Polymer-based Nanogenerator for Biomedical Applications

  • Jun Li
  • Yin Long
  • Xudong WangEmail author


Polymeric devices are the workhorses of modern technologies. As one of the cutting-edge technology leveraging polymeric materials, nanogenerator that could convert micro-/nano-scale mechanical energy into electricity based on the mechanism of piezoelectricity and triboelectricity exhibited great promise for biomedical applications, owning to the simple configuration, high efficiency, decent electrical output, biomimetic property as well as excellent biocompatibility. In this manuscript, the recent representative developments of NGs in biomedical applications are reviewed. Fundamentals, such as working mechanisms underneath different NG prototypes are discussed, which is followed by innovative strategies endowing NG with biomimetic mechanical properties. Intriguing attempts to implement NG in specific biomedical fields(e.g., power source for implantable medical devices, therapeutic electric stimulator, etc.) are introduced and analyzed. This manuscript ends up with subsection summarizing existed challenges while providing potential solutions for future NG developments in biomedical engineering.


Nanogenerator Polymeric material Biomedical application 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


  1. [1]
    Cowie J. M. G., Arrighi V., Polymers: Chemistry and Physics of Modern Material, CRC Press, 2007 Google Scholar
  2. [2]
    Janata J., Josowicz M., Nature Materials, 2003, 2(1), 19PubMedCrossRefPubMedCentralGoogle Scholar
  3. [3]
    Nalwa H. S., Miyata S., Nonlinear Optics of Organic Molecules and Polymer, CRC Press, 1996 Google Scholar
  4. [4]
    Nair L. S., Laurencin C. T., Polymers as Biomaterials for Tissue Engineering and Controlled Drug Delivery, Tissue Engineering I, Springer, 2005, 47Google Scholar
  5. [5]
    Shit S. C., Shah P. M., Journal of Polymers, 2014, 2014Google Scholar
  6. [6]
    Haupt K., Mosbach K., Chemical Reviews, 2000, 100(7), 2495PubMedCrossRefPubMedCentralGoogle Scholar
  7. [7]
    Wang Z. L., Song J. H., Science, 2006, 312(5771), 242PubMedCrossRefPubMedCentralGoogle Scholar
  8. [8]
    Wang X., Song J., Liu J., Wang Z. L., Science, 2007, 316(5821), 102PubMedCrossRefPubMedCentralGoogle Scholar
  9. [9]
    Wang Z. L., ACS Nano, 2013, 7(11), 9533PubMedCrossRefPubMedCentralGoogle Scholar
  10. [10]
    Wang Z. L., Chen J., Lin L., Energy & Environmental Science, 2015, 8(8), 2250CrossRefGoogle Scholar
  11. [11]
    Khan U., Kim T. H., Ryu H., Seung W., Kim S. W., Adv. Mater., 2017, 29(1), 1603544CrossRefGoogle Scholar
  12. [12]
    Wang M., Li W., You C., Wang Q., Zeng X., Chen M., RSC Advances, 2017, 7(11), 6772CrossRefGoogle Scholar
  13. [13]
    Long Y., Yu Y., Yin X., Li J., Carlos C., Du X., Jiang Y., Wang X., Nano Energy, 2019, 57, 558PubMedCrossRefPubMedCentralGoogle Scholar
  14. [14]
    Yu Y., Wang X., Extreme Mechanics Letters, 2016, 9, 514CrossRefGoogle Scholar
  15. [15]
    Mao Y., Geng D., Liang E., Wang X., Nano Energy, 2015, 15, 227CrossRefGoogle Scholar
