Advertisement

A Perspective: the Technical Barriers of Zn Metal Batteries

  • 11 Accesses

Abstract

Energy storage will witness a leap of understanding of new battery chemistries. Considering the safety that cannot be compromised, new aqueous batteries may surface as the solutions to meet the immense market needs, where the growth of renewables is no longer limited by the lack of storage. Aqueous Zn-metal batteries are intriguing candidates to deliver the desirable properties and exhibit competitive levelized energy cost. However, the fact that most commercial Zn batteries are primary batteries states the difficulty of reversibility for the reactions of electrodes in such batteries. This article will highlight the practical needs that guide the development of storage batteries. The causes of irreversibility for both cathode and zinc metal anode are discussed, and the potential solutions for these challenges are summarized. Zn metal batteries may one day address the storage needs, and there exists a vast potential to further improve the properties of reactions in this battery.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. [1]

    Ji X., Energy & Environment Science, 2019, 12, 3203

  2. [2]

    Henzen V., BloombergNEF Blog, 2019, https://about.bnef.com/blog/energy-storage-investments-boom-battery-costs-halve-next-decade/

  3. [3]

    Wang X., Yasukawa E., Kasuya S., Journal of the Electrochemistry Society, 2001, 148, A1058

  4. [4]

    Zeng Z., Murugesan V., Han K. S., Jiang X., Cao Y., Xiao L., Ai X., Yang H., Zhang J. G., Sushko M. L., Liu J., Nature Energy, 2018, 3, 674.

  5. [5]

    Wang J., Yamada Y., Sodeyama K., Watanabe E., Takada K., Tateyama Y., Yamada A., Nature Energy, 2018, 3, 22

  6. [6]

    Kundu D., Talaie E., Duffort V., Nazar L. F., Angewandte Chemie International Edition, 2015, 54, 3431

  7. [7]

    Delmas C, Advanced Energy Materials, 2018, 8, 1703137

  8. [8]

    Wu X., Leonard D. P., Ji X., Chemistry ofMateriasl, 2017, 29, 5031

  9. [9]

    Jian Z., Luo W., Ji X., Journal of the American Chemical Society, 2015, 137, 11566

  10. [10]

    Li Z., Bommier C., Chong Z. S., Jian Z., Surta T. W., Wang X., Xing Z., Neuefeind J. C., Stickle W. E., Dolgos M., Greaney P. A., Ji X., Advanced Energy Materials, 2017, 7, 1602894

  11. [11]

    Aurbach D., Lu Z., Schechter A., Gofer Y., Gizbar EL, Turgeman R., Cohen Y., Moshkovich M., Levi E., Nature, 2000, 407, 724

  12. [12]

    Lin M. C., Gong M., Lu B., Wu Y., Wang D. Y., Guan M., Angell M., Chen C., Yang J., Hwang B. J., Dai H., Nature, 2015, 520, 324

  13. [13]

    Shyamsunder A., Blanc L. E., Assoud A., Nazar L. F., ACS Energy Letter, 2019, 4, 2271

  14. [14]

    Zhang M., Song X., Ou X., Tang Y., Energy Storage Materials, 2019, 76, 65

  15. [15]

    Rodriguez-Perez I. A., Ji X., ACS Energy Letter, 2017, 2, 1762

  16. [16]

    Zhou X., Liu Q., Jiang C., Ji B., Ji X., Tang Y., Cheng H M., Angewandte Chemie International Edition, 2019, 58, 2

  17. [17]

    Edison T. A., Reversible Galvanic Battery, U.S. Patent 678, 722, 1901

  18. [18]

    Whittingham M. S., Science, 1976, 192, 1126

  19. [19]

    Mizushima K., Jones P., Wiseman P., Goodenough J. B., Materials Research Bulletin, 1980, 75, 783

  20. [20]

    Turney D. E., Gallaway J. W., Yadav G. G., Ramirez R., Nyce M., Banerjee S., Chen-Wiegart Y. C. K., Wang J., D’Ambrose M. J., Kolhekar S., Chemistry of Materials, 2017, 29, 4819

  21. [21]

    Wu X., Xu Y., Jiang H., Wei Z., Hong J. J., Hernandez A. S., Du E., Ji X., ACS Applied Energy Materials, 2018, 7, 3077

  22. [22]

    Wang F., Borodin O., Gao T., Fan X., Sun W., Han F., Faraone A., Dura J. A., Xu K., Wang C., Nature Materials, 2018, 17, 543

