Chemical Research in Chinese Universities

, Volume 36, Issue 1, pp 120–126 | Cite as

Nanostructured BiVO4 Derived from Bi-MOF for Enhanced Visible-light Photodegradation

  • Jianfei Chen
  • Xiaoyu Chen
  • Xing Zhang
  • Yao Yuan
  • Ruyi Bi
  • Feifei You
  • Zumin WangEmail author
  • Ranbo YuEmail author


BiVO4, a promising visible-light responding photocatalyst, has aroused extensive research interest because of inexpensiveness and excellent chemical stability. However, its main drawback is the poor photoinduced charge-transfer dynamics. Building nanostructures is an effective way to tackle this problem. Herein, we put forward a new method to prepare nanostructured BiVO4 from Bi-based metal-organic frameworks[Bi-MOF(CAU-17)] precursor. The as-prepared material has a rod-like morphology inherited from the Bi-MOF sacrificial template and consists of small nanoparticle as building blocks. Compared with its counterparts prepared by conventional methods, MOF-derived nanostructured BiVO4 shows better light absorption ability, narrower bandgap, and improved electrical conductivity as well as reduced recombination. Consequently, BiVO4 nanostructure demonstrates high photocatalytic activity under visible light towards the degradation of methylene blue. Methylene blue can be degraded up to 90% within 30 min with a reaction rate constant of 0.058 min−1. Moreover, the cycling stability of the catalyst is excellent to withstand unchanged degradation efficiency for at least 5 cycles.


BiVO4 Nanostructure Metal-organic framework Ternary metal oxide Photocatalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2020_9080_MOESM1_ESM.pdf (3.3 mb)
Nanostructured BiVO4 derived from Bi-MOF for enhanced visible-light photodegradation