  16. [16]
    Seol M. L., Han J. W., Moon D. I., Meyyappan M., Nano Energy, 2017, 39, 238CrossRefGoogle Scholar
  17. [17]
    Wang Z. L., Nature News, 2017, 542(7640), 159CrossRefGoogle Scholar
  18. [18]
    Wang M., Zhang J., Tang Y., Li J., Zhang B., Liang E., Mao Y., Wang X., ACS Nano, 2018, 12(6), 6156PubMedPubMedCentralCrossRefGoogle Scholar
  19. [19]
    Yang J., Chen J., Liu Y., Yang W., Su Y., Wang Z. L., ACS Nano, 2014, 8(3), 2649PubMedCrossRefPubMedCentralGoogle Scholar
  20. [20]
    Zhang B., Tang Y., Dai R., Wang H., Sun X., Qin C., Pan Z., Liang E., Mao Y., Nano Energy, 2019, 64, 103953CrossRefGoogle Scholar
  21. [21]
    Tang Y., Zhou H., Sun X., Diao N., Wang J., Zhang B., Qin C., Liang E., Mao Y., Advanced Functional Materials, 2019, 1907893Google Scholar
  22. [22]
    Zhang X. S., Su M., Brugger J., Kim B., Nano Energy, 2017, 33, 393CrossRefGoogle Scholar
  23. [23]
    Li J., Wang X., APL Materials, 2017, 5(7), 073801PubMedPubMedCentralCrossRefGoogle Scholar
  24. [24]
    Feng H., Zhao C., Tan P., Liu R., Chen X., Li Z., Advanced Healthcare Materials, 2018, 7(10), 1701298CrossRefGoogle Scholar
  25. [25]
    Dagdeviren C., Yang B. D., Su Y., Tran P. L., Joe P., Anderson E., Xia J., Doraiswamy V., Dehdashti B., Feng X., Lu B., Poston R., Khalpey Z., Ghaffari R., Huang Y., Slepian M. J., Rogers J. A., Proc. Natl. Acad. Sci. USA, 2014, 111(5), 1927PubMedCrossRefPubMedCentralGoogle Scholar
  26. [26]
    Zheng Q., Shi B., Fan F., Wang X., Yan L., Yuan W., Wang S., Liu H., Li Z., Wang Z. L., Adv. Mater., 2014, 26(33), 5851PubMedCrossRefPubMedCentralGoogle Scholar
  27. [27]
    Dagdeviren C., Li Z., Wang Z. L., Annual Review of Biomedical Engineering, 2017, 19(1), 85PubMedCrossRefPubMedCentralGoogle Scholar
  28. [28]
    Ma Y., Zheng Q., Liu Y., Shi B., Xue X., Ji W., Liu Z., Jin Y., Zou Y., An Z., Zhang W., Wang X., Jiang W., Xu Z., Wang Z. L., Li Z., Zhang H., Nano Lett., 2016, 16(10), 6042PubMedCrossRefPubMedCentralGoogle Scholar
  29. [29]
    Cheng X. L., Xue X., Ma Y., Han M. D., Zhang W., Xu Z. Y., Zhang H., Zhang H. X., Nano Energy, 2016, 22, 453CrossRefGoogle Scholar
  30. [30]
    Zheng Q., Zhang H., Shi B., Xue X., Liu Z., Jin Y., Ma Y., Zou Y., Wang X., An Z., Tang W., Zhang W., Yang F., Liu Y., Lang X., Xu Z., Li Z., Wang Z. L., ACS Nano, 2016, 10(7), 6510PubMedCrossRefPubMedCentralGoogle Scholar
  31. [31]
    Murillo G., Blanquer A., Vargas-Estevez C., Barrios L., Ibáñez E., Nogués C., Esteve J., Adv. Mater., 2017, 29(24), 1605048CrossRefGoogle Scholar
  32. [32]
    Jin Y., Seo J., Lee J. S., Shin S., Park H. J., Min S., Cheong E., Lee T., Cho S. W., Adv. Mater., 2016, 28(34), 7365PubMedCrossRefPubMedCentralGoogle Scholar
  33. [33]
    Zheng Q., Zou Y., Zhang Y., Liu Z., Shi B., Wang X., Jin Y., Ouyang H., Li Z., Wang Z. L., Sci. Adv., 2016, 2(3), e1501478PubMedPubMedCentralCrossRefGoogle Scholar
  34. [34]
    Fan F. R., Tang W., Wang Z. L., Advanced Materials, 2016, 28(22), 4283PubMedCrossRefPubMedCentralGoogle Scholar
  35. [35]
