Advertisement

Preparation and Characterization of CaO/ZnO Core-shell Structured Nanoparticles

  • 4 Accesses

Abstract

Residual bacteria and microleakage in a complicated root canal can often result in reinfection of the periapical tissues. To promote the antibacterial and sealing effects of a root canal filling, core-shell structured CaO/ZnO nanospheres were synthesized using a precipitation method based on a traditional root canal sealer, zinc oxide-eugenol(ZOE). The obtained CaO/ZnO particles had a size of 80–90 nm and a core-shell structure. The film thickness, flow rate, pH, and calcium ion release of the core-shell structured CaO/ZnO nanospheres-eugenol paste were tested. The pH and calcium ion release results showed a slight increase in the prepared nanospheres, with a flow rate of 24.22 mm and a formed film thickness of 30 µm, which are basically consistent with ISO 6876:2001 standards(regarding dental root canal sealing materials). Cytotoxicity tests showed that the cytocompatibility of the CaO/ZnO nanospheres-eugenol paste was much higher than that of the ZOE or iRoot SP groups(P<0.05). A comparison of the sealing ability and antibacterial activity showed that the core-shell structured CaO/ZnO nanospheres-eugenol paste had significantly better effects than the ZOE and iRoot SP sealers(P<0.05). The core-shell structured CaO/ZnO nanosphere paste displayed excellent sealing and antibacterial properties, and it has promising application potential in endodontics.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. [1]

    Theerthagiri J., Salla S., Senthil R. A., Nithyadharseni P., Madankumar A., Arunachalam P., Maiyalagan T., Kim H. S., Nanotechnology, 2019, 30(39), 392001

  2. [2]

    Reddy P. V. L., Adisa I. O., Rawat S., Kim B., Barrios A. C., Medina-Velo I. A., Hernandez-Viezcas J. A., Peralta-Videa J. R., Gardea-Torresdey J. L., Environ. Pollut., 2018, 241, 1175

  3. [3]

    Theerthagiri J., Chandrasekaran S., Salla S., Elakkiya V., Senthil R. A., Nithyadharseni P., Maiyalagan T., Micheal K., Ayeshamariam A., Arasu M. V., Al-Dhabi N. A., Kim H. S., Journal of Solid State Chemistry, 2018, 267, 35

  4. [4]

    Theerthagiri J., Karuppasamy K., Durai G., Rana A., Arunachalam P., Sangeetha K., Kuppusami P., Kim H. S., Nanomaterials(Basel), 2018, 8(4), 256

  5. [5]

    Qi K., Cheng B., Yu J., Ho W., Journal of Alloys and Compounds, 2017, 727, 792

  6. [6]

    Soyoon S., Ramadoss A., Saravanakumar B., Kim S. J., Journal of Electroanalytical Chemistry, 2014, 717/718, 90

  7. [7]

    Alam U., Khan A., Raza W., Khan A., Bahnemann D., Muneer M., Catalysis Today, 2017, 284, 169

  8. [8]

    Shirzad-Siboni M., Jonidi-Jafari A., Farzadkia M., Esrafili A., Gholami M., J. Environ. Manage., 2017, 186(Pt 1), 1

  9. [9]

    Featherstone J. D. B., J. Am. Dent. Asso., 2000, 131, 887

  10. [10]

    Selwitz R. H., Ismail A. I., Pitts N. B., Pakistan Dental Review, 2007, 369(9555), 51

  11. [11]

    Taubman M. A., Nash D. A., Nature Reviews Immunology, 2006, 6(7), 555

  12. [12]

    Qu T., Jing J., Ren Y., Ma C., Feng J. Q., Yu Q., Liu X., Acta Biomaterialia, 2015, 16, 60

  13. [13]

    Alves M. J., Grenho L., Lopes C., Borges J., Vaz F., Va, I. P., Fernandes M. H., Mater. Sci. Eng. C: Mater. Biol. Appl., 2018, 92, 840

  14. [14]

    Ghorpade R., Sundaram K., Hegde V., Materials Today: Proceedings, 2018, 5(2), 5664

  15. [15]

    Prado M., Menezes M. S. O., Gomes B., Barbosa C. A. M., Athias L., Simao R. A., Mater. Sci. Eng. C: Mater. Biol. Appl., 2016, 68, 343

  16. [16]

