Chemical Research in Chinese Universities

, Volume 36, Issue 1, pp 97–104 | Cite as

Boosting the Energy Density of Flexible Asymmetric Supercapacitor with Three Dimensional Fe2O3 Composite Brush Anode

  • Yuan GaoEmail author
  • Ruitao Zhou
  • Dongrui Wang
  • Qiyao Huang
  • Ching-Hsiang Cheng
  • Zijian ZhengEmail author


Flexible asymmetric supercapacitor is fabricated with three dimensional(3D) Fe2O3/Ni(OH)2 composite brush anode and Ni(OH)2/MoO2 honeycomb cathode. Particularly for 3D composite brush anode, a layer of thin Fe2O3 film is firmly adhered on a 3D Ni brush current collector with the assist of Ni(OH)2, functioning as both adherence layer and pseudocapacitive active material. The unique 3D Ni brush current collector possesses large surface area and stretching architecture, which facilitate to achieve the composite anode with high gravimetric capacitance of 2158 F/g. In terms of cathode, Ni(OH)2 and MoO2 have a synergistic effect to improve the specific capacitance, and the resulting Ni(OH)2/MoO2 honeycomb cathode shows a very high gravimetric capacitance up to 3264 F/g. The asymmetric supercapacitor(ASC) has balanced cathode and anode, and exhibits an ultrahigh gravimetric capacitance of 1427 F/g and an energy density of 476 Wh/kg. The energy density of ASC is 3–4 times higher than those of other reported aqueous electrolyte-based supercapacitors and even comparable to that of commercial lithium ion batteries. The device also shows marginal capacitance degradation after 1000 cycles’ bending test, demonstrating its potency in the application of flexible energy storage devices.


Asymmetric supercapacitor High energy density Flexible device Three dimensional(3D) Fe2O3 Composite anode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2020_9052_MOESM1_ESM.pdf (1.1 mb)
Boosting the energy density of flexible asymmetric supercapacitors with three-dimensional Fe2O3 composite brush anode


  1. [1]
    Hu, L., Pasta, M., La Mantia F., Cui, L., Jeong, S., Deshazer, H. D., Choi, J. W., Han, S. M., Cui, Y., Nano Lett, 2010, 10, 708PubMedGoogle Scholar
  2. [2]
    Xu, Y., Lin, Z., Huang, X., Liu, Y., Huang, Y., Duan, X., ACS Nano, 2013, 7, 4042PubMedGoogle Scholar
  3. [3]
    Shao, Y., El-Kady, M. F., Wang, L. I., Zhang, Q., Li, Y., Wang H., Mousavi, M. F., Kaner, R. B., Chem. Soc. Rev., 2015, 44, 3639PubMedGoogle Scholar
  4. [4]
    Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K., Cai, W., Ferreira, P. I., Pirkle, A., Wallace, R. M., Cychosz, K. A., Thommes, M., Science, 2011, 332, 1537PubMedGoogle Scholar
  5. [5]
    Meng, C., Liu, C., Chen, L., Hu, C., Fan, S., Nano Lett, 2010, 10, 4025PubMedGoogle Scholar
  6. [6]
    Nyholm, L., Nyström G., Mihranyan, A., Stramme, M., Adv. Mater., 2011, 23, 3751PubMedGoogle Scholar
  7. [7]
    Lu, X. F., Chen, X. Y., Zhou, W., Tong, Y. X., Li, G. F., ACS Appl. Mater. Interfaces, 2015, 7, 14843PubMedGoogle Scholar
  8. [8]
    Snook, G. A., Kao, F., Best, A. S., J. Power Sources, 2011, 796, 1Google Scholar
  9. [9]
    Yang, P., Ding, Y., Lin, Z., Chen, Z., Li, Y., Qiang, F., Ebrahimi, M., Mai, W., Wong, C. P., Wang, Z. L., Nano Lett., 2014, 14, 731PubMedGoogle Scholar
  10. [10]
    Xiao, I., Wan, L., Yang, S., Xiao R., Wang, S., Nano Lett., 2014, 14, 831PubMedGoogle Scholar
  11. [11]
    Yu, L., Zhang, G., Yuan, C., Lou X. W. D., Chem. Comm., 2013, 49, 137PubMedGoogle Scholar
  12. [12]
    Huang, Q., Wang, D., Zheng, Z., Adv. Energy Mater, 2016, 6, 1600783Google Scholar
  13. [13]
    Liu, L., Yu, Y., Yan, C., Li, K., Zheng, Z., Nat. Commun., 2015, 6, 7260PubMedPubMedCentralGoogle Scholar
  14. [14]
    Li L., Xu, I., Lei, J., Zhang, J., McLarnon, F., Wei, Z., Li, N., Pan, F., J. Mater. Chem. A, 2015, 3, 1953Google Scholar
  15. [15]
    Ren, X., Guo, C., Xu, L., Li, T., Hou, L., Wei, Y., ACS Appl. Mater. Interfaces, 2015, 7, 19930PubMedGoogle Scholar
  16. [16]
    Zhu, Y., Cao, C., Tao, S., Chu, W., Wu, Z., Li, Y., Sci. Rep., 2014, 4, 5787PubMedPubMedCentralGoogle Scholar
  17. [17]
    Yan, J., Sun, W., Wei, T., Zhang, Q., Fan, Z., Wei, E., J. Mater. Chem., 2012, 22, 11494Google Scholar
  18. [18]
    Yang, G. W., Xu, C. L., Li, H. L., Chem. Comm., 2008, 6537Google Scholar
  19. [19]
    Lee, J. S., Shin, D. H., Jang, I., Energy Environ. Sci., 2015, 8, 3030Google Scholar
  20. [20]
    Gao, Y., Jin, H., Lin, Q., Li, X., Tavakoli, M. M., Leung, S. E., Tang, W. M., Zhou, L., Chan H. L. W., Fan, Z., J. Mater. Chem. A, 2015, 3, 10199Google Scholar
  21. [21]
    Chang, J., Jin, M., Yao, E., Kim, T. H., Le, V. T., Yue, H., Gunes, E., Li, B., Ghosh, A., Xie S., Adv. Funct. Mater., 2013, 23, 5074Google Scholar
  22. [22]
    Chen, W., Rakhi, R., Hu, L., Xie, X., Cui, Y., Alshareef, H. N., Nano Lett., 2011, 77, 5165Google Scholar
  23. [23]
    Cui, H., Wang, M., Ren, W., Zhao, Y., Funct. Mater. Lett., 2014, 7, 1450002Google Scholar
  24. [24]
    Rakhi, R., Chen, W., Cha, D., Alshareef, H. N., Nano Lett., 2012, 12, 2559PubMedGoogle Scholar
  25. [25]
    Hercule, K. M., Wei, Q., Khan, A. M., Zhao, Y., Tian, X., Mai, L., Nano Lett., 2013, 13, 5685PubMedGoogle Scholar
  26. [26]
    Gao, E., Zhang, L., Huang, S., Mater. Lett., 2010, 64, 537Google Scholar
  27. [27]
    Kong, D., Ren, W., Cheng, C., Wang, Y., Huang, Z., Yang H. Y., ACS Appl. Mater. Interfaces, 2015, 7, 21334PubMedGoogle Scholar
  28. [28]
    Li, L., He, E., Gai, S., Zhang, S., Gao, P., Zhang, M., Chen, Y., Yang, P., CrystEngComm, 2014, 16, 9873Google Scholar
  29. [29]
    Jin W. H., Cao, G. T., Sun, J. Y., J. Power Sources, 2008, 175, 686Google Scholar
  30. [30]
    Zhai, T., Lu, X., Ling, Y., Yu, M., Wang, G., Liu, T., Liang, C., Tong, Y., Li, Y., Adv. Mater., 2014, 26, 5869PubMedGoogle Scholar
  31. [31]
    Xiao, X., Peng, Z., Chen, C., Zhang, C., Beidaghi, M., Yang, Z., Wu, N., Huang, Y., Miao, L., Gogotsi, Y., Nano Energy, 2014, 9, 355Google Scholar
  32. [32]
    Chen, L., Hou, Y., Kang, J., Hirata, A., Chen, M., J. Mater. Chem. A, 2014, 2, 8448Google Scholar
  33. [33]
    Nithya, V., Aral, N. S., J. Power Sources, 2016, 327, 297Google Scholar
  34. [34]
    Barik F., Jena, B. K., Dash A., Mohapatra, M., RSC Adv, 2014, 4, 18827Google Scholar
  35. [35]
    Zheng, X., Yan, X., Sun, Y., Yu, Y., Zhang, G., Shen, Y., Liang, Q., Liao, Q., Zhang, Y., J. Colloid Interface Sci., 2016, 466, 291PubMedGoogle Scholar
  36. [36]
    Gao, Y., Wu, D., Wang, T., Jia, D., Xia, W., Lv, Y., Cao, Y., Tan, Y., Liu, P., Electrochim. Acta, 2016, 797, 275Google Scholar
  37. [37]
    Islam, M. M., Cardillo, D., Akhter, T., Aboutalebi, S. H., Liu, H. K., Konstantinov, K., Dou, S. X., Part. Part. Syst. Char, 2016, 33, 27Google Scholar
  38. [38]
    Liao, Q., Li, N., Jin, S., Yang, G., Wang, C., ACS Nano, 2015, 9, 5310PubMedGoogle Scholar
  39. [39]
    Xu H., Zhang, C., Zhou, W., Li G. F., Nanoscale, 2015, 7, 16932PubMedGoogle Scholar
  40. [40]
    Yan, J., Fan, Z., Sun, W., Ning, G., Wei, T., Zhang, Q., Zhang, R., Zhi, L., Wei, F., Adv. Funct. Mater., 2012, 22, 2632Google Scholar
  41. [41]
    Hou, S., Zhang, G., Zeng, W., Zhu, J., Gong, E., Li, E., Duan, H., ACS Appl. Mater. Interfaces, 2014, 6, 13564PubMedGoogle Scholar
  42. [42]
    Liu, X., Chang H., Li, Y., Huck, W. T., Zheng, Z., ACS Appl. Mater. Interfaces, 2010, 2, 529PubMedGoogle Scholar
  43. [43]
    Zhao, Z., Yan, C., Liu, Z., Fu, X., Peng, L. M., Hu, Y., Zheng, Z., Adv. Mater., 2016, 28, 10267PubMedGoogle Scholar
  44. [44]
    Yang, Y., Huang, Q., Niu, L., Wang, D., Yan, C., She, Y., Zheng, Z., Adv. Mater., 2017, 29, 1606679Google Scholar
  45. [45]
    Li, C. W., Ciston, J., Kanan, M. W., Nature, 2014, 508, 504PubMedGoogle Scholar
  46. [46]
    Sun, S., Lang, J., Wang F., Kong, L., Li, X., Yan, X., J. Mater. Chem. A, 2014, 2, 14550Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2020

Authors and Affiliations

  1. 1.Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and ClothingThe Hong Kong Polytechnic UniversityHong Kong SARP. R. China
  2. 2.Department of Industrial and Systems EngineeringThe Hong Kong Polytechnic UniversityHong Kong SARP. R. China

Personalised recommendations