    Wang X. D., Nano Energy, 2012, 1(1), 13CrossRefGoogle Scholar
  36. [36]
    Briscoe J., Dunn S., Nano Energy, 2015, 14, 15CrossRefGoogle Scholar
  37. [37]
    Chen J., Wang Z. L., Joule, 2017, 1(3), 480CrossRefGoogle Scholar
  38. [38]
    Wu H., Huang Y. A., Xu F., Duan Y. Q., Yin Z. P., Advanced Materials, 2016, 28(45), 9881PubMedCrossRefPubMedCentralGoogle Scholar
  39. [39]
    Busch G., Ferroelectrics, 1987, 74(1), 267CrossRefGoogle Scholar
  40. [40]
    Valasek J., Physical review, 1921, 17(4), 475CrossRefGoogle Scholar
  41. [41]
    Mason W. P., The Journal of the Acoustical Society of America, 1981, 70(6), 1561CrossRefGoogle Scholar
  42. [42]
    Wu J., Xiao D., Zhu J., Chemical Reviews, 2015, 115(7), 2559PubMedCrossRefPubMedCentralGoogle Scholar
  43. [43]
    Khan A., Abas Z., Kim H. S., Oh I. K., Smart Materials and Structures, 2016, 25(5), 053002CrossRefGoogle Scholar
  44. [44]
    Caliò R., Rongala U. B., Camboni D., Milazzo M., Stefanini C., de Petris G., Oddo C. M., Sensors, 2014, 14(3), 4755PubMedCrossRefPubMedCentralGoogle Scholar
  45. [45]
    Uchino K., The Development of Piezoelectric Materials and the New Perspective, Advanced Piezoelectric Materials, Woodhead Publishing, 2017, 1Google Scholar
  46. [46]
    Zhang S., Li F., Jiang X., Kim J., Luo J., Geng X., Progress in Materials Science, 2015, 68, 1PubMedPubMedCentralCrossRefGoogle Scholar
  47. [47]
    Acosta M., Novak N., Rojas V., Patel S., Vaish R., Koruza J., Rossetti Jr G., Rödel J., Applied Physics Reviews, 2017, 4(4), 041305CrossRefGoogle Scholar
  48. [48]
    Martins P., Lopes A., Lanceros-Mendez S., Progress in Polymer Science, 2014, 39(4), 683CrossRefGoogle Scholar
  49. [49]
    Li F., Cabral M. J., Xu B., Cheng Z., Dickey E. C., LeBeau J. M., Wang J., Luo J., Taylor S., Hackenberger W., Science, 2019, 364(6437), 264PubMedCrossRefPubMedCentralGoogle Scholar
  50. [50]
    Yang Z., Zhou S., Zu J., Inman D., Joule, 2018, 2(4), 642CrossRefGoogle Scholar
  51. [51]
    Pan S., Zhang Z., Friction, 2019, 7(1), 2CrossRefGoogle Scholar
  52. [52]
    Matsusaka S., Maruyama H., Matsuyama T., Ghadiri M., Chemical Engineering Science, 2010, 65(22), 5781CrossRefGoogle Scholar
  53. [53]
    Wang Z. L., Faraday Discussions, 2015, 176, 447CrossRefGoogle Scholar
  54. [54]
    Pan S., Zhang Z., Journal of Applied Physics, 2017, 122(14), 144302CrossRefGoogle Scholar
  55. [55]
    McCarty L. S., Whitesides G. M., Angewandte Chemie International Edition, 2008, 47(12), 2188PubMedCrossRefPubMedCentralGoogle Scholar
  56. [56]
    McCarty L. S., Winkleman A., Whitesides G. M., Journal of the American Chemical Society, 2007, 129(13), 4075PubMedCrossRefPubMedCentralGoogle Scholar
  57. [57]
    Someya T., Bao Z., Malliaras G. G., Nature, 2016, 540(7633), 379PubMedCrossRefPubMedCentralGoogle Scholar
  58. [58]
    Fung Y. C., Biomechanics: Mechanical Properties of Living Tissues, Springer Science & Business Media, 2013 Google Scholar
  59. [59]
    Miller K., Chinzei K., Journal of Biomechanics, 2002, 35(4), 483PubMedCrossRefPubMedCentralGoogle Scholar
  60. [60]
