Chemical Research in Chinese Universities

, Volume 35, Issue 6, pp 1052–1057 | Cite as

Improved Electrochemical Kinetic Performances of La-Mg-Ni-based Hydrogen Storage Alloy Modified by Ni-Polypyrrole Complex Surface Treatment

  • Shuqin YangEmail author
  • Yunchai Wang
  • Yuan Li
  • Laizhou SongEmail author


In order to improve the electrochemical kinetic performances of La-Mg-Ni-based alloy, complex surface modification of Ni with excellent catalytic activity and conducting polymer polypyrrole(PPy) was performed via electroless plating method. FESEM images revealed that the complex Ni-PPy treatment resulted in more micropores at the alloy surface, with Ni particles and cotton fiber-shape PPy microspheres attached. Both the larger surface area induced by the micropore and the higher catalytic activity and conductivity on account of the dispersed Ni particles/PPy microspheres promoted the electrode reaction, thereby increasing the discharge capacity of the modified alloy electrode. Electrochemical impedance spectroscopy(EIS) and linear polarization results showed that the Ni-PPy treatment decreased the charge-transfer resistance and increased the exchange current density greatly, far more than the single-component Ni or PPy treatment. Consequently, a notable improvement in high rate dischargeability(HRD) was observed, and at a high discharge current density of 1800 mA/g, the HRD of the modified electrode increased by 10.4% compared with that of the bare electrode.


Ni/MH battery La-Mg-Ni-based alloy Complex surface treatment Ni-PPy Electrochemical kinetic characteristic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_9169_MOESM1_ESM.pdf (58 kb)
Improved Electrochemical Kinetic Performances of La-Mg-Ni-based Hydrogen Storage Alloy Modified by Ni-Polypyrrole Complex Surface Treatment


