pH-Responsive Reversible DNA Self-assembly Mediated by Zwitterion

  • Yuhang Dong
  • Xiaorui Pan
  • Feng LiEmail author
  • Dayong YangEmail author


pH-Responsive DNA assembles have drawn growing attentions owing to their great potential in diverse areas. However, pH-responsive motifs are limited to specific DNA sequences and annealing is usually needed for DNA assemblies; therefore, sequence-independent pH-responsive DNA assembly at room temperature is highly desired as a more general way. Here, we propose a reversible pH-responsive DNA assembly strategy at room-temperature using zwitterion, glycine betaine(GB), as charge-regulation molecules. The reversible assembly and disassembly of DNA nanostructures could be achieved by alternatively regulating the acidic and basic environments in the presence of GB, respectively. In an acidic environment, carboxylate group in GB was protonated and GB was positively charged, which facilitated to shield the inherent electrostatic repulsion of DNA strands. Molecular simulation showed that the newly formed carboxyl group in protonated GB could form hydrogen bonds with bases in DNA to promote the assembly of DNA strands. In a basic solution, carboxylate group in GB was deprotonated and GB was neutral, thus inducing the dissociation of DNA assembly.


DNA nanotechnology Dynamic assembly pH responsiveness Zwitterion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Zhang D. Y., Seelig G., Nat. Chem., 2011, 3(2), 103CrossRefGoogle Scholar
  2. [2]
    Liu X., Lu C. H., Willner I., Acc. Chem. Res., 2014, 47(6), 1673CrossRefGoogle Scholar
  3. [3]
    Modi S., Nizak C., Surana S., Halder S., Krishnan Y., Nat. Nanotechnol., 2013, 8(6), 459CrossRefGoogle Scholar
  4. [4]
    Han X. G., Zhou Z. H., Yang F., Deng Z. X., J. Am. Chem. Soc., 2008, 130(44), 14414CrossRefGoogle Scholar
  5. [5]
    Wang C., Ren J., Qu X., Chem. Commun., 2011, 47(5), 1428CrossRefGoogle Scholar
  6. [6]
    Wang Z. G., Elbaz J., Willner I., Nano Lett., 2011, 11(1), 304CrossRefGoogle Scholar
  7. [7]
    Qi X. J., Lu C. H., Liu X., Shimron S., Yang H. H., Willner I., Nano Lett., 2013, 13(10), 4920CrossRefGoogle Scholar
  8. [8]
    Amodio A., Adedeji A. F., Castronovo M., Franco E., Ricci F., J. Am. Chem. Soc., 2016, 138(39), 12735CrossRefGoogle Scholar
  9. [9]
    Green L. N., Amodio A., Subramanian H. K. K., Ricci F., Franco E., Nano Lett., 2017, 17(12), 7283CrossRefGoogle Scholar
  10. [10]
    Guo W., Lu C. H., Orbach R., Wang F., Qi X. J., Cecconello A., Seliktar D., Willner I., Adv. Mater., 2015, 27(1), 73CrossRefGoogle Scholar
  11. [11]
    Hu Y., Guo W., Kahn J. S., Aleman-Garcia M. A., Willner I., Angew. Chem. Int. Ed., 2016, 55(13), 4210CrossRefGoogle Scholar
  12. [12]
    Cheng E., Xing Y., Chen P., Yang Y., Sun Y., Zhou D., Xu L., Fan Q., Liu D., Angew. Chem. Int. Ed., 2009, 48(41), 7660CrossRefGoogle Scholar
  13. [13]
    Idili A., Vallee-Belisle A., Ricci F., J. Am. Chem. Soc., 2014, 136(16), 5836CrossRefGoogle Scholar