  1. [1]
    Trandafilović L. V., Jovanović D. Zhang J., X., Ptasińska S., Dramićanin M. D., Appl. Catal., B, 2017, 203, 740CrossRefGoogle Scholar
  2. [2]
    Kumar S., Sharma V., Bhattacharyya K., Krishnan V., Mater. Chem. Front., 2017, 1(6), 1093CrossRefGoogle Scholar
  3. [3]
    Chen F., Yang Q., Yao F. B., Ma Y. H., Wang Y. L., Li X. M., Wang D. B., Wang L. L., Yu H. Q., Chem. Eng. J., 2019, 355, 624CrossRefGoogle Scholar
  4. [4]
    Li Y. B., Zhang H. M., Liu P. R., Wang D., Li Y., Zhao H. J., Small, 2013, 9(19), 3336PubMedGoogle Scholar
  5. [5]
    Zalfani M., Hu Z. Y., Yu W. B., Mahdouani M., Bourguiga R., Wu M., Li Y., Tendeloo G. V., Djaoued Y., Su B. L., Appl. Catal., B, 2017, 205, 121CrossRefGoogle Scholar
  6. [6]
    Tokunaga S., Kato H., Kudo A., Chem. Mater., 2001, 13(12), 4624CrossRefGoogle Scholar
  7. [7]
    Lin S. J., Du W. T., Tong L. G., Ji T., Jiao X. X., Chem. Res. Chinese Universities, 2019, 35(1), 120CrossRefGoogle Scholar
  8. [8]
    Kudo A., Ueda K., Kato H., Mikami I., Catal. Lett., 1998, 53(3/4), 229CrossRefGoogle Scholar
  9. [9]
    Wienand H., Ostertag W., Bittler K., Yellow Pigment Containing Bismuth Vanadate and Having the Composition BiVO4·xBi2MoO6·yBi2WO6, US Patent 4, 455, 174, 1984 Google Scholar
  10. [10]
    Zhang B., Zhang H. P., Wang Z. Y., Zhang X. Y., Qin X. Y., Dai Y., Liu Y. Y., Wang P., Li Y. J., Huang B. B., Appl. Catal. B-Environ, 2017, 211, 258CrossRefGoogle Scholar
  11. [11]
    Parmar K. P. S., Kang H. J., Bist A., Dua P., Jang J. S., Lee J. S., ChemSusChem, 2012, 5(10), 1926CrossRefGoogle Scholar
  12. [12]
    Wang H. L., Zhang L. S., Chen Z. G., Hu J. Q., Li S. J., Wang Z. H., Liu J. S., Wang X. C., Chem. Soc. Rev., 2014, 43(15), 5234CrossRefGoogle Scholar
  13. [13]
    Zong L. B., Cui P. Z., Qin F. Y., Zhao K., Wang Z. M., Yu R. B., Mater. Res. Bull., 2017, 86, 44CrossRefGoogle Scholar
  14. [14]
    Cui P. Z., Wang J. L., Wang Z. M., Chen J., Xing X. R., Wang L. Z., Yu R. B., Nano Res., 2016, 9(3), 593CrossRefGoogle Scholar
  15. [15]
    Qin F. Y., Cui P. Z., Hu L., Wang Z. M., Chen J., Xing X. R., Wang H., Yu R. B., Mater. Res. Bull., 2018, 99, 331CrossRefGoogle Scholar
  16. [16]
    Shang M., Wang W. Z., Zhou L., Sun S. M., Yin W. Z., J. Hazard. Mater., 2009, 172(1), 338CrossRefGoogle Scholar
  17. [17]
    Wang Y. Z., Hu C., Chin. Environ. Sci., 1998, 19(7), 40Google Scholar
  18. [18]
    Lu Y., Luo Y. S., Xiao H. M., Fu S. Y., CrystEngComm, 2014, 16(27)Google Scholar
  19. [19]
    Wang H., Xiao L. G., Wang C., Lin B., Lyu S., Chu X. F., Chi Y. D., Yang X. T., Wang X. Y., Chem. Res. Chinese Universities, 2019, 35(4), 667CrossRefGoogle Scholar
  20. [20]
    Jiao C. W., Wang Z. M., Zhao X. X., Wang H., Wang J., Yu R. B., Wang D., Angew. Chem. Int. Ed., 2019, 131(4), 1008CrossRefGoogle Scholar
  21. [21]
    Xu X. D., Cao R. G., Jeong S. Y., Cho J. P., Nano Lett., 2012, 12(9), 4988CrossRefGoogle Scholar
  22. [22]
    Huang Z. D., Gong Z., Kang Q., Fang Y. W., Yang X. S., Liu R. Q., Lin X. J., Feng X. M., Ma Y. W., Wang D., Mater. Chem. Front., 2017, 1(10), 1975CrossRefGoogle Scholar
  23. [23]
    Zhang Y. F., Qiu L. G., Yuan Y. P., Zhu Y. J., Jiang X., Xiao J. D., Appl. Catal., B, 2014, 144, 863CrossRefGoogle Scholar
  24. [24]
    Shen Y., Bao L. W., Sun F. Z., Hu T. L., Mater. Chem. Front., 2019, 3, 2363CrossRefGoogle Scholar
  25. [25]
    Ouyang H., Chen N., Chang G. J., Zhao X. L., Sun Y. Y., Chen S., Zhang H. W., Yang D. J., Angew. Chem. Int. Ed., 2018, 57(40), 13197CrossRefGoogle Scholar
  26. [26]
    Zhu S. R., Wu M. K., Zhao W. N., Liu P. F., Yi F. Y., Li G. C., Tao K., Han L., Cryst. Growth Des., 2017, 17(5), 2309CrossRefGoogle Scholar
  27. [27]
    Zhang Y., Wang D., Zhang X. T., Chen Y., Kong L. N., Chen P., Wang Y. L., Wang C. H., Wang L. L., Liu Y. C., Electrochim. Acta, 2016, 195, 51CrossRefGoogle Scholar
  28. [28]
    He W. H., Wang R. R., Zhang L., Zhu J., Xiang X., Li F., J. Mater. Chem. A, 2015, 3(35), 17977CrossRefGoogle Scholar
  29. [29]
    Han Q., Wang Z. M., Chen X. Y., Jiao C. W., Li H. Y., Yu R. B., Chem. Res. Chinese Universities, 2019, 35(4), 564CrossRefGoogle Scholar
  30. [30]
    Luo W. J., Yang Z. S., Li Z. S., Zhang J. Y., Liu J. G., Zhao Z. Y., Wang Z. Q., Yan S. C., Yu T., Zou Z. G., Energy Environ. Sci., 2011, 4(10), 4046CrossRefGoogle Scholar
  31. [31]
    Ju P., Wang P., Li B., Fan H., Ai S. Y., Zhang D., Wang Y., Chem. Eng. J., 2014, 236, 430CrossRefGoogle Scholar
  32. [32]
    Xue S. Y., Wu C. Z., Pu S. Y., Hou Y. Q., Tong T., Yang G., Qin Z. J., Wang Z. M., Bao J. M., Environ. Pollut., 2019, 250, 338CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2020

Authors and Affiliations

  1. 1.Department of Physical Chemistry, School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingP. R. China
  2. 2.State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
  3. 3.Key Laboratory of Advanced Material Processing & MoldMinistry of Education Zhengzhou UniversityZhengzhouP. R. China

Personalised recommendations