  1. [1]
    Liu Y. F., Pan H. G., Gao M. X., Wang Q. D., J. Mater. Chem., 2011, 21(13), 4743CrossRefGoogle Scholar
  2. [2]
    Lv W., Yuan J. G., Zhang B., Wu Y., J. Alloy Compd., 2018, 730(1), 360CrossRefGoogle Scholar
  3. [3]
    Wei F. S., Cai X., Zhang Y., Wei F. N., Int. J. Electrochem. Sci., 2017, 12(1), 429CrossRefGoogle Scholar
  4. [4]
    Werwinski M., Szajek A., Marczynska A., Smardz L., Nowak M., Jurczyk M., J. Alloy Compd., 2018, 763(1), 951CrossRefGoogle Scholar
  5. [5]
    Li R. F., Yu R. H., Liu X. F., Wan J., Wang F., Electrochim. Acta, 2015, 158(1), 89CrossRefGoogle Scholar
  6. [6]
    Jiang W. Q., Qin C. S., Zhu R. R., Guo J., J. Alloy Compd., 2013, 565(1), 37CrossRefGoogle Scholar
  7. [7]
    Li P., Zhang J., Zhai F. Q., Ma G., Xu L., Qu X. H., J. Rare Earth., 2015, 33(4), 417CrossRefGoogle Scholar
  8. [8]
    Li W., Zhang B., Yuan J. G., Wu Y., Int. J. Hydrogen Energy, 2016, 41(27), 11767CrossRefGoogle Scholar
  9. [9]
    Xue C. J., Zhang L., Fan Y. P., Xue C. J., Zhang L., Fan Y. P., Fan G. X., Liu B. Z., Han S. M., Int. J. Hydrogen Energy, 2017, 42(9), 6051CrossRefGoogle Scholar
  10. [10]
    Lim K. L., Liu Y. N., Zhang Q. A., Lin K. S., Chan S. L. I., J. Alloy Compd., 2016, 661(1), 274CrossRefGoogle Scholar
  11. [11]
    Huang J. L., Qiu S. J., Chu H. L., Zou Y. J., Xiang C. L., Zhang H. Z., Xu F., Sun L. X., Ouyang L. Z., Zhou H. Y., Int. J. Hydrogen Energy, 2015, 40(41), 14173CrossRefGoogle Scholar
  12. [12]
    Qu X., Ma L., Jin C., Zhao X., Ding Y., Rare Metal Mat. Eng., 2011, 40(3), 543Google Scholar
  13. [13]
    Yuan H. P., Yang K., Jiang L. J., Liu X. P., Wang S. M., Int. J. Hydrogen Energy, 2015, 40(13), 4623CrossRefGoogle Scholar
  14. [14]
    Nakatsuji K., Ohyama H., US20110033748A1, 2011 Google Scholar
  15. [15]
    Xiao L. L., Wang Y. J., Liu Y., Song D. W., Jiao L. F., Yuan H. T., Int. J. Hydrogen Energy, 2008, 33(14), 3925CrossRefGoogle Scholar
  16. [16]
    Ngene P., Westerwaal R. J., Sachdeva S., Haije W., de Smet L. C. P. M., Dam B., Angew. Chem. Int. Ed., 2014, 53(1), 12081CrossRefGoogle Scholar
  17. [17]
    Sun L., Lin J., Liang F., Cao Z., Wang L., Mater. Lett., 2015, 161(1), 686CrossRefGoogle Scholar
  18. [18]
    Ananth M. V., Ananthi P. Int. J. Hydrogen Energy, 2008, 33(20), 5779CrossRefGoogle Scholar
  19. [19]
    Matssuoka M., Asai K., Asai K., Fukumoto Y., Iwakura C., J. Alloy Compd., 1993, 192(1), 149CrossRefGoogle Scholar
  20. [20]
    Ren J., Williams M., Lototskyy M., Davids W., Ulleberg Ø., Int. J. Hydrogen Energy, 2010, 35(16), 8626CrossRefGoogle Scholar
  21. [21]
    Ding H. L., Han S. M., Liu Y., Hao J. S., Li Y., Zhang J. W., Int. J. Hydrogen Energy, 2009, 34(23), 9402CrossRefGoogle Scholar
  22. [22]
    Wang Y. B., Tang W. K., Wang F., Ding C. P., Xu S. M., Yu R. H., Int. J. Hydrogen Energy, 2018, 43(6), 3244CrossRefGoogle Scholar
  23. [23]
    Li Y., Tao Y., Ke D. D., Ma Y. F., Han S. M., Appl. Surf. Sci., 2015, 357(B), 1714CrossRefGoogle Scholar
  24. [24]
    Zadorozhnyy M. Y., Klyamkin S. N., Strugova D. V., Olifirov L. K., Milovzorov G. S., Kaloshkin S. D., Kaloshkin S. D., Zadorozhnyy V. Y., Int. J. Mater. Res., 2016, 40(2), 273Google Scholar
  25. [25]
    Reddy A. L. M., Ramaprabhu S., Int. J. Hydrogen Energy, 2006, 31(7), 867CrossRefGoogle Scholar
  26. [26]
    Qi Y., Chu H., Xu F., Sun L., Zhang Y., Zhang J., Qiu S. J., Yuan H. T., Int. J. Hydrogen Energy, 2007, 32(15), 3395CrossRefGoogle Scholar
  27. [27]
    Wang B. P., Zhao L. M., Cai C. S., Wang S. X., Int. J. Hydrogen Energy, 2014, 39(20), 10374CrossRefGoogle Scholar
  28. [28]
    Hu L., Li J. P., Yang W., Ionics, 2015, 21(12), 3209CrossRefGoogle Scholar
  29. [29]
    Wang Y. C., Li Y., Shen W. Z., Pei Y. R., Liu J. J., Che J. Y. H., Yang S. Q., Han S. M., J. Solid State Electrochem., 2015, 19(5), 1419CrossRefGoogle Scholar
  30. [30]
    Yang S. Q., Li Y., Yuan Y. J., Dong Z. T., Ren K. L., Zhao Y. M., Chem. Res. Chinese Universities, 2018, 34(4), 604CrossRefGoogle Scholar
  31. [31]
    Zhao X. Y., Ma L. Q., Gao Y. J., Ding Y., Shen X. D., Int. J. Hydrogen Energy, 2009, 34(4), 1904CrossRefGoogle Scholar
  32. [32]
    Wu M. S., Wu H. R., Wang Y. Y., Wan C. C., J. Alloy Compd., 2000, 302(1/2), 248CrossRefGoogle Scholar
  33. [33]
    Li Y., Hou X. W., Wang C. X., Cheng L. N., Feng X. L., Han S. M., Int. J. Hydrogen Energy, 2018, 43(10), 5104CrossRefGoogle Scholar
  34. [34]
    Chi B., Lin H., Li J. B. Int. J. Hydrogen Energy, 2008, 33(18), 4763CrossRefGoogle Scholar
  35. [35]
    Notten P. H. L., Hokkeling P., J. Electrochem. Soc., 1991, 138(7), 1877CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.Department of Environmental and Chemical EngineeringYanshan UniversityQinhuangdaoP. R. China

Personalised recommendations