Advertisement

Chemical Research in Chinese Universities

, Volume 36, Issue 1, pp 91–96 | Cite as

Cu2SnSe3/CNTs Composite as a Promising Anode Material for Sodium-ion Batteries

  • Zuojun Yang
  • Xueyan WuEmail author
  • Chao Ma
  • Chengcheng Hou
  • Shumao Xu
  • Xiao WeiEmail author
  • Kaixue Wang
  • Jiesheng Chen
Article
  • 9 Downloads

Abstract

Metal selenides as anode materials for sodium-ion batteries have attracted considerable attention owing to their high theoretical specific capacities and variable composition and structures. However, the achievement of long cycle life and superior rate performance is challenging for these selenide materials due to the volume variation upon cycling. Herein, a composite composed of a new binary-metal selenide[Cu2SnSe3(CSS)] and carbon nanotubes(CNTs) was constructed via a hydrothermal process followed by calcination at 600 °C. Benefited from the unique structure of binary-metal selenide and the conductive network of CNTs, the Cu2SnSe3/carbon nanotubes(CSS/CNT) composite exhibits excellent electrochemical performance when used as an anode material for sodium-ion batteries. A reversible specific capacity of 399 mA·h/g can be maintained at a current density of 100 mA/g even after 100 cycles. This work provides a promising strategy for rational design of binary-metal selenides upon delicate crystal phase control as electrode materials.

Keywords

Cu2SnSe3 Binary-metal selenide Carbon nanotube Anode material Sodium-ion battery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2020_9061_MOESM1_ESM.pdf (531 kb)
2020 Special Issue Cu2SnSe3/CNTs Composite as a Promising Anode Material for Sodium-ion Batteries

