Chemical Research in Chinese Universities

, Volume 36, Issue 1, pp 74–80 | Cite as

Zinc-coordination Polymers Based on a Donor-acceptor Mix-ligand System: Syntheses, Crystal Structures and Photophysical Properties

  • Binbin Qian
  • Ze ChangEmail author
  • Xian-He Bu


By employing an electron-rich tricarboxytriphenyl amine as donor ligand and electron-deficient 2,4,6-tris(pyridin-4-yl)-1,3,5-triazine as acceptor ligand to assemble with Zn2+ ions, three new coordination polymers were successfully synthesized and characterized systematically. Three compounds with different structures were obtained by regulating the reaction solvent, and the effect of the reaction solvent on the synthesis of crystals was explored. Furthermore, the photophysical properties of the compounds were investigated.


Coordination polymer Donor-acceptor interaction Tricarboxytriphenyl amine 2,4,6-Tris(pyridin-4-yl)-1,3,5-triazine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2020_9079_MOESM1_ESM.pdf (1.4 mb)
Zinc-Coordination Polymers based on a Donor-Acceptor Mix-ligand System: Syntheses, Crystal Structures and Photophysical Properties


  1. [1]
    Murray L. J., Dinca M., Long J. R., Chem. Soc. Rev., 2009, 38(5), 1294CrossRefGoogle Scholar
  2. [2]
    Savage M., Cheng Y. G., Easun T. L., Eyley J. E., Argent S. P., Warren M. R., Lewis W., Murray C., Tang C. C., Frogley M. D., Cinque G., Sun J. L., Rudić S., Murder R. T., Benham M. J., Fitch A. N., Blake A. J., Ramirez-Cuesta A. J., Yang S. H., Schröder M., Adv. Mater., 2016, 28(39), 8705CrossRefGoogle Scholar
  3. [3]
    Ma S. Q., Zhou H. C., Chem. Commun., 2010, 46(1), 44CrossRefGoogle Scholar
  4. [4]
    Silva P., Vilela S. M. F., Tome J. P. C., Paz F. A. A., Chem. Soc. Rev., 2015, 44(19), 677CrossRefGoogle Scholar
  5. [5]
    Ahmed I., Jhung S. H., Chem. Eng. J., 2017, 310, 197CrossRefGoogle Scholar
  6. [6]
    Stassen I., Burtch N. C., Talin A. A., Falcaro P., Allendorf M. D., Ameloot R., Chem. Soc. Rev., 2017, 46(11), 3185CrossRefGoogle Scholar
  7. [7]
    Liao Z., Xia T., Yu E., Cui Y., Crystals, 2018, 8(9), 338CrossRefGoogle Scholar
  8. [8]
    Lin R. B., Liu S. Y., Ye J. W., Li X. Y., Zhang J. P., Adv. Sci., 2016, 3(7), 1500434CrossRefGoogle Scholar
  9. [9]
    Wang H. Y., Su J., Ma J. P., Yu F., Leong C. F., D’Alessandro D. M., Kurmoo M., Zuo J. L., Inorg. Chem., 2019, 58(13), 8657CrossRefGoogle Scholar
  10. [10]
    Liu J., Chen L., Cui H., Zhang J., Zhang L., Su C.Y., Chem. Soc. Rev., 2014, 43(16), 6011CrossRefGoogle Scholar
  11. [11]
    Zhao D., Timmons D. J., Yuan D. Q., Zhou H. C., Acc. Chem. Res., 2011, 44(2), 123CrossRefGoogle Scholar
  12. [12]
    Zhang Y., Meng X. Q., Ding H. J., Wang X., Yu M. H., Zhang S. M., Chang Z., Bu X. H., ACS Appl. Mater. Inter., 2019, 11(23), 20995CrossRefGoogle Scholar
  13. [13]
