Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 6, pp 1040–1045 | Cite as

Crystal Structures and Electrochemical Properties of R1.5Ca1.5MgNi14(R=Nd, Gd and Er) Hydrogen Storage Alloys

  • Jiahe Zang
  • Qing’an ZhangEmail author
  • Dalin Sun
Article
  • 11 Downloads

Abstract

Ca3MgNi14, Nd1.5Ca1.5MgNi14, Gd1.5Ca1.5MgNi14 and Er1.5Ca1.5MgNi14 alloys were prepared by high frequency induction melting and sintering. Characterization and analysis were performed by X-ray diffraction/Rietveld full-spectrum fitting, gaseous P-C-T hydrogen storage test and electrochemical properties tests. It can be found that all alloys consist of Gd2Co7-type 3R phase and Ce2Ni7-type 2H phase. Although the hydrogen storage capacities of Nd1.5Ca1.5MgNi14, Gd1.5Ca1.5MgNi14 and Er1.5Ca1.5MgNi14 decrease to some extent compared to that of Ca3MgNi14, their equilibrium pressures for absorption and desorption increase markedly. Moreover, R1.5Ca1.5MgNi14 alloys have better cycling stabilities and high-rate discharge(HRD) properties as compared to Ca3MgNi14. The hydrogen diffusion in alloy electrodes is the main factor to influence the HRD performance.

Keywords

Hydrogen storage alloy Crystal structure Electrochemical performance High-rate discharge Element substitution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Xiao L., Chu W., Sun W. J., Xue Y., Jiang C. F., Chem. Res. Chinese Universities, 2017, 33(3), 422CrossRefGoogle Scholar
  2. [2]
    Zhou X. F., Zhou Y. B., Tang C. M., Chem. J. Chinese Universities, 2019, 40(3), 473Google Scholar
  3. [3]
    Erika T., Sebastian C., Fernando Z., Verónica D., Int. J. Hydrogen Energy, 2016, 41(43), 19684CrossRefGoogle Scholar
  4. [4]
    Liu J., Han S., Li Y., Zhang L., Zhao Y., Yang S., Liu B., Int. J. Hydrogen Energy, 2016, 41(44), 20261CrossRefGoogle Scholar
  5. [5]
    Xue C., Zhang L., Fan Y., Fan G., Liu B., Han S., Int. J. Hydrogen Energy, 2017, 42(9), 6051CrossRefGoogle Scholar
  6. [6]
    Liu J., Han S., Han D., Li Y., Yang S., Zhang L., Zhao Y., J. Power Sources, 2015, 287, 237CrossRefGoogle Scholar
  7. [7]
    Kadir K., Sakai T., Uehara I., J. Alloys Compd., 1999, 287, 264CrossRefGoogle Scholar
  8. [8]
    Kadir K., Sakai T., Uehara I., J. Alloys Compd., 2000, 302(1/2), 112CrossRefGoogle Scholar
  9. [9]
    Chen J., Takeshita H. T., Tanaka H., Kuriyama N., Sakai T., Uehara I., Haruta M., J. Alloys Compd., 2000, 302(1/2), 304CrossRefGoogle Scholar
  10. [10]
    Xin G., Yuan H., Yang K., Jiang L., Liu X., Wang S., Int. J. Hydro-gen Energy, 2016, 41(46), 21261CrossRefGoogle Scholar
  11. [11]
    Si T. Z., Zhang Q. A., Pang G., Liu D. M., Liu N., Int. J. Hydrogen Energy, 2009, 34(3), 1483CrossRefGoogle Scholar
  12. [12]
    Zhang Q. A., Pang G., Si T. Z., Liu D. M., Acta Mater., 2009, 57(6), 2002CrossRefGoogle Scholar
  13. [13]
    Zhang Q. A., Zhao G. P., Si T. Z., Int. J. Hydrogen Energy, 2006, 31(9), 1182CrossRefGoogle Scholar
  14. [14]
    Zhang P., Liu Y., Tang R., Zhu J., Wei X., Liu S., Yu G., Electrochim. Acta, 2006, 51(28), 6400CrossRefGoogle Scholar
  15. [15]
    Xin G., Yuan H., Yang K., Jiang L., Liu X., Wang S., RSC Adv., 2016, 6(26), 21742CrossRefGoogle Scholar
  16. [16]
    Belgacem Y. B., Khaldi C., Lamloumi J., Takenouti H., J. Solid State Electrochem., 2016, 20(7), 1949CrossRefGoogle Scholar
  17. [17]
    Chebab S., Abdellaoui M., Latroche M., Paul-Boncour V., J. Renew. Sustain. Energy, 2016, 5(3), 12CrossRefGoogle Scholar
  18. [18]
    Chen J., Kuriyama N., Takeshita H. T., Tanaka H., Sakai T., Haruta M., Electrochem. Solid-state Lett., 2000, 3(6), 249CrossRefGoogle Scholar
  19. [19]
    Zang J. H., Zhang Q. A., Sun D. L., J. Alloys Compd., 2019, 771, 711CrossRefGoogle Scholar
  20. [20]
    Zang J. H., Zhang Q. A., Sun D. L., J. Alloys Compd., 2019, 794, 45CrossRefGoogle Scholar
  21. [21]
    Lv W., Yuan J., Zhang B., Wu Y., J. Alloys Compd., 2018, 730, 360CrossRefGoogle Scholar
  22. [22]
    Si T. Z., Zhang Q. A., Liu N., Int. J. Hydrogen Energy, 2008, 33(6), 1729CrossRefGoogle Scholar
  23. [23]
    Liu Y., Cao Y., Huang L., Gao M., Pan H., J. Alloys Compd., 2011, 509(3), 675CrossRefGoogle Scholar
  24. [24]
    Izumi F., Mater. Sci. Forum, 2000, 321, 198CrossRefGoogle Scholar
  25. [25]
    Zhang Q., Fang M., Si T., Fang F., Sun D., Ouyang L., Min Z., J. Phys. Chem. C, 2010, 114(26), 11686CrossRefGoogle Scholar
  26. [26]
    Buschow K. H. J., Van Der Goot A. S., J. Less Common Metals, 1970, 22(4), 419CrossRefGoogle Scholar
  27. [27]
    Sakaki K., Terashita N., Tsunokake S., Nakamura Y., Akiba E., J. Phys. Chem. C, 2012, 116(36), 19156CrossRefGoogle Scholar
  28. [28]
    Dymek M., Nowak M., Jurczyk M., Bala H., J. Alloys Compd., 2018, 749, 534CrossRefGoogle Scholar
  29. [29]
    Zhang L., Han S., Li Y., Liu J., Zhang J., Wang J., Yang S., Int. J. Hydrogen Energy, 2013, 38(25), 10431CrossRefGoogle Scholar
  30. [30]
    Zhang F., Luo Y., Deng A., Tang Z., Kang L., Chen J., Electrochim. Acta, 2006, 52(1), 24CrossRefGoogle Scholar
  31. [31]
    Volodin A. A., Wan C., Denys R. V., Tsirlina G. A., Tarasov B. P., Fichtner M., Ulmer U., Yu Y., Nwakwuo C. C., Yartys V. A., Int. J. Hydrogen Energy, 2016, 41(23), 9954CrossRefGoogle Scholar
  32. [32]
    Li Y., Wang C., Dong Z., Wang J., Yang S., Ke D., Han S., Int. J. Hydrogen Energy, 2017, 42(30), 19148CrossRefGoogle Scholar
  33. [33]
    Zhang Y. H., Cai Y., Zhao C., Zhai T. T., Zhang G. F., Zhao D. L., Int. J. Hydrogen Energy, 2012, 37(19), 14590CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringAnhui University of TechnologyMaanshanP. R. China
  2. 2.Department of Materials ScienceFudan UniversityShanghaiP. R. China

Personalised recommendations