  23. [23]

    Yufit V., Tariq F., Eastwood D. S., Biton M., Wu B., Lee P. D., Brandon N. P., Joule, 2019, 3, 485

  24. [24]

    Higashi S., Lee S. W., Lee J. S., Takechi K., Cui Y., Nature Communications, 2016, 7, 11801

  25. [25]

    Li S., Jiang M., Xie Y., Xu H., Jia J., Li I., Advanced Materials, 2018, 30, 1706375

  26. [26]

    Parker J. E., Pala I. R., Chervin C. N., Long J. W., Rolison D. R., Journal of the Electrochemistry Society, 2016, 163, A351

  27. [27]

    Parker J. F., Chervin C. N., Pala I. R., Machler M., Burz M. R., Long J. W., Rolison D. R., Science, 2017, 356, 415

  28. [28]

    Xu C., Li B., Du H., Kang F., Angewandte Chemie International Edition, 2012, 57, 933

  29. [29]

    Zhang N., Cheng F., Liu Y., Zhao Q., Lei K., Chen C., Liu X., Chen J., Journal of the American Chemical Society, 2016, 138, 12894

  30. [30]

    Ma L., Li N., Long C., Dong B., Fang D., Liu Z., Zhao Y., Li X., Fan I., Chen S., Advanced Functional Materials, 2019, 29, 1906142

  31. [31]

    Zhao Q., Huang W., Luo Z., Liu L., Lu Y., Li Y., Li L., Hu J., Ma H., Chen J., Science Advances, 2018, 4, e1761

  32. [32]

    Wu X., Xu Y., Zhang C., Leonard D. P., Markir A., Lu J., Ji X., Journal of the American Chemical Society, 2019, 141, 6338

  33. [33]

    Kundu D., Adams B. D., Duffort V., Vajargah S. H., Nazar L. F., Nature Energy, 2016, 1, 16119

  34. [34]

    Sun W., Wang F., Hou S., Yang C., Fan X., Ma Z., Gao T., Han F., Hu R., Zhu M., Wang C., Journal of the American Chemical Society, 2017, 139, 9775

  35. [35]

    Yadav G. G., Gallaway J. W., Purney D. E., Nyce M., Huang J., Wei X., Banerjee S., Nature Communications, 2017, 8, 14424

  36. [36]

    Zhang C., Holoubek J., Wu X., Daniyar A., Zhu L., Chen C., Leonard D. P., Rodriguez-Perez I. A., Jiang J. X. Jiang C., Ji X., Chemical Communications, 2018, 54, 14097

  37. [37]

    Suo L., Borodin O., Gao P., Olguin M., Ho J., Fan X., Luo C., Wang C., Xu K., Science, 2015, 350, 938

  38. [38]

    Dubouis N., Lemaire P., Mirvaux B., Salager E., Deschamps M., Grimaud A., Energy & Environmental Science, 2018, 11, 3491

  39. [39]

    Zheng J., Pan G., Shan P., Liu P., Hu J., Feng Y., Yang L., Zhang M., Chen Z., Lin Y., Chem, 2018, 4, 2872

  40. [40]

    Li X., Liu L., Schlegel H. B., Journal of the American Chemical Society, 2002, 124, 9639

  41. [41]

    Dou Q., Lu Y., Su L., Zhang X., Lei S., Bu X., Liu L., Xiao D., Chen J., Shi S., Energy Storage Materials, 2019, 23, 603

  42. [42]

    Zhao J., Ren H., Liang Q., Yuan D., Xi S., Wu C., Manalastas Jr. W., Ma J., Fang W., Zheng Y., Nano Energy, 2019, 62, 94

  43. [43]

    Wu X., Markir A., Xu Y., Zhang C., Leonard D. P., Shin W., Ji X., Advanced Functional Materials, 2019, 29, 1900911

Download references

Author information

Correspondence to Xiulei Ji.

Additional information

Supported by the U.S. National Science Foundation Award(No.1551693), and the Wei Family Private Foundation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Jiang, H. A Perspective: the Technical Barriers of Zn Metal Batteries. Chem. Res. Chin. Univ. (2020) doi:10.1007/s40242-020-9092-7

Download citation

Keywords

  • Zn-metal battery
  • Storage battery
  • Zn-metal anode
  • Hydrogen evolution reaction