Highly Active Pd-PEPPSI Complexes for Suzuki-Miyaura Cross-coupling of Aryl Chlorides: an Investigation on the Effect of Electronic Properties

  • Yingying Zhang
  • Fangwai Han
  • Mengyao Zhang
  • Huixin Zhang
  • Ying Li
  • Ru Wang
  • Yongfei ZengEmail author
  • Guiyan LiuEmail author


Three new Pd-pyridine enhanced precatalyst preparation stabilization and initiation(PEPPSI) complexes with halogen groups on the N-heterocyclic carbene and pyridine were prepared. Their structures have been clearly characterized by nuclear magnetic resonance spectroscopy and X-ray single-crystal diffraction. The effects of the electronic properties of halogen groups on the catalytic activity in the Suzuki-Miyaura cross-coupling of aryl chlorides were investigated. These Pd-PEPPSI complexes could catalyze the cross-coupling reaction efficiently with a low catalyst loading(0.05%, molar ratio) at room temperature and the products were obtained in high yields.


Pd-pyridine enhanced precatalyst preparation stabilization and initiation(PEPPSI) complex; Suzu-ki-Miyaura cross-coupling reaction Aryl chloride 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_9222_MOESM1_ESM.pdf (2.1 mb)
Highly Active Pd-PEPPSI Complexes for Suzuki-Miyaura Cross-coupling of Aryl Chlorides: an Investigation on the Effect of Electronic Properties


  1. [1]
    Negishi E. I., de Meijere A., Handbook of Organopalladium Chemistry for Organic Synthesis, John Wiley & Sons, Inc., New York., 2002 CrossRefGoogle Scholar
  2. [2]
    de Meijere A., Diederich F., Metal-catalyzed Cross-coupling Reactions, 2nd Edition, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014 CrossRefGoogle Scholar
  3. [3]
    Arduengo A. J., Harlow R. L., Kline M., J. Am. Chem. Soc., 1991, 113(1), 361CrossRefGoogle Scholar
  4. [4]
    Fantasia S., Petersen J. L., Jacobsen H., Cavallo L., Nolan S. P., Organometallics, 2007, 26(24), 5880CrossRefGoogle Scholar
  5. [5]
    Jones W. D., J. Am. Chem. Soc., 2009, 131(42), 15075CrossRefGoogle Scholar
  6. [6]
    Hopkinson M. N., Richter C., Schedler M., Glorius F., Nature, 2014, 510, 485CrossRefGoogle Scholar
  7. [7]
    Vummaleti S. V. C., Nelson D. J., Poater A., Adrián G. S., Cordes D. B., Slawin A. M. Z., Nolan S. P., Cavallo L., Chemical Science, 2015, 6, 1895CrossRefGoogle Scholar
  8. [8]
    Kantchev E. A., O’Brien C. J., Organ M. G., Angew. Chem., Int. Ed., 2007, 46(16), 2768CrossRefGoogle Scholar
  9. [9]
    Würtz S., Glorius F., Acc. Chem. Res., 2008, 41(11), 1523CrossRefGoogle Scholar
  10. [10]
    Fortman G. C., Nolan S. P., Chem. Soc. Rev., 2011, 40(10), 5151CrossRefGoogle Scholar
  11. [11]
    Froese R. D. J., Lombardi C., Pompeo M., Rucker R. P., Organ M. G., Acc. Chem. Res., 2017, 50(9), 2244CrossRefGoogle Scholar
  12. [12]
    Li G., Shi S., Lei P., Szostak M., Advanced Synthesis & Catalysis, 2018, 360(7), 1538CrossRefGoogle Scholar
  13. [13]
    Marion N., Nolan S. P., Acc. Chem. Res., 2008, 41(11), 1440CrossRefGoogle Scholar
  14. [14]
    Calimsiz S., Sayah M., Mallik D., Organ M. G., Angew. Chem., Int. Ed., 2010, 49(11), 2014CrossRefGoogle Scholar
  15. [15]
    Valente C., Calimsiz S., Hoi K. H., Mallik D., Sayah M., Organ M. G., Angew. Chem. Int. Ed., 2012, 51(14), 3314CrossRefGoogle Scholar
  16. [16]
    Liu G., Liu C., Zhao X., Wang J., RSC Adv., 2016, 6(50), 44475CrossRefGoogle Scholar
  17. [17]
    Liu G., Liu C., Han F., Wang Z., Wang J., Tetrahedron Lett., 2017, 58(8), 726CrossRefGoogle Scholar
  18. [18]
    Liu C., Liu G., Zhao H., Chin. J. Chem., 2016, 34(10), 1048CrossRefGoogle Scholar
  19. [19]
    Lan X. B., Chen F. M., Ma B. B., Shen D. S., Liu F. S., Organometallics, 2016, 35(22), 3852CrossRefGoogle Scholar
  20. [20]
    Ormerod D., Dorbec M., Merkul E., Kaval N., Lefèvre N., Hostyn S., Eykens L., Lievens J., Sergeyev S., Maes B. U. W., Org. Process Res. Dev., 2018, 22, 1509CrossRefGoogle Scholar
  21. [21]
    O’Brien C. J., Kantchev E. A. B., Valente C., Hadei N., Chass G. A., Lough A., Hopkinson A. C., Organ M. G., Chem. Eur. J., 2006, 12(18), 4743CrossRefGoogle Scholar
  22. [22]
    Rajabia F., Thiel W. R., Adv. Synth. Catal., 2014, 356, 1873CrossRefGoogle Scholar
  23. [23]
    Nasielski J., Hadei N., Achonduh G., Kantchev E. A. B., O’Brien C. J., Lough A., Organ M. G., Chem. Eur. J., 2010, 16(35), 10844CrossRefGoogle Scholar
  24. [24]
    Organ M. G., Calimsiz S., Sayah M., Hoi K. H., Lough A. J., Angew. Chem. Int. Ed., 2009, 48(13), 2383CrossRefGoogle Scholar
  25. [25]
    Valente C., Belowich M. E., Hadei N., Organ M. G., Eur. J. Org. Chem., 2010, 2010(23), 4343Google Scholar
  26. [26]
    Tu T., Sun Z., Fang W., Xu M., Zhou Y., Org. Lett., 2012, 14(16), 4250CrossRefGoogle Scholar
  27. [27]
    Lu D. D., He X. X., Liu F. S., J. Org. Chem., 2017, 82(20), 10898CrossRefGoogle Scholar
  28. [28]
    Ouyang J. S., Li Y. F., Huang F. D., Lu D. D., Liu F. S., ChemCat-Chem., 2018, 10(2), 371CrossRefGoogle Scholar
  29. [29]
    He X. X., Li Y., Ma B. B., Ke Z., Liu F. S., Organometallics., 2016, 35(16), 2655CrossRefGoogle Scholar
  30. [30]
    Dunsford J. J., Cavell K. J., Organometallics., 2014, 33(11), 2902CrossRefGoogle Scholar
  31. [31]
    Han F., Xu Y., Zhu R., Liu G., Chen C., Wang J., New J. Chem., 2018, 42(9), 7422CrossRefGoogle Scholar
  32. [32]
    Türkmen H., Çetinkaya B., J. Organomet Chem., 2006, 691(18), 3749CrossRefGoogle Scholar
  33. [33]
    Sheldrick G. M., SHELXL-97, Program for X-Ray Crystal Structure Solution, University of Göttingen, Göttingen, 1997 Google Scholar
  34. [34]
    Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A. K., Puschmann H., J. Appl. Cryst., 2009, 42, 339CrossRefGoogle Scholar
  35. [35]
    Dash C., Shaikh M. M., Ghosh P., Eur. J. Inorg. Chem., 2009, 2009(12), 1608CrossRefGoogle Scholar
  36. [36]
    Organ M. G., Chass G. A., Fang D. C., Hopkinson A. C., Valente C., Synthesis, 2008, 17, 2776CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Yingying Zhang
    • 1
  • Fangwai Han
    • 1
  • Mengyao Zhang
    • 1
  • Huixin Zhang
    • 1
  • Ying Li
    • 1
  • Ru Wang
    • 1
  • Yongfei Zeng
    • 1
    Email author
  • Guiyan Liu
    • 1
    Email author
  1. 1.Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, College of ChemistryTianjin Normal UniversityTianjinP. R. China

Personalised recommendations