with Ni2Al-CO32−, Ni2Al-NO3 exhibited superior catalytic performance in the CO2PR, and the resulted selectivity of CH4 in Ni2Al-NO3(6.1%) was 12.2 times that of Ni2Al-CO32−(0.5%) under visible light irradiation. X-Ray absorption fine structure(XAFS) result reveals a relative abundance of defects in Ni2Al-NO3, which played as active sites and promoted charge transfer in CO2PR for the efficient CH4 evolution.

Keywords

Visible light catalysis CO2 photoreduction Layered double hydroxide Intercalated anion Defect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The XAFS experiments were conducted in 1W1B beamline of the Beijing Synchrotron Radiation Facility(BSRF).

Supplementary material

40242_2020_9096_MOESM1_ESM.pdf (875 kb)
Intercalation Effect in NiAl-Layered Double Hydroxide Nanosheets for CO2 Reduction under Visible Light

References

  1. [1]
    Kim W., Yuan G., McClure B. A., Frei H., J. Am. Chem. Soc., 2014, 136, 11034CrossRefGoogle Scholar
  2. [2]
    Teramura K., Iguchi S., Mizuno Y., Shishido T., Tanaka T., Angew. Chem. Int. Ed., 2012, 51, 8008CrossRefGoogle Scholar
  3. [3]
    Chang X., Wang T., Gong J., Energy Environ. Sci., 2016, 9, 2177CrossRefGoogle Scholar
  4. [4]
    Ben S., Yuan F., Zhu Y., Chem. Res. Chinese Universities, 2016, 32(6), 1005CrossRefGoogle Scholar
  5. [5]
    Thoi V. S., Kornienko N., Margarit C. G., Yang P., Chang C. J., J. Am. Chem. Soc., 2013, 135, 14413CrossRefGoogle Scholar
  6. [6]
    Liu G., Meng X., Zhang H., Zhao G., Pang H., Wang T., Li P., Kako T., Ye J., Angew. Chem. Int. Ed., 2017, 56, 5570CrossRefGoogle Scholar
  7. [7]
    Ozin G. A., Adv. Mater., 2015, 27, 1957CrossRefGoogle Scholar
  8. [8]
    Zhao Y., Waterhouse G. I. N., Chen G., Xiong X., Wu L. Z., Tung C. H., Zhang T., Chem. Soc. Rev., 2019, 48, 1972CrossRefGoogle Scholar
  9. [9]
    Zhao Y., Jia X., Waterhouse G. I. N., Wu L. Z., Tung C. H., O’Hare D., Zhang T., Adv. Energy Mater., 2016, 6, 1501974CrossRefGoogle Scholar
  10. [10]
    Yu J., Wang Q., O’Hare D., Sun L., Chem. Soc. Rev., 2017, 46, 5950CrossRefGoogle Scholar
  11. [11]
    Wang Z., Xu S. M., Xu Y., Tan L., Wang X., Zhao Y., Duan H., Song Y. F., Chem. Sci., 2019, 10, 378CrossRefGoogle Scholar
  12. [12]
    Sun J., Wang X., Chen S., Liao Y., Gao A., Hu Y., Yang T., Xu X., Wang Y., Song J., Acta Phys. Chim. Sin., 2020, 36, 1911009Google Scholar
  13. [13]
    Das J., Das D., Parida K. M., J. Colloid Interface Sci., 2006, 301, 569CrossRefGoogle Scholar
  14. [14]
    Prasanna S. V., Vishnu K. P., Solid State Sci., 2008, 10, 260CrossRefGoogle Scholar
  15. [15]
    Mahjoubi F. Z., Khalidi A., Abdennouri M., Barka N., J. Taibah Univ. Sci., 2017, 11, 90CrossRefGoogle Scholar
  16. [16]
    Xu Y., Wang Z., Tan L., Yan H., Zhao Y., Duan H., Song Y. F., Ind. Eng. Chem. Res., 2018, 57, 5259CrossRefGoogle Scholar
  17. [17]
    Boyapati M. C., Sateesh M., Naidu S. C., Mannepalli L. K., Sreedhar B., J. Am. Chem. Soc., 2002, 124, 14127CrossRefGoogle Scholar
  18. [18]
