Chemical Research in Chinese Universities

, Volume 35, Issue 6, pp 1119–1123 | Cite as

Influence of Nucleotide-biased Fluorescence Emissions of SYBR Green II on the Result Consistence of Rolling Circle Amplification

  • Bin Zhang
  • Jiquan Jiang
  • Ying Yuan
  • Yifu GuanEmail author


The fluorescence dye SYBR Green II(SG II) has been frequently used in rolling circle amplification(RCA) based analyses of nucleic acids. However, a good amount of inconsistencies have been reported in regards the quality and reproducibility of RCA reactions. To properly examine this experimental issue, here we utilized a series of synthetic oligonucleotides and circular templates to investigate the impact of SG II in RCA reactions. The results indicate that SG II enables a strong fluorescence signal only when complexing with guanosine(G) residue. In RCA reactions, long single-stranded RCA products, enriched with G residues, result in higher fluorescence emission when compared with the addition of other nucleotide residues. These results suggest that the nucleotide composition of the reaction can affect the amplification results and, eventually, can lead to inconsistent fluorescence of the RCA products. This work indicates that particular attention should be given when circular templates are designed for the quantitative analysis of nucleic acids, to further allow the signal reproducibility of RCA-based experiments.


Rolling circle amplification SYBR Green II Nucleotide-biased Fluorescence emission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_9223_MOESM1_ESM.pdf (463 kb)
Nucleotide-biased fluorescence emissions of SYBR Green II influence the result consistence of rolling circle amplification based analyses


  1. [1]
    Dong H., Wang C., Xiong Y., Lu H., Ju H., Zhang X., Biosens. Bio-electron., 2013, 41, 348CrossRefGoogle Scholar
  2. [2]
    Ali M. M., Li F., Zhang Z., Zhang K., Kang D. K., Ankrum J. A., Le X. C., Zhao W., Chem. Soc. Rev., 2014, 43(10), 3324CrossRefGoogle Scholar
  3. [3]
    Xu W., Xie X., Li D., Yang Z., Li T., Liu X., Small, 2012, 8(12), 1846CrossRefGoogle Scholar
  4. [4]
    Polidoros A. N., Pasentsis K., Tsaftaris A. S., Biotechniques, 2006, 41(1), 35CrossRefGoogle Scholar
  5. [5]
    Kaocharoen S., Wang B., Tsui K. M., Trilles L., Kong F., Meyer W., Electrophoresis, 2008, 29(15), 3183PubMedGoogle Scholar
  6. [6]
    Dahl F., Baner J., Gullberg M., Mendel-Hartvig M., Landegren U., Nilsson M., Proc. Natl. Acad. Sci. USA, 2004, 101(13), 4548CrossRefGoogle Scholar
  7. [7]
    Jin G., Wang C., Yang L., Li X., Guo L., Qiu B., Lin Z., Chen G., Biosens. Bioelectron., 2015, 63, 166CrossRefGoogle Scholar
  8. [8]
    Chen J., Tong P., Lin Y., Lu W., He Y., Lu M., Zhang L., Chen G., Analyst, 2015, 140(3), 907CrossRefGoogle Scholar
  9. [9]
    Stougaard M., Juul S., Andersen F. F., Knudsen B. R., Integr. Bi-ol.(Camb.), 2011, 3(10), 982CrossRefGoogle Scholar
  10. [10]
    Wei H., Zhao G., Hu T., Tang S., Jiang J., Hu B., Guan Y., Sci. Rep., 2016, 6, 32560CrossRefGoogle Scholar
  11. [11]
    Wei H., Hu B., Tang S., Zhao G., Guan Y., Sci. Rep., 2016, 6, 37477CrossRefGoogle Scholar
  12. [12]
    Shi H., Mao X., Chen X., Wang Z., Wang K., Zhu X., Biosens. Bio-electron., 2017, 91, 136CrossRefGoogle Scholar
  13. [13]
    Chen Z., Duan X., Wei H., Tang S., Xu C., Li Y., Guan Y., Zhao G., Acta Biochim. Biophys. Sin.(Shanghai), 2018, 50(5), 507CrossRefGoogle Scholar
  14. [14]
    Meng F., Miao P., Wang B., Tang Y., Yin J., Anal. Chim. Acta, 2016, 943, 58CrossRefGoogle Scholar
  15. [15]
    Zhang Z., Ali M. M., Eckert M. A., Kang D. K., Chen Y. Y., Sender L. S., Fruman D. A., Zhao W., Biomaterials, 2013, 34(37), 9728CrossRefGoogle Scholar
  16. [16]
    Ciftci S., Neumann F., Hernandez-Neuta I., Hakhverdyan M., Balint A., Herthnek D., Madaboosi N., Nilsson M., Sci. Rep., 2019, 9(1), 2872CrossRefGoogle Scholar
  17. [17]
    Takahashi H., Ohkawachi M., Horio K., Kobori T., Aki T., Matsumura Y., Nakashimada Y., Okamura Y., Sci. Rep., 2018, 8(1), 7770CrossRefGoogle Scholar
  18. [18]
    Lee C. Y., Kang K. S., Park K. S., Park H. G., Mikrochim. Acta, 2017, 185(1), 53CrossRefGoogle Scholar
  19. [19]
    Battaglia C., Salani G., Consolandi C., Bernardi L. R., de Bellis G., Biotechniques, 2000, 29(1), 78CrossRefGoogle Scholar
  20. [20]
    Tuma R. S., Beaudet M. P., Jin X., Jones L. J., Cheung C. Y., Yue S., Singer V. L., Anal. Biochem., 1999, 268(2), 278CrossRefGoogle Scholar
  21. [21]
    Lane A. N., Chaires J. B., Gray R. D., Trent J. O., Nucleic. Acids Res., 2008, 36(17), 5482CrossRefGoogle Scholar
  22. [22]
    Chambers V. S., Marsico G., Boutell J. M., Di Antonio M., Smith G. P., Balasubramanian S., Nat. Biotechnol., 2015, 33(8), 877CrossRefGoogle Scholar
  23. [23]
    Searle M.S., Williams H. E., Gallagher C. T., Grant R. J., Stevens M. F., Org. Biomol. Chem., 2004, 2(6), 810CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Bin Zhang
    • 1
    • 2
  • Jiquan Jiang
    • 1
    • 3
  • Ying Yuan
    • 1
  • Yifu Guan
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyChina Medical UniversityShenyangP. R. China
  2. 2.Department of Plastic Surgery, School of StomatologyChina Medical UniversityShenyangP. R. China
  3. 3.Department of Biochemistry and Molecular Biology, College of Medical Laboratory and TechnologyHarbin Medical University(Daqing)DaqingP. R. China

Personalised recommendations