    Paz F. A. A., Klinowski J., Vilela S. M. F., Tome J. P. C., Cavaleiro J. A. S., Rocha J., Chem. Soc. Rev., 2012, 41(3), 1088CrossRefGoogle Scholar
  14. [14]
    Li N., Chang Z., Chen Q., Yin J., Bu X. H., Prog. Chem., 2019, 31(1), 10Google Scholar
  15. [15]
    Wang X., Zhang Y., Chang Z., Huang H., Liu X. T., Xu J., Bu X. H., Chin. J. Chem., 2019, 37(9), 871CrossRefGoogle Scholar
  16. [16]
    Liu X. T., Zhao B., Zhang Y. H., Chen S. S., Zhu J., Chang Z., Bu X. H., Cryst. Growth Des., 2019, 19(2), 1391CrossRefGoogle Scholar
  17. [17]
    Liu X. T., Wang K., Chang Z., Zhang Y. H., Xu J., Zhao Y. S., Bu X. H., Angew. Chem. Int. Ed., 2019, 58(39), 13890CrossRefGoogle Scholar
  18. [18]
    Zhang D. S., Gao Q., Chang Z., Liu X. T., Zhao B., Xuan Z. H., Hu T. L., Zhang Y. H., Zhu D., Bu X. H., Adv. Mater., 2018, 30(50), 1804175Google Scholar
  19. [19]
    Zhao B., Li N., Wang X., Chang Z., Bu X. H., ACS Appl. Mater. Inter., 2017, 9(3), 2662CrossRefGoogle Scholar
  20. [20]
    Pullen S., Clever G. H., Acc. Chem. Res., 2018, 51(12), 3052CrossRefGoogle Scholar
  21. [21]
    Park H. J., Suh M. P., Chem. Eur. J., 2008, 14(29), 8812CrossRefGoogle Scholar
  22. [22]
    Chen D. M., Tian J. Y., Liu C. S., Inorg. Chem., 2016, 55(17), 8892CrossRefGoogle Scholar
  23. [23]
    Anderson H. L., Anderson S., Sanders J. K. M., J. Chem. Soc. Perkin. Trans 1, 1995, (18), 2231Google Scholar
  24. [24]
    Dailey S., Feast W. J., Peace R. J., Sage A. C., Till S., Wood E. L., J. Mater. Chem., 2001, 11(9), 2238CrossRefGoogle Scholar
  25. [25]
    Sheldrick G. M., Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, 64, 112CrossRefGoogle Scholar
  26. [26]
    Spek A. L., J. Appl. Crystallogr., 2003, 36, 7CrossRefGoogle Scholar
  27. [27]
    Lu W. G., Su C. Y., Lu T. B., Jiang L., Chen J. M., J. Am. Chem. Soc., 2006, 128(1), 34CrossRefGoogle Scholar
  28. [28]
    Zhang C., Sun L., Yan Y., Li J., Song X., Liu Y., Liang Z., Dalton Trans., 2015, 44(1), 230CrossRefGoogle Scholar
  29. [29]
    Wu P., Wang J., He C., Zhang X., Wang Y., Liu T., Duan C., Adv. Funct. Mater., 2012, 22(8), 1698CrossRefGoogle Scholar
  30. [30]
    Wu H., Zhang S., Li M., Qiao C., Sun L., Wei Q., Xie G., Chen S., Gao S., ChemistrySelect, 2016, 1(12), 3335CrossRefGoogle Scholar
  31. [31]
    Shen Y., Yang X. F., Zhu H. B., Zhao Y., Li W. S., Dalton Trans., 2015, 44(33), 14741CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2020

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-based Material ChemistryNankai UniversityTianjinP. R. China
  2. 2.State Key Laboratory of Elemento-Organic Chemistry, College of ChemistryNankai UniversityTianjinP. R. China
  3. 3.Collaborative Innovation Center of Chemical Science and Engineering(Tianjin)TianjinP. R. China
  4. 4.State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure, Chinese Academy of SciencesFuzhouP. R. China

Personalised recommendations