    Wang J., Huang L., Yang R., Zhang Z., Wu J., Gao Y., Wang Q., O’Hare D., Zhong Z., Energy Environ. Sci., 2014, 7, 3478CrossRefGoogle Scholar
  19. [19]
    Tang N., He T., Liu J., Li L., Shi H., Cen W., Ye Z., Nanoscale Res. Lett., 2018, 13, 1CrossRefGoogle Scholar
  20. [20]
    Hutson N. D., Attwood B. C., Adsorption, 2008, 14, 781CrossRefGoogle Scholar
  21. [21]
    Xu Y., Wang Z., Tan L., Zhao Y., Duan H., Song Y. F., Ind. Eng. Chem. Res., 2018, 57, 10411CrossRefGoogle Scholar
  22. [22]
    Zhao Y., Zhang X., Jia X., Waterhouse G. I. N., Shi R., Zhang X., Zhan F., Tao Y., Wu L. Z., Tung C. H., O’Hare D., Zhang T., Adv. Energy Mater., 2018, 8, 1703585CrossRefGoogle Scholar
  23. [23]
    Zhao Y., Chen G., Bian T., Zhou C., Waterhouse G. I., Wu L. Z., Tung C. H., Smith L. J., O’Hare D., Zhang T., Adv. Mater., 2015, 27, 7824CrossRefGoogle Scholar
  24. [24]
    Tan L., Xu S. M., Wang Z., Xu Y., Wang X., Hao X., Bai S., Ning C., Wang Y., Zhang W., Jo Y. K., Hwang S. J., Cao X., Zheng X., Yan H., Zhao Y., Duan H., Song Y. F., Angew. Chem. Int. Ed., 2019, 58, 11860CrossRefGoogle Scholar
  25. [25]
    Xia S., Qian M., Zhou X., Meng Y., Xue J., Ni Z., Mol. Catal., 2017, 435, 118CrossRefGoogle Scholar
  26. [26]
    Zhou D., Cai Z., Bi Y., Tian W., Luo M., Zhang Q., Zhang Q., Xie Q., Wang J., Li Y., Kuang Y., Duan X., Bajdich M., Siahrostami S., Sun X., Nano Research, 2018, 11, 1358CrossRefGoogle Scholar
  27. [27]
    Wei M., Xu X., Wang X., Li F., Zhang H., Lu Y., Pu M., Evans D. G., Duan X., Eur. J. Inorg. Chem., 2006, 14, 2831CrossRefGoogle Scholar
  28. [28]
    Ravel B., Newville M., J. Synchrotron Rad., 2005, 12, 537CrossRefGoogle Scholar
  29. [29]
    Trujillano R., Holgado M. J., González J. L., Rives V., Solid State Sci., 2005, 7, 931CrossRefGoogle Scholar
  30. [30]
    Ferreira O. P., Alves O. L., Gouveia D. X., Souza F. A. G., de Paiva J. A. C., Filho J. M., J. Solid State Chem., 2004, 177, 3058CrossRefGoogle Scholar
  31. [31]
    Gao D., Zhang Y., Zhou Z., Cai F., Zhao X., Huang W., Li Y., Zhu J., Liu P., Yang F., Wang G., Bao X., J. Am. Chem. Soc., 2017, 139, 5652CrossRefGoogle Scholar
  32. [32]
    Jung H., Cho K. M., Kim K. H., Yoo H. W., Al-Saggaf A., Gereige I., Jung H. T., ACS Sustain. Chem. Eng., 2018, 6, 5718CrossRefGoogle Scholar
  33. [33]
    Wang H., Xiang X., Li F., J. Mater. Chem., 2010, 20, 3944CrossRefGoogle Scholar
  34. [34]
    Kim W., Frei H., ACS Catal., 2015, 5, 5627CrossRefGoogle Scholar
  35. [35]
    Wang S. B., Guan B. Y., Lou X. W., J. Am. Chem. Soc., 2018, 140, 5037CrossRefGoogle Scholar
  36. [36]
    Pan Y. X., You Y., Xin S., Li Y., Fu G., Cui Z., Men Y. L., Cao F. F., Yu S. H., Goodenough J. B., J. Am. Chem. Soc., 2017, 139, 4123CrossRefGoogle Scholar
  37. [37]
    Sun Y., Sun Z., Gao S., Cheng H., Liu Q., Lei F., Wei S., Xie Y., Adv. Energy Mater., 2014, 4, 1300611CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2020

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingP. R. China

Personalised recommendations