  14. [14]
    Li F., Tang J., Geng J., Luo D., Yang D., Prog. Polym. Sci., 2019, 98Google Scholar
  15. [15]
    Fu W., Tang L., Wei G., Fang L., Zeng J., Zhan R., Liu X., Zuo H., Huang C. Z., Mao C., Angew. Chem. Int. Ed., 2019, 58(46), 16405CrossRefGoogle Scholar
  16. [16]
    Chen H., Zhang H., Pan J., Cha T. G., Li S., Andreasson J., Choi J. H., ACS Nano, 2016, 10(5), 4989CrossRefGoogle Scholar
  17. [17]
    Jungmann R., Liedl T., Sobey T. L., Shih W., Simmel F. C., J. Am. Chem. Soc., 2008, 130(31), 10062CrossRefGoogle Scholar
  18. [18]
    Zhang Z., Song J., Besenbacher F., Dong M., Gothelf K. V., Angew. Chem. Int. Ed., 2013, 52(35), 9219CrossRefGoogle Scholar
  19. [19]
    Rees W. A., Yager T. D., Korte J., von Hippel P. H., Biochemistry, 1993, 32(1), 137CrossRefGoogle Scholar
  20. [20]
    Henke W., Herdel K., Jung K., Schnorr D., Loening S. A., Nucleic Acids Res., 1997, 25(19), 3957CrossRefGoogle Scholar
  21. [21]
    Kopielski A., Schneider A., Csaki A., Fritzsche W., Nanoscale, 2015, 7(5), 2102CrossRefGoogle Scholar
  22. [22]
    Li Y., Song L., Wang B., He J., Li Y., Deng Z., Mao C., Angew. Chem. Int. Ed., 2018, 57(23), 6892CrossRefGoogle Scholar
  23. [23]
    Govrin R., Tcherner S., Obstbaum T., Sivan U., J. Am. Chem. Soc., 2018, 140(43), 14206CrossRefGoogle Scholar
  24. [24]
    Zipper H., Brunner H., Bernhagen J., Vitzthum F., Nucleic Acids Res., 2004, 32(12), e103CrossRefGoogle Scholar
  25. [25]
    Yang L., Yao C., Li F., Dong Y., Zhang Z., Yang D., Small, 2018, 14(16), e1800185CrossRefGoogle Scholar
  26. [26]
    Li F., Dong Y., Zhang Z., Lv M., Wang Z., Ruan X., Yang D., Biosens. Bioelectron., 2018, 117, 562CrossRefGoogle Scholar
  27. [27]
    Dong Y., Yao C., Wang Z., Luo D., Yang D., Science, 2019, 21, 228Google Scholar
  28. [28]
    Colotte M., Coudy D., Tuffet S., Bonnet J., Biopreserv. Biobank., 2011, 9(1), 47CrossRefGoogle Scholar
  29. [29]
    Ma C., Wang Y., Zhang P., Shi C., Anal. Biochem., 2017, 530, 1CrossRefGoogle Scholar
  30. [30]
    Guinn E. J., Pegram L. M., Capp M. W., Pollock M. N., Record M. T. Jr., Proc. Natl. Acad. Sci. USA, 2011, 108(41), 16932CrossRefGoogle Scholar
  31. [31]
    Shao Q., Jiang S., Adv. Mater., 2015, 27(1), 15CrossRefGoogle Scholar
  32. [32]
    Portella G., Germann M. W., Hud N. V., Orozco M., J. Am. Chem. Soc., 2014, 136(8), 3075CrossRefGoogle Scholar
  33. [33]
    Nakano M., Tateishi-Karimata H., Tanaka S., Sugimoto N., J. Phys. Chem. B, 2014, 118(2), 379CrossRefGoogle Scholar
  34. [34]
    Sarkar S., Maity A., Sarma Phukon A., Ghosh S., Chakrabarti R., J. Phys. Chem. B, 2019, 123(1), 47CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2020

Authors and Affiliations

  1. 1.Frontier Science Center for Synthetic Biology, Key Laboratory of Systems BioengineeringMinistry of Education, School of Chemical Engineering and Technology, Tianjin UniversityTianjinP. R. China

Personalised recommendations