    Heyder M., Kranz S., Volpel A., Pfister W., Watts D. C., Jandt K. D., Sigusch B. W., Dent. Mater., 2013, 29(5), 542

  17. [17]

    Wang L., Xie X., Li C., Liu H., Zhang K., Zhou Y., Chang X., Xu H. H. K., J. Dent., 2017, 60, 25

  18. [18]

    Dornelles N. B. J., Collares F. M., Genari B., de Souza B. G., Samuel S. M. W., Arthur R. A., Visioli F., Guterres S. S., Leitune V. C. B., J. Den., 2018, 68, 28

  19. [19]

    Desai S., Chandler N., J. Endod., 2009, 35(4), 475

  20. [20]

    Kawamoto R., Kurokawa H., Takubo C., Shimamura Y., Yoshida T., Miyazaki M., J. Dent., 2008, 36(11), 959

  21. [21]

    Loushine B. A., Bryan T. E., Looney S. W., Gillen B. M., Loushine R. J., Weller R. N., Pashley D. H., Tay F. R., J. Endod., 2011, 37(5), 673

  22. [22]

    Sun Z., Zhou X., Luo W., Yue Q., Zhang Y., Cheng X., Li W., Kong B., Deng Y., Zhao D., Nano Today, 2016, 11(4), 464

  23. [23]

    Maryam J. M. Z., Neda N., Majed M., Amir H. N., Contemporary Clinical Dentistry, 2014, 5(1), 20

  24. [24]

    Salz U., Poppe D., Sbicego S., Roulet J. F., Int. Endod. J., 2009, 42(12), 1084

  25. [25]

    Thanh L. D. T., Trung D. D., Chinh N. D., Thanh B. B. T., Hong H. S., van Duy N., Hoa N. D., van Hieu N., Current Applied Physics, 2013, 13(8), 1637

  26. [26]

    Dag Ørstavik, Endodontic Topics, 2005, 12(1), 25

  27. [27]

    Amin S. A., Seyam R. S., El-Samman M. A., J. Endod., 2012, 38(5), 696

  28. [28]

    Karagoz-Kucukay I., Kucukay S., Bayirli G., J. Endod., 1993, 19(7), 362

  29. [29]

    Mohammadi Z., Dummer P. M., Int. Endod. J., 2011, 44(8), 697

  30. [30]

    Candeiro G. T., Correia F. C., Duarte M. A., Ribeiro-Siqueira D. C., Gavini G., J. Endod., 2012, 38(6), 842

  31. [31]

    Huang F. M., Chou L. S., Chou M. Y., Chang Y. C., J. Biomed. Mater. Res. B: Appl. Biomater., 2005, 74(2), 768

  32. [32]

    Gencoglu N., Sener G., Omurtag G. Z., Tozan A., Uslu B., Arbak S., Helvacioglu D., Acta Histochem., 2010, 112(6), 567

  33. [33]

    Camps J., Pommel L., Bukiet F., About I., Dent. Mater., 2004, 20(10), 915

  34. [34]

    Han B., Wang X., Liu J., Liang F., Qu X., Yang Z., Gao X., J. Endod., 2013, 39(8), 1030

  35. [35]

    Shantiaee Y., Dianat O., Janani A., Kolahi A. G., Iran Endod. J., 2010, 5(1), 1

  36. [36]

    Li T., Akao M., Takagi M., J. Mater. Sci. Mater. Med., 1998, 9(11), 631

  37. [37]

    Gomez-Ortiz N., De la Rosa-Garcia S., Gonzalez-Gomez W., Soria-Castro M., Quintana P., Oskam G., Ortega-Morales B., ACS Appl. Mater. Interfaces, 2013, 5(5), 1556

Download references

Author information

Correspondence to Xiangwei Li.

Additional information

Supported by the Jilin Provincial Health Department Research Projects, China(No.2017J065) and the Jilin Provincial Education Department Research Projects, China(No.JJKH20180229KJ).

Electronic Supplementary Material for

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liu, Y., Peng, X. et al. Preparation and Characterization of CaO/ZnO Core-shell Structured Nanoparticles. Chem. Res. Chin. Univ. (2020) doi:10.1007/s40242-020-9029-1

Download citation

Keywords

  • CaO
  • ZnO
  • Antibacterial activity
  • Core-shell structured nanosphere
  • Microleakage