Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 6, pp 1024–1031 | Cite as

Effect of Preparation Method on the Structural Characteristics of NiO-ZrO2 Oxygen Carriers for Chemical-looping Combustion

  • Yike Liu
  • Yanhui Long
  • Yaqin Tang
  • Zhenhua GuEmail author
  • Kongzhai Li
Article
  • 18 Downloads

Abstract

Chemical-looping combustion(CLC) offers an effective approach for power generation and CO2 capture. In this work, an NiO-ZrO2 oxygen carrier prepared by three methods was subjected to an optimal reaction temperature test, an optimal flow test and a cyclic redox reaction test to explore the most suitable reaction conditions. Through comparative analysis, it is noted that the coprecipitation method is not suitable for the preparation of this NiO-ZrO2 oxygen carrier, while the oxygen carrier prepared by the mechanical mixing method and solution combustion method obtained a higher CH4 conversion rate and CO2 selectivity. In addition, these two oxygen carriers also showed high stability during successive CLC testing. Therefore, both the mechanical mixing method and the solution combustion method can be used to prepare NiO-ZrO2 oxygen carriers.

Keywords

Chemical-looping combustion NiO-ZrO2 oxygen carrier Solution combustion method Mechanical mixing method Coprecipitation method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    McKee B., Technology Status Report, International Energy Agency, Committee on Energy Research and Technology, Working Party on Fossil Fuels, 2002 Google Scholar
  2. [2]
    Richter H. J., Knoche K. F., ACS Symposium Series, 1983, 71Google Scholar
  3. [3]
    Ishida M., Zheng D., Akehata T., Energy, 1987, 12(2), 147CrossRefGoogle Scholar
  4. [4]
    Nandy A., Loha C., Gu S., Sarkar P., Karmakar M. K., Chatterjee P. K., Renewable and Sustainable Energy Reviews, 2016, 59, 597CrossRefGoogle Scholar
  5. [5]
    Hossain M. M., Lasa H. I., Chemical Engineering Science, 2008, 63(18), 4433CrossRefGoogle Scholar
  6. [6]
    Yang J., Ma L. P., Tang J. X., Zhu B., Ma G. P., Modern Chemical Industry, 2016, 36(1), 25Google Scholar
  7. [7]
    Li D., Li K., Xu R., Wang H., Tian D., Wei Y., Zhu X., Zeng C., Zeng L., Catalysis Today, 2018, 318, 73CrossRefGoogle Scholar
  8. [8]
    Rydén M., Cleverstam E., Johansson M., Lyngfelt A., Mattisson T., AIChE Journal, 2010, 56(8), 2211Google Scholar
  9. [9]
    de Diego L. F., García-Labiano F., Adánez J., Gayán P., Abad A., Corbella B. M., Palacios J. M. A., Fuel, 2004, 83(13), 1749CrossRefGoogle Scholar
  10. [10]
    Chuang S., Dennis J., Hayhurst A., Scott S., Combustion and Flame, 2008, 154(1/2), 109CrossRefGoogle Scholar
  11. [11]
    Adánez J., de Diego L. F., García-Labiano F., Gayán P., Abad A., Palacios J., Energy & Fuels, 2004, 18(2), 371CrossRefGoogle Scholar
  12. [12]
    Johansson M., Mattisson T., Lyngfelt A., Chemical Engineering Research and Design, 2006, 84(9), 807CrossRefGoogle Scholar
  13. [13]
    Zafar Q., Abad A., Mattisson T., Gevert B., Strand M., Chemical Engineering Science, 2007, 62(23), 6556CrossRefGoogle Scholar
  14. [14]
    Mei D., Mendiara T., Abad A., de Diego L., García-Labiano F., Gayán P., Adánez J., Zhao H., Energy & Fuels, 2015, 29(10), 6605CrossRefGoogle Scholar
  15. [15]
    Sundqvist S., Arjmand M., Mattisson T., Ryden M., Lyngfelt A., International Journal of Greenhouse Gas Control, 2015, 43, 179CrossRefGoogle Scholar
  16. [16]
    He F., Wei Y., Li H., Wang H., Energy & Fuels, 2009, 23(4), 2095CrossRefGoogle Scholar
  17. [17]
    Jin H., Okamoto T., Ishida M., Industrial & Engineering Chemistry Research, 1999, 38(1), 126CrossRefGoogle Scholar
  18. [18]
    Mattisson T., Johansson M., Lyngfelt A., Fuel, 2006, 85(5/6), 736CrossRefGoogle Scholar
  19. [19]
    Johansson M., Mattisson T., Lyngfelt A., Abad A., Fuel, 2008, 87(6), 988CrossRefGoogle Scholar
  20. [20]
    Ge H., Shen L., Gu H., Jiang S., Chemical Engineering Journal, 2015, 262, 1065CrossRefGoogle Scholar
  21. [21]
    Zafar Q., Mattisson T., Gevert B., Industrial & Engineering Chemistry Research, 2005, 44(10), 3485CrossRefGoogle Scholar
  22. [22]
    Cheng X., Li K., Wang H., Zhu X., Wei Y., Li Z., Zheng M., Tian D., Chemical Engineering Journal, 2017, 328, 382CrossRefGoogle Scholar
  23. [23]
    Wang M., Liu J., Shen F., Cheng H., Dai J., Long Y., Applied Surface Science, 2016, 367, 485CrossRefGoogle Scholar
  24. [24]
    Lu C., Li K., Wang H., Zhu X., Wei Y., Zheng M., Zeng C., Applied Energy, 2018, 211, 1CrossRefGoogle Scholar
  25. [25]
    Deng G., Li K., Gu Z., Zhu X., Wei Y., Cheng X., Wang H., Chemical Engineering Journal, 2018, 341, 588CrossRefGoogle Scholar
  26. [26]
    Ishida M., Jin H., Journal of Chemical Engineering of Japan, 1994, 27(3), 296CrossRefGoogle Scholar
  27. [27]
    Johansson E., Mattisson T., Lyngfelt A., Thunman H., Fuel, 2006, 85(10/11), 1428CrossRefGoogle Scholar
  28. [28]
    Silvester L., Antzara A., Boskovic G., Heracleous E., Lemonidou A. A., Bukur D. B., International Journal of Hydrogen Energy, 2015, 40(24), 7490CrossRefGoogle Scholar
  29. [29]
    Linderholm C., Abad A., Mattisson T., Lyngfelt A., International Journal of Greenhouse Gas Control, 2008, 2(4), 520CrossRefGoogle Scholar
  30. [30]
    Shen L., Wu J., Gao Z., Xiao J., Combustion and Flame, 2009, 156(7), 1377CrossRefGoogle Scholar
  31. [31]
    Ryu H. J., Bae D. H., Jin G. T., Korean Journal of Chemical Engineering, 2003, 20(5), 960CrossRefGoogle Scholar
  32. [32]
    Ryu H. J., Lim N. Y., Bae D. H., Jin G. T., Korean Journal of Chemical Engineering, 2003, 20(1), 157CrossRefGoogle Scholar
  33. [33]
    Siriwardane R., Riley J., Bayham S., Straub D., Tian H., Weber J., Richards G., Applied Energy, 2018, 213, 92CrossRefGoogle Scholar
  34. [34]
    Adánez J., Dueso C., de Diego L. F., Garcia-Labiano F., Gayán P., Abad A., Energy & Fuels, 2008, 23(1), 130CrossRefGoogle Scholar
  35. [35]
    Forero C., Gayán P., de Diego L., Abad A., García-Labiano F., Adánez J., Fuel Processing Technology, 2009, 90(12), 1471CrossRefGoogle Scholar
  36. [36]
    Titus J., Roussiere T., Wasserschaff G., Schunk S., Milanov A., Schwab E., Wagner G., Oeckler O., Gläser R., Catalysis Today, 2016, 270, 68CrossRefGoogle Scholar
  37. [37]
    Yan Q., Zeng F., Li Y., Luo J., Petrochemical Technology, 2016, 45(3), 280Google Scholar
  38. [38]
    Li C., Li M., Journal of Raman Spectroscopy, 2002, 33(5), 301CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Yike Liu
    • 1
    • 2
    • 3
  • Yanhui Long
    • 3
  • Yaqin Tang
    • 1
    • 2
    • 3
  • Zhenhua Gu
    • 2
    • 3
    • 4
    Email author
  • Kongzhai Li
    • 2
    • 3
    • 4
  1. 1.School of Material and Metallurgical EngineeringGuizhou Institute of TechnologyGuiyangP. R. China
  2. 2.Faculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunmingP. R. China
  3. 3.State Key Laboratory of Complex Nonferrous Metal Resources Clean UtilizationKunming University of Science and TechnologyKunmingP. R. China
  4. 4.Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of EducationKunming University of Science and TechnologyKunmingP. R. China

Personalised recommendations