References

  1. [1]
    Larcher D., Tarascon J. M., Nature Chemistry, 2015, 7(1), 19PubMedGoogle Scholar
  2. [2]
    Kim S. W., Seo D. H., Ma X., Ceder G., Kang K., Advanced Energy Materials, 2012, 2(7), 710Google Scholar
  3. [3]
    Hong S. Y., Kim Y., Park Y., Choi A., Choi N. S., Lee K. T., Energy & Environmental Science, 2013, 6(7), 2067Google Scholar
  4. [4]
    Sun Y., Zhao L., Pan H., Lu X., Gu L., Hu Y. S., Li H., Armand M., Ikuhara Y., Chen L., Huang X., Nature Communications, 2013, 4, 1870PubMedGoogle Scholar
  5. [5]
    Wang Y., Yu X., Xu S., Bai J., Xiao R., Hu Y. S., Li H., Yang X. Q., Chen L., Huang X., Nature Communications, 2013, 4, 2365PubMedGoogle Scholar
  6. [6]
    Chen C., Xu H., Zhou T., Guo Z., Chen L., Yan M., Mai L., Hu P., Cheng S., Huang Y., Xie J., Advanced Energy Materials, 2016, 6(13), 1600322Google Scholar
  7. [7]
    Liu J., Wen Y., van Aken P. A., Maier J., Yu Y., Nano Letters, 2014, 14(11), 6387PubMedGoogle Scholar
  8. [8]
    Wu L., Bresser D., Buchholz D., Giffin G. A., Castro C. R., Ochel A., Passerini S., Advanced Energy Materials, 2015, 5(2), 1401142Google Scholar
  9. [9]
    Hwang J. Y., Myung S. T., Lee J. H., Abouimrane A., Belharouak I., Sun Y. K., Nano Energy, 2015, 16, 218Google Scholar
  10. [10]
    Shen F., Luo W., Dai J., Yao Y., Zhu M., Hitz E., Tang Y., Chen Y., Sprenkle V. L., Li X., Hu L., Advanced Energy Materials, 2016, 6(14), 1600377Google Scholar
  11. [11]
    Yuan S., Huang X. L., Ma D. L., Wang H. G., Meng F. Z., Zhang X. B., Advanced Materials, 2014, 26(14), 2273PubMedGoogle Scholar
  12. [12]
    Kim Y., Kim Y., Choi A., Woo S., Mok D., Choi N. S., Jung Y. S., Ryu J. H., Oh S. M., Lee K. T., Advanced Materials, 2014, 26(24), 4139PubMedGoogle Scholar
  13. [13]
    Liu J., Kopold P., Wu C., van Aken P. A., Maier J., Yu Y., Energy & Environmental Science, 2015, 8(12), 3531Google Scholar
  14. [14]
    Hu Y. Y., Bai Y. L., Wu X. Y., Wei X., Wang K. X., Chen J. S., Journal of Alloys and Compounds, 2019, 797, 1126Google Scholar
  15. [15]
    Ma C., Zhao X., Kang L., Wang K. X., Chen J. S., Zhang W., Liu J., Angewandte Chemie International Edition, 2018, 57(29), 8865PubMedGoogle Scholar
  16. [16]
    Zhang J. P., Wu X. Y., Wei X., Xu S. M., Ma C., Shu M. H., Wang K. X., Chen J. S., Dalton Transactions, 2018, 47(45), 16155PubMedGoogle Scholar
  17. [17]
    Ko Y. N., Choi S. H., Kang Y. C., ACS Applied Materials & Interfaces, 2016, 8(10), 6449Google Scholar
  18. [18]
    Zhang Z., Shi X., Yang X., Fu Y., Zhang K., Lai Y., Li J., ACS Applied Materials & Interfaces, 2016, 8(22), 13849Google Scholar
  19. [19]
    Li Y., Xu Y., Wang Z., Bai Y., Zhang K., Dong R., Gao Y., Ni Q., Wu F., Liu Y., Wu C., Advanced Energy Materials, 2018, 1800927Google Scholar
  20. [20]
    Xu X., Liu J., Liu J., Ouyang L., Hu R., Wang H., Yang L., Zhu M., Advanced Functional Materials, 2018, 28(16), 1707573Google Scholar
  21. [21]
    Li D., Zhou J., Chen X., Song H., ACS Applied Materials & Interfaces, 2018, 10(26), 22841Google Scholar
  22. [22]
    Liu H., Guo H., Liu B., Liang M., Lv Z., Adair K. R., Sun X., Advanced Functional Materials, 2018, 28(19), 1707480Google Scholar
  23. [23]
    Fang Y., Yu X. Y., Lou X. W. D., Angewandte Chemie International Edition, 2018, 57(31), 9859PubMedGoogle Scholar
  24. [24]
    Niu F., Yang J., Wang N., Zhang D., Fan W., Yang J., Qian Y., Advanced Functional Materials, 2017, 27(23), 1700522Google Scholar
  25. [25]
    Ge P., Cao X., Hou H., Li S., Ji X., ACS Applied Materials & Interfaces, 2017, 9(40), 34979Google Scholar
  26. [26]
    Ko Y. N., Choi S. H., Park S. B., Kang Y. C., Nanoscale, 2014, 6(18), 10511PubMedGoogle Scholar
  27. [27]
    Ge P., Li S., Xu L., Zou K., Gao X., Cao X., Zou G., Hou H., Ji X., Advanced Energy Materials,2019, 9(1), 1803035Google Scholar
  28. [28]
    Fang Y., Yu X. Y., Lou X. W. D., Advanced Materials, 2018, 30(21), e1706668PubMedGoogle Scholar
  29. [29]
    Chen R., Li S., Liu J., Li Y., Ma F., Liang J., Chen X., Miao Z., Han J., Wang T., Li Q., Electrochimica Acta, 2018, 282, 973Google Scholar
  30. [30]
    Lou Y., Zhang M., Li C., Chen C., Liang C., Shi Z., Zhang D., Chen G., Chen X. B., Feng S., ACS Applied Materials & Interfaces, 2018, 10(2), 1810Google Scholar
  31. [31]
    Hou B. H., Wang Y. Y., Liu D. S., Gu Z. Y., Feng X., Fan H., Zhang T., Lü C., Wu X. L., Advanced Functional Materials, 2018, 28(47), 1805444Google Scholar
  32. [32]
    Qu B., Zhang M., Lei D., Zeng Y., Chen Y., Chen L., Li Q., Wang Y., Wang T., Nanoscale, 2011, 3(9), 3646PubMedGoogle Scholar
  33. [33]
    Qu B., Li H., Zhang M., Mei L., Chen L., Wang Y., Li Q., Wang T., Nanoscale, 2011, 3(10), 4389PubMedGoogle Scholar
  34. [34]
    Marcano G., Rincón C, Marın G., Tovar R., Delgado G., Journal of Applied Physics, 2002, 92(4), 1811Google Scholar
  35. [35]
    Kim K. M., Tampo H., Shibata H., Niki S., Thin Solid Films, 2013, 536, 111Google Scholar
  36. [36]
    Kim K. M., Tampo H., Shibata H., Niki S., Materials Letters, 2014, 116, 61Google Scholar
  37. [37]
    Delgado G. E., Mora A. J., Marcano G., Rincón C., Materials Research Bulletin, 2003, 38(15), 1949Google Scholar
  38. [38]
    Chu Y., Guo L., Xi B., Feng Z., Wu F., Lin Y., Liu J., Sun D., Feng J., Qian Y., Xiong S., Advanced Materials, 2018, 30(6), 1705788Google Scholar
  39. [39]
    Jun J., Yun Z., Bing K. L., Narasimalu S., Qingyu Y., Kun Z., Journal of Materials Chemistry A, 2018, 6, 15710Google Scholar
  40. [40]
    Xiao K., Zhou L., Shao M., Wei M., Journal of Materials Chemistry A, 2018, 6, 7585Google Scholar
  41. [41]
    Bai Y. L., Liu Y. S., Ma C., Wang K. X., Chen J. S., ACS Nano, 2018, 12(11), 11503PubMedGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2020

Authors and Affiliations

  • Zuojun Yang
    • 1
  • Xueyan Wu
    • 1
    Email author
  • Chao Ma
    • 1
  • Chengcheng Hou
    • 1
  • Shumao Xu
    • 1
  • Xiao Wei
    • 1
    Email author
  • Kaixue Wang
    • 1
  • Jiesheng Chen
    • 1
  1. 1.Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiP. R. China

Personalised recommendations