    Inaoka T., Shintaku H., Nakagawa T., Kawano S., Ogita H., Sakamoto T., Hamanishi S., Wada H., Ito J., Proc. Natl. Acad. Sci. USA, 2011, 108(45), 18390PubMedCrossRefPubMedCentralGoogle Scholar
  61. [61]
    Cha S., Kim S. M., Kim H., Ku J., Sohn J. I., Park Y. J., Song B. G., Jung M. H., Lee E. K., Choi B. L., Park J. J., Wang Z. L., Kim J. M., Kim K., Nano Lett., 2011, 11(12), 5142PubMedCrossRefPubMedCentralGoogle Scholar
  62. [62]
    Wang Y. R., Zheng J. M., Ren G. Y., Zhang P. H., Xu C., Smart Materials and Structures, 2011, 20(4), 045009CrossRefGoogle Scholar
  63. [63]
    Mao Y. C., Zhao P., McConohy G., Yang H., Tong Y. X., Wang X. D., Advanced Energy Materials, 2014, 4(7), 1301624CrossRefGoogle Scholar
  64. [64]
    Sun C. L., Shi J., Bayerl D. J., Wang X. D., Energy & Environmental Science, 2011, 4(11), 4508CrossRefGoogle Scholar
  65. [65]
    Zhang Z. Y., Yao C. H., Yu Y. H., Hong Z. L., Zhi M. J., Wang X. D., Advanced Functional Materials, 2016, 26(37), 6760PubMedPubMedCentralCrossRefGoogle Scholar
  66. [66]
    Yu Y., Sun H., Orbay H., Chen F., England C. G., Cai W., Wang X., Nano Energy, 2016, 27, 275PubMedPubMedCentralCrossRefGoogle Scholar
  67. [67]
    Li J., Kang L., Yu Y., Long Y., Jeffery J. J., Cai W., Wang X., Nano Energy, 2018, 51, 728PubMedPubMedCentralCrossRefGoogle Scholar
  68. [68]
    Donelan J. M., Li Q., Naing V., Hoffer J., Weber D., Kuo A. D., Science, 2008, 319(5864), 807PubMedCrossRefPubMedCentralGoogle Scholar
  69. [69]
    Li J., Kang L., Long Y., Wei H., Yu Y., Wang Y., Ferreira C. A., Yao G., Zhang Z., Carlos C., ACS Applied Materials & Interfaces, 2018, 10(49), 42030CrossRefGoogle Scholar
  70. [70]
    Murillo G., Blanquer A., Vargas-Estevez C., Barrios L., Ibáñez E., Nogués C., Esteve J., Advanced Materials, 2017, 29(24), 1605048CrossRefGoogle Scholar
  71. [71]
    Guo W., Zhang X., Yu X., Wang S., Qiu J., Tang W., Li L., Liu H., Wang Z. L., ACS Nano, 2016, 10(5), 5086PubMedCrossRefPubMedCentralGoogle Scholar
  72. [72]
    Jin Y., Seo J., Lee J. S., Shin S., Park H. J., Min S., Cheong E., Lee T., Cho S. W., Advanced Materials, 2016, 28(34), 7365PubMedCrossRefPubMedCentralGoogle Scholar
  73. [73]
    Long Y., Wei H., Li J., Yao G., Yu B., Ni D., Gibson A. L., Lan X., Jiang Y., Cai W., ACS Nano, 2018, 12(12), 12533PubMedPubMedCentralCrossRefGoogle Scholar
  74. [74]
    Yao G., Kang L., Li J., Long Y., Wei H., Ferreira C. A., Jeffery J. J., Lin Y., Cai W., Wang X., Nature Communications, 2018, 9(1), 5349PubMedPubMedCentralCrossRefGoogle Scholar
  75. [75]
    Yao G., Jiang D., Li J., Kang L., Chen S., Long Y., Wang Y., Huang P., Lin Y., Cai W., ACS Nano, 2019, 13(11), 12345PubMedPubMedCentralCrossRefGoogle Scholar
  76. [76]
    Luo J., Wang Z. L., Energy Storage Materials, 2019, 23, 617CrossRefGoogle Scholar
  77. [77]
    Mulpuru S. K., Madhavan M., McLeod C. J., Cha Y. M., Friedman P. A., Journal of the American College of Cardiology, 2017, 69(2), 189PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2020

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations