Skip to main content
Log in

Efficient Construction of Highly-fused Diperylene Bismides by Cu/Oxalic Diamide-promoted Zipper-mode Double C-H Activation

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Copper/oxalic diamide-promoted dimerization of tetrachlorinated perylene bisimide to construct highly-fused diperylene bisimides through Ullmann coupling and zipper-mode double C-H activation has been developed in this study. This one-step reaction combining homocoupling with C-H activation proceeded smoothly under the action of inexpensive metal-ligand system. This protocol is expected to expand the available synthetic tools for condensed ring systems of perylene bisimide(PBIs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gupta R. K., Sudhakar A. A., Langmuir, 2019, 35, 2455

    Article  CAS  PubMed  Google Scholar 

  2. Chal P., Shit A., Nandi A. K., Chemistry Select, 2018, 3, 3993

    CAS  Google Scholar 

  3. Jones B. A., Ahrens M. J., Yoon M., Facchetti A., Marks T. J., Wasielewski M. R., Angew. Chem., Int. Ed., 2004, 43, 6363

    Article  CAS  Google Scholar 

  4. Lv A., Puniredd S. R., Zhang J., Li Z., Zhu H., Jiang W., Dong H., He Y., Jiang L., Li Y., Pisula W., Meng Q., Hu W., Wang Z., Adv. Mater., 2012, 24, 2626

    Article  CAS  PubMed  Google Scholar 

  5. Li Y., Wang Z., Qian H., Shi Y., Hu W., Org. Lett., 2008, 10, 529

    Article  CAS  PubMed  Google Scholar 

  6. Gsänger M., Oh J. H., Könemann M., Höffken H. W., Krause A. M., Bao Z., Würthner F., Angew. Chem., Int. Ed., 2010, 49, 740

    Article  CAS  Google Scholar 

  7. Meng D., Liu G., Xiao C., Shi Y., Zhang L., Jiang L., Baldridge K. K., Li Y., Siegel J. S., Wang Z., J. Am. Chem. Soc., 2019, 141, 5402

    Article  CAS  PubMed  Google Scholar 

  8. Xin R., Feng J., Zeng C., Jiang W., Zhang L., Meng D., Ren Z., Wang Z., Yan S., ACS Appl. Mater. Interfaces, 2017, 9, 2739

    Article  CAS  PubMed  Google Scholar 

  9. Liu X., Du X., Wang J., Duan C., Tang X., Heumueller T., Liu G., Li Y., Wang Z., Wang J., Liu F., Li N., Brabec C. J., Huang F., Cao Y., Adv. Energy Mater., 2018, 8, 1801699

    Article  CAS  Google Scholar 

  10. Gupta R. K., Dey A., Singh A., Iyer P. K., Sudhakar A. A., ACS Appl. Electron. Mater., 2019, 1, 1378

    Article  CAS  Google Scholar 

  11. Lin Z., Li C., Meng D., Li Y., Wang Z., Chem.-Asian J., 2016, 11, 2695

    Article  CAS  PubMed  Google Scholar 

  12. Cotlet M., Vosch T., Habuchi S., Well T., Müllen K., Hofkens J., Schryver F., J. Am. Chem. Soc., 2005, 127, 9760

    Article  CAS  PubMed  Google Scholar 

  13. Schönamsgruber J., Hirsch A., Eur. J. Org. Chem., 2015, 2015, 2167

    Article  CAS  Google Scholar 

  14. Yan Q., Zhao D., Org. Lett., 2009, 11, 3426

    Article  CAS  PubMed  Google Scholar 

  15. Qian H., Wang Z., Yue W., Zhu D., J. Am. Chem. Soc., 2007, 129, 10664

    Article  CAS  PubMed  Google Scholar 

  16. Shi Y., Qian H., Li Y., Yue W., Wang Z., Org. Lett., 2008, 10, 2337

    Article  CAS  PubMed  Google Scholar 

  17. Qian H., Negri F., Wang C., Wang Z., J. Am. Chem. Soc., 2008, 130, 17970

    Article  CAS  PubMed  Google Scholar 

  18. Zhen Y., Qian H., Xiang J., Qu J., Wang Z., Org. Lett., 2009, 11, 3084

    Article  CAS  PubMed  Google Scholar 

  19. Zhen Y., Wang C., Wang Z., Chem. Commun., 2010, 46, 1926

    Article  CAS  Google Scholar 

  20. Lu X., Dong H., He P., Zhang X., Liu J., Meng Q., Jiang L., Wang Z., Zhen Y., Hu W., Asian J. Org. Chem., 2013, 2, 558

    Article  CAS  Google Scholar 

  21. Zhang J., Tan L., Jiang W., Hu W., Wang Z., J. Mater. Chem. C, 2013, 1, 3200

    Article  CAS  Google Scholar 

  22. Zhou T., Li B., Wang B., Chem. Commun., 2017, 53, 6343

    Article  CAS  Google Scholar 

  23. Naota T., Takaya H., Murahashi S. I., Chem. Rev., 1998, 98, 2599

    Article  CAS  PubMed  Google Scholar 

  24. Chen H., Schlecht S., Semple T. C., Hartwig J. F., Science, 2000, 287, 1995

    Article  CAS  PubMed  Google Scholar 

  25. Key H. M., Dydio P., Clark D. S., Hartwig J. F., Nature, 2016, 534, 534

    Article  CAS  PubMed  Google Scholar 

  26. Gandeepan P., Müller T., Zell D., Cera G., Warratz S., Ackermann L., Chem. Rev., 2019, 119, 2192

    Article  CAS  PubMed  Google Scholar 

  27. Sun C. L., Li B. J., Shi Z. J., Chem. Commun., 2010, 46, 677

    Article  CAS  Google Scholar 

  28. Wang H., Pesciaioli F., Oliveira C. A., Warratz S., Ackermann L., Angew. Chem., Int. Ed., 2017, 56, 15063

    Article  CAS  Google Scholar 

  29. Liu X., Mao G., Qiao J., Xu C., Liu H., Ma J., Sun Z., Chu W., Org. Chem. Front., 2019, 6, 1189

    Article  CAS  Google Scholar 

  30. Phipps R. J., Gaunt M. J., Science, 2009, 323, 1593

    Article  CAS  PubMed  Google Scholar 

  31. Chen Z., Jiang Y., Zhang L., Guo Y., Ma D., J. Am. Chem. Soc., 2019, 141, 3541

    Article  CAS  PubMed  Google Scholar 

  32. Lewis E. A., Marcinkowski M. D., Murphy C. J., Liriano M. L., Therrien A. J., Pronschinske A., Sykes E. C. H., Chem. Comm., 2017, 53, 7816

    Article  CAS  PubMed  Google Scholar 

  33. Zhang H., Cai Q., Ma D., J. Org. Chem., 2005, 70, 5164

    Article  CAS  PubMed  Google Scholar 

  34. Cai Q., He G., Ma D., J. Org. Chem., 2006, 71, 5268

    Article  CAS  PubMed  Google Scholar 

  35. Cai Q., Zou B., Ma D., Angew. Chem., Int. Ed., 2006, 45, 1276

    Article  CAS  Google Scholar 

  36. Xia S., Gan L., Wang K., Li Z., Ma D., J. Am. Chem. Soc., 2016, 138, 13493

    Article  CAS  PubMed  Google Scholar 

  37. Ma D., Cai Q., Acc. Chem. Res., 2008, 41, 1450

    Article  CAS  PubMed  Google Scholar 

  38. Nunomoto S., Kawakami Y., Yamashita Y., J. Org. Chem., 1983, 48, 1912

    Article  CAS  Google Scholar 

  39. Li H., Cai G. X., Shi Z. J., Dalton Transactions, 2010, 39, 10442

    Article  CAS  PubMed  Google Scholar 

  40. Posner G. H., An Introduction to Synthesis Using Organocopper Reagents, Wiley, Weinheim, 1980

    Google Scholar 

  41. Sharma P., Rohilla S., Jain N., J. Org. Chem., 2015, 80, 4116

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonggang Zhen, Huanli Dong or Wenping Hu.

Additional information

Supported by the National Natural Science Foundation of China(Nos.51503037, 51822308, 51733004, 21661132006), the Program for New Century Excellent Talents in Fujian Province Universities, China, the Fund of the Youth Innovation Promotion Association of the Chinese Academy of Sciences and the Education and Scientific Research Project for Young and Middle-aged Teachers in Fujian Province, China (No.JT180633)..

Supporting Information

40242_2020_9051_MOESM1_ESM.pdf

Efficient Construction of Highly-fused Diperylene Bismides by Cu/Oxalic Diamide-promoted Zipper-mode Double C-H Activation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Lin, H., Zhen, Y. et al. Efficient Construction of Highly-fused Diperylene Bismides by Cu/Oxalic Diamide-promoted Zipper-mode Double C-H Activation. Chem. Res. Chin. Univ. 36, 110–114 (2020). https://doi.org/10.1007/s40242-020-9051-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-020-9051-3

